
Numerical Enhancements and Parallel GPU
Implementation of a 3D Gaussian Beam Model?

Rogério M. Calazan1[0000−0001−6025−2777], Orlando C.
Rodŕıguez2[0000−0002−0375−1892], and Sérgio M. Jesus2[0000−0002−6021−1761]

1 Institute of Sea Studies Admiral Paulo Moreira,
Arraial do Cabo, Brazil

moraes.calazan@marinha.mil.br

https://www.marinha.mil.br/ieapm/
2 Laboratory of Robotics and Systems in Engineering and Science (LARSyS),

Campus de Gambelas, Universidade do Algarve, Faro, Portugal
http://www.siplab.fct.ualg.pt

Abstract. Despite the increasing performance of modern processors it
is well known that the majority of models that account for 3D underwa-
ter acoustic predictions still require a high computational cost. In this
context, this work presents strategies to enhance the computational per-
formance of a ray-based 3D model. First, it is presented an optimized
method for acoustic field calculations, that accounts for a large num-
ber of sensors. Second, the inherent parallelism of ray tracing and the
high workload of 3D propagation are carefully considered, leading to the
development of parallel algorithms for field predictions using a GPU ar-
chitecture. The strategies were validated through performance analyses
and comparisons with experimental data from a tank scale experiment,
and the results show that model predictions are computationally efficient
and accurate. The combination of numerical enhancements and parallel
computing allowed to speedup model calculations for a large number of
receivers.

Keywords: Underwater acoustics · numerical modeling · 3D propaga-
tion · GPU parallel computing.

1 Introduction

Since its early development, underwater predictions of acoustic 3D propagation
are well known to be highly time consuming; initial research in this area relied in
fact on dedicated computer architectures to carry on model execution [1, 2]. Even
today, despite the increasing performance of modern processors, models that
take into account 3D propagation still have a high computational cost [3]. The
corresponding (high) runtime of a single prediction can easily explain why 3D
models are generally put aside when dealing with problems of acoustic inversion

? Supported by National Council for Scientific and Technological Development
(CNPq)/Science without Borders Program (Contract No. 401407/2014-4).

2 Calazan et al.

[5]. Additionally, predictions of sonar performance can take advantage of full
3D modeling to improve accuracy, with a ray model playing a central role in
such task due to its capability to handle high frequencies, say, above 500 Hz
[6]. Furthermore, monitoring of shipping noise represents also an important field
of research since shipping noise propagates at long distances, with 3D effects
becoming more relevant as distances increase. On the other side, ship density
is high in the vicinity of harbors, making bottom interactions and 3D effects
important in shallow waters and littoral environments [8, 9].

Computational model performance can be significantly improved through the
combination of numerical enhancements with parallel computing. In this sense,
the generation of optimized algorithms requires task-specific analysis and de-
velopment of new methods, that parallel computing cannot be able to overcome
alone. Additionally, the performance of graphic processing units (hereafter GPU)
motivated several implementations of scientific applications, including underwa-
ter acoustic models. For instance, a split-step Fourier parabolic equation model
implemented in a GPU is discussed in [11] and the discussion presented in [12]
describes a GPU-based version of a Beam-Displacement Ray-Mode code; both
works considered only highly idealized 2D waveguides and the results showed
a significant improvement regarding the computational performance. A parallel
version of the C-based version of TRACEO (called cTRACEO), based on a GPU
architecture, was discussed in detail in [13]; the discussion showed that paral-
lelization drastically reduces the computational burden when a large number of
rays needs to be traced; performance results for such 2D model outlined the
computational advantages of considering the GPU architecture for the 3D case.
Preliminary research into parallelization in a coarse-grained fashion was also ex-
plored using OpenMPI [14, 15]. Performance analysis showed that the parallel
implementation followed a linear speedup when each process was addressed to a
single physical CPU core. However, such performance was achieved at the cost of
using high-end CPUs, designed for computer servers without network communi-
cation (which probably would decrease the overall performance). Thus, the best
parallel implementation was 12 times faster than the sequential one, meaning
that the execution took place in a CPU with 12 physical cores.

The work presented here describes the development of numerical enhance-
ments and optimization of the sequential version of the TRACEO3D Gaussian
beam model [16–18], leading to improvements of its performance; the description
is followed by further analysis of the GPU hardware multithread, and the coding
elements of the time consuming model structure, into a parallel algorithm that
takes advantage of the GPU architecture. This development looks carefully to
the inherent parallelism of ray tracing and to the high workload of computa-
tions for 3D predictions. Furthermore, validation and performance assessments
are presented considering experimental data from a tank scale experiment. The
results show that a remarkable performance was achieved without compromising
accuracy. This paper is organized as follows: the TRACEO3D model is described
in 2; numerical enhancement are presented in Section 3; the detailed structure
of parallel GPU implementation is presented in Section 4; Section 5 presents the

Title Suppressed Due to Excessive Length 3

validation results, in which experimental data were considered. Conclusions and
future work are presented in Section 6.

2 The TRACEO3D Gaussian beam model

The TRACEO3D Gaussian beam model [17] corresponds to a three-dimensional
extension of the TRACEO 2D model [19]. TRACEO3D produces a prediction
of the acoustic field in two steps: first, the set of Eikonal equations is solved in
order to provide ray trajectories; second, ray trajectories are considered as the
central axes of Gaussian beams, and the acoustic field at the position of a given
hydrophone is computed as a coherent superposition of beam influences. The
beam influence is calculated along a given normal based on the expression [20,
3, 21]

P (s, n1, n2) =
1

4π

√
c(s)

c(0)

cos θ(0)

det Q
Φ exp [−iωτ(s)] , (1)

where Φ =
∏
i=1,2
j=1,2

Φij and the coefficients are given by

Φij = exp [−(

√
π|ninj |
∆θ

Q−1ij

)
2
]
, (2)

with ∆θ standing for the elevation step between successive rays, and Q−1ij repre-

senting the elements of Q−1; n1 and n2 are calculated through the projection of
n onto the polarized vectors along the ray; s corresponds to the ray arc length,
and c(s) and τ(s) stand for the sound speed and travel time along the ray, re-
spectively; the complex matrix Q(s) describes the beam spreading, while P(s)
describes the beam slowness.

3 Numerical enhancements

3.1 Calculation of normals

In the original version of TRACEO3D ray influence at a receiver located at the
position rh was calculated using the following procedure:

– Divide the ray trajectory into segments between successive transitions (sur-
face/bottom reflection, or bottom/surface reflection, etc.);

– Proceed along all segments to find all ray normals to the receiver; to this
end:
• Consider the ith segment; let rA and rB be the coordinates of the be-

ginning and end of the segment, respectively, and let eA and eB be the
vectors corresponding to es at A and B; where es is defined as a unitary
vector, which is tangent to the ray.

• Calculate the vectors ∆rA = rh − rA and ∆rB = rh − rB .
• Calculate the inner products PA = eA ·∆rA and PB = eB ·∆rB .

4 Calazan et al.

Fig. 1. Normal search along a ray segment, with PA = eA ·∆rA and PB = eB ·∆rB .
Top: the hydrophone is at a position for which PA×PB < 0, thus a normal exists, and
it can be found by bisection somewhere along the segment. Bottom: the hydrophone
is at a position for which PA × PB > 0; thus, there is no normal and the ray segment
has no influence at the hydrophone position.

• If PA × PB < 0 a normal exists and it can be found through bisection
along the segment; once the normal is found the corresponding influence
at the receiver can be calculated.

• If PA × PB > 0 there is no normal (and no influence at the receiver);
therefore, one can move to segment i+ 1.

– The ray influence at the receiver is the sum of influences from all segments.

The search for a normal along a ray segment is illustrated in Fig. 1. The influence
of a Gaussian beam decays rapidly along a normal, but it never reaches zero;
therefore, the procedure is to be repeated for all rays and all receivers.

As shown in [17] field predictions using this method exhibit a good agreement
with experimental data, but the runtime is often high and increases drastically
as range, number of rays and number of sensors increase. The numerical en-
hancement of field calculations is described in the next Section.

3.2 The receiver grid strategy

To reduce drastically the runtime without compromising accuracy one can fol-
low the approach described in [3], which suggests that for each ray segment one
considers not all receivers, but only those “insonified” (i.e. bracketed) between
the endpoints of a ray segment. For a given subset of receivers one can proceed
sequentially within the subset (for instance, from the ocean surface to the ocean

Title Suppressed Due to Excessive Length 5

b
eam

w
id
th

Fig. 2. The receiver grid (vertical view): the black dots represent all the receivers of a
rectangular array, while the solid line represents the ray trajectory; the ray influence
is only relevant within the limits of the beam width, represented by the dashed lines,
and the gray rectangle represents the grid of receivers considered for the calculation of
ray influence.

bottom), and rely on simple algebra to determine the parameters of ray influ-
ence; the procedure is then repeated for all ray segments. An examination of
the BELLHOP3D ray tracing code [22] reveals that the determination of the
subset of receivers is achieved by testing all receiver positions within the array,
looking to find the ones within the endpoints of the ray segment. The approach
implemented in TRACEO3D goes further, and looks to optimize the selection of
a subset of receivers (called the receiver grid, see Fig. 2) based on the following
considerations:

– A “finite” beam width W is defined along the ray, given by the expression

W =

∣∣∣∣Q11(s)∆θ

cos θ(s)

∣∣∣∣ . (3)

– There is no need to consider all receivers from the ocean surface to the ocean
bottom, but only those within the neighborhood defined by W

The main idea on the basis of this strategy is that beyond the distance defined
by W the influence is too small to be of any importance. Therefore, as one
moves along each ray segment the receiver grid is determined by the receivers
bracketed by both the ray segment and W . In this way one can avoid not only
the query in the entire set of receivers forming the array, but also the query of
all receivers bracketed by the ray segment. The method can take advantage of
Cartesian coordinates to determine efficiently the indexes of the receivers lying
inside the receiver grid. The specific details of this enhancement are described
in the next Section.

6 Calazan et al.

3.3 Ray influence calculation algorithm

The specific details of optimization are shown in the pseudo-code of Algorithm 1,
which summarizes the sequential steps regarding field calculations. Let n and r
stand for the number of rays and receivers, respectively. The optimization starts
by tracing the ray for a given pair of launching angles. Then, the algorithm
marches through the ray segments, and solves the dynamic equations to calculate
the ray amplitude and the beam spreading. As shown in lines 13 and 14 a subset
of receivers is computed from r for each segment k of the ray. The ray influence
is computed only if a normal to the receiver is found at a given segment (see lines
15 and 16). Line 23 presents the final step, in which coherent acoustic pressure
for each receiver is calculated. As will be shown in Section 4 the set of nested
loops constitutes a fundamental stage of the algorithm, allowing a substantial
improvement of the model’s performance. Details regarding the computation of
the receiver grid are shown in the pseudo-code of Algorithm 2, where the integers
llow and lhigh control the array indexes that form the receiver grid according to
W at each coordinate axis. The receiver indexes increase or decrease their values,
considering only the neighborhood, according to the position of the ray segment
inside the receiving array; the entire procedure is designed to be flexible enough
to account for different ray directions.

Algorithm 1 Sequential ray influence calculation

1: load environmental data
2: let φ = set of azimuth angles
3: let θ = set of elevation angles
4: let r = set of receivers
5: consider n = length (φ)× length (θ)
6: for j := 1→ length (φ) do
7: for i := 1→ length (θ) do
8: while ray (θi, φj) exists do
9: solve the Eikonal equations for segment k

10: end while
11: for k := 1→ raylength do
12: solve the dynamic equations of segment k
13: calculate W at segment k
14: compute receiver grid g from r according to W
15: for l := 1→ length (g) do
16: if rayk and gl are ⊥ then
17: compute rayk influence at gl
18: end if
19: end for
20: end for
21: end for
22: end for
23: return the coherent acoustic pressure for each receiver

Title Suppressed Due to Excessive Length 7

Algorithm 2 Compute the receiver grid

1: let llow = lower array index inside grid
2: let lhigh = high array index inside grid
3: consider W as beam width at rayk
4: while lhigh or llow are inside grid do
5: if W < r (llow − 1) then
6: decrement llow
7: else if W > r (llow) then
8: increment llow
9: else

10: exit
11: end if
12: if W < r (lhigh) then
13: decrement lhigh
14: else if W > r (lhigh + 1) then
15: increment lhigh
16: else
17: exit
18: end if
19: end while

4 Parallel GPU implementation

The proposed parallel implementation is addressed for NVIDIA [23] GPUs, using
the Compute Unified Device Architecture (CUDA). This programming model
implements a data-parallel function, denominated kernel, which is executed by
all threads during a parallel step. Generally speaking, a CUDA program starts in
the host, as a CPU sequential program, and when a kernel function is launched,
it is executed in a grid of parallel threads into the GPU or device.

4.1 Memory organization

Acoustic predictions in a three-dimensional scenario demand the tracing of a high
number of rays. In the sequential algorithm the ray trajectory information (such
as, for instance, Cartesian coordinates, travel time, complex decay, polarized
vectors, caustics, matrices P and Q, etc.) are stored in memory to be used at
later steps. Such storage makes sense considering that the sequential algorithm
keeps one ray at a time in memory. However, handling thousands of rays in
parallel rapidly exceeds the available memory in a given device. To circumvent
this issue calculation of ray paths and amplitudes are performed in a single step,
for each ray segment at a time, storing in memory only the values required to
execute such calculation. A sketch of this strategy is presented in Fig 3, where the
horizontal arrow represents the direction in which memories are updated, and
t corresponds to the current time step in which calculations are taking place;
t− 1 and t− 2 represent previous steps, that are required to be held in memory.
Small arrows connecting memory positions represent the values accessed by the

8 Calazan et al.

memory update

fu
n

ct
io

n
o
rd

e
r

Eikonal equation

dynamic equation

ray influence

t t − 1 t − 2

Fig. 3. Schematic representing the memory update sequence (horizontal arrow), where
t stands for current computation time and t − 1 and t − 2 for previous times when
values are held in memory. Small arrows connecting memory positions represent the
values accessed for the corresponding function to perform computations in time t. The
vertical arrow represents the order in which the functions are executed for a single ray
segment.

corresponding function to perform computations in time t. The vertical arrow
indicates the order in which functions are computed in the current time. After
calling the functions for a given ray segment the values stored in memory at time
t − 1 are copied to the position t − 2, and the values regarding t are copied to
position t−1, meaning that the values at t−2 are discharged. A new iteration then
starts to solve the next ray segment, following the same rules. In this way, the
storage requires only three segments to be held in memory, reducing drastically
the amount of data stored. This organization allows further updates of data
into registers to be kept, reducing the global memory access and overcoming the
problems of divergences in the pattern of memory access, a drawback of parallel
ray tracing algorithm. The performance of memory access is also increased by
loading part of the environmental information into the shared memory at the
kernel initialization.

An overview of how data from the parallel implementation is organized into
device memories is shown in Table 1. The memory type was chosen considering
the respective data size and the frequency in which the data is accessed. For
instance, data regarding environmental boundaries (surface and bottom) was
initially put into the shared memory. However, when representing 3D waveguides,
the number of coordinates became too large to fit in this type of memory and
the data was thus moved to the global memory. On the other hand, the sound
speed data was kept in shared memory since it was frequently accessed during
ray trajectory calculations and the access takes place in an unpredictable order.

4.2 Parallel field calculation

A general view of the parallel version of field calculation is presented in Fig. 4
and in Algorithm 3, regarding the parallel flowchart and procedures, respectively.

Title Suppressed Due to Excessive Length 9

Table 1. TRACEO3D memory organization into a parallel implementation: nssp is
the number of points in the sound speed profile, nsur and nbot is the number of grid
points defining the surface and bottom, respectively; n stands for the number of rays,
h represents the number of receivers and m is the number of candidate regions.

Data Symbol or name Type Size

source information shared 12
environment parameters shared 14
sound speed profile shared 3 + nssp

array coordinates global 3 + 3× h
surface coordinates global 7 + nsur

bottom coordinates global 7 + nbot

coherent acoustic pressure cpr global h
cpr all rays ncpr global n× h
ray coordinates register/local 3× 3
travel time τ register/local 3
complex amplitude A register/local 3
polarized vectors register/local 3× 3
P, Q P, Q register/local 3× 4

Load environ-
mental data

Eikonal
ray(ti,k)

. . . Eikonal
ray(n,k)

. . .Eikonal
ray(1,k)

Dynamic eq.
ray(ti,k)

. . . Dynamic eq.
ray(n,k)

. . .Dynamic eq.
ray(1,k)

k1..∃

Influence
ray(ti,k), rg

. . . Influence
ray(n,k), rg

. . .Influence
ray(1,k), rg

synchronize

Reduction
cprti

. . . Reduction
cprh

. . .Reduction
cpr1

Return
cpr

Fig. 4. Parallel flowchart of field calculation: blue regions correspond to kernel func-
tions executed in parallel into device; outside blue regions the code is executed sequen-
tially into the host.

10 Calazan et al.

Algorithm 3 Parallel field calculation

1: load environmental data
2: let φ = set of azimuth angles
3: let θ = set of elevation angles
4: let r = set of receivers
5: consider n = length (φ)× length (θ)
6: let p = number of threads per block
7: let b = n/p (number of blocks)
8: kernel � b, p� ray influence calculation
9: synchronize

10: let p = number of threads per block
11: let b = h/p (number of blocks)
12: kernel � b, p� pressure by sensor reduction
13: return the coherent acoustic pressure

Two main stages can be noted which corresponds to the blue regions at the
flowchart and as parallel kernels in the algorithm. The strategy adopted the
inherent ray tracing parallelism, addressing each pair of launching angles (θ, φ)
as a single parallel thread, even though it could lead to the concentration of
additional work per thread. However, since several instructions at the dynamic
equations step are independent, they need to be organized sequentially to take
advantage of instruction level parallelism (represented by the parallel blocks in
depth) in the corresponding step. The proposed parallel algorithm is logically
organized in a grid of b blocks, where each block has p threads. The first kernel
(line 8) calculates the ray influence, where the number of threads launched into
the device corresponds to n.

An overview of the kernel ray influence calculation is shown in Algorithm 4.
Each thread computes the propagation of a single ray and its contributions to
the entire field; the contributions are stored separately for each ray. It should
be noted that, as shown in Table 1, the size of ncpr corresponds to n × h and
the index to access global memory is calculated using a relative value of the grid
index l′ (see line 10 of Algorithm 4). After the kernel execution a device syn-
chronization is performed to ensure that the acoustic field calculation for all rays
was concluded. Then, a second kernel is launched to perform a parallel reduction
over the values in ncpr. Each thread is addressed to a given receiver, and it adds
sequentially the contribution of each ray to the corresponding receiver.

5 Validation

5.1 Implementation

The TRACEO3D model was written using the FORTRAN programing language
in double precision. Thus, the interface was kept in FORTRAN, using its func-
tions to read the inputs and write the outputs, while the parallel portion was en-
coded using the CUDA C platform. The CUDA C and FORTRAN environments

Title Suppressed Due to Excessive Length 11

Algorithm 4 Kernel ray influence calculation

1: let ti = block index × grid index + thread index
2: let θi = ti mod length (θ)
3: let φj = ti/length (θ)
4: while ray (θi, φj) exists do
5: solve the Eikonal equations for segment k
6: compute the dynamic equations for segment k
7: compute the receiver grid g from r
8: for l := 1→ length (g) do
9: if rayk and gl are ⊥ then

10: ncpr[ti+ n× l′] = acoustic pressure regarding rayk at gl
11: end if
12: end for
13: end while

were connected using the ISO C Binding library [24], which is a standardized way
to generate procedures, derived-type declarations and global variables, which are
inter-operable with C. The parallel implementation was compiled in a single pre-
cision version (numerical stability was already addressed in [13]); comparisons
between the parallel and the sequential version will be shown to properly clar-
ify this issue. The single precision version allows the use of low-end devices or
mobile equipments to provide predictions with high performance. Additionally,
the FORTRAN sequential implementation was compiled with the optimization
flag −O3, which was found to decrease the total runtime in 50%. The hardware
and software features that were addressed when comparing the sequential and
parallel model version of TRACEO3D are shown in Table 2. Fifteen runs were
performed for the validation case. The maximum and minimum values were then
discarded, and the average runtime was computed from the remaining thirteen
runs.

Table 2. Host/Device hardware and software features.

Feature Value Unit

Host - CPU Intel i7-3930k
Clock frequency 3500 MHz
Compiler gfortran 5.4.0 –
Optimization flag −O3 –
Device - GPU GeForce GTX 1070
CUDA capability 6.1 –
CUDA driver 9.1 –
Compiler nvcc 9.1.85 –
Optimization flag none –
Clock frequency 1683 MHz
Number of SM 15 –
Max threads per SM 2048 –
Warp size 32 –

12 Calazan et al.

5.2 The tank experiment

The laboratory-scale experiment took place at the indoor tank of the Laboratoire
de Mécanique des Fluides et d’Acoustique – Centre National de la Recherche
Scientifique (LMA-CNRS) laboratory in Marseille. The experiment was carried
out in 2007 in order to collect 3D acoustic propagation data using a tilted bottom
in a controlled environment. A brief description of the experiment (which is
described in great detail in [5, 25]) is presented here. The inner tank dimensions
were 10 m long, 3 m wide and 1 m deep. The bottom was filled with sand and a
rake was used to produce a mild slope angle α ≈ 4.5◦. For simulation purposes
a scale factor of 1000 : 1 is required to properly account for the frequencies
and lengths of the experimental configuration in the model. Thus, experimental
frequencies in kHz become model frequencies in Hz, and experimental lengths
in mm become model lengths in m. For instance, an experimental frequency
of 180.05 kHz becomes a model frequency of 180.05 Hz, and an experimental
distance of 10 mm becomes a model distance of 10 m. Sound speed remains
unchanged, as well as compressional and shear attenuations. The ASP-H data set
(for horizontal measurements of across-slope propagation) is composed of time
signals, recorded at a fixed receiver depth denominated zr, and source/receiver
distances starting from Y = 0.1 m until Y = 5 m in increments of 5 mm,
providing a sufficiently fine representation of the acoustic field in terms of range.
Three different source depths were considered, namely zs = 10 mm, 19 mm
and 26.9 mm, corresponding to data subsets referenced as ASP-H1, ASP-H2
and ASP-H3, respectively. Acoustic transmissions were performed for a wide
range of frequencies. However, comparisons are presented only for data from the
ASP-H1 subset with the highest frequency of 180.05 kHz; this is due to the fact
that the higher the frequency the better the ray prediction. Bottom parameters
corresponded to cp = 1700 m/s, ρ = 1.99 g/cm3 and αp = 0.5 dB/λ. Sound
speed in the water was considered constant, and corresponded to 1488.2 m/s.
Bottom depth at the source position was D(0) = 48 mm.

5.3 Comparisons with experimental data

The set of waveguide parameters provided by the tank scale experiment was used
to calculate predictions in the frequency domain. Transmission loss (TL) results
are presented in Fig. 5, where Bisection means the original algorithm that the
sequential version of TRACEO3D uses to calculate ray influence, Grid stands
for the sequential method presented in Section 3.2, and GPU Grid corresponds
to the parallel implementation. In general, model predictions were able to follow
accurately the experimental curve over the full across-slope range. Nevertheless,
a slight shift in phase can be observed at 2 km and 2.4 km in all simulation
predictions. Besides, minor discrepancies can be noted between the predictions
at the far field.

Title Suppressed Due to Excessive Length 13

Fig. 5. Comparisons with the experimental data for LMA CNRS H1 @ 180.05 kHz.

5.4 Performance analysis

The best result found during the execution configuration optimization is pre-
sented on both Table 3 and Fig. 6. Speedup rates are presented separately,
comparing the improvement regarding the numerical enhancement and the im-
provement achieved with the parallel GPU implementation. Thus, the speedup
ratio of CPU (Grid) is calculated dividing the Bisection runtime by the Grid run-
time, and for the CPU + GPU (Grid) dividing the Grid runtime by the GPU
runtime. It is important to remark that the CPU (Grid) was able to decrease the
runtime in 2.83 times, while the parallel GPU implementation achieved 60 times
of performance, which indeed represents a outstanding improvement. Combin-
ing both speedups the total improvement was about 170 times (2.83 × 60.11),
reducing the runtime from 542.3 s to 3.18 s. The mean square error (MSE)
between the prediction generated by each model implementations and the ex-
perimental data is shown in Fig. 7. One can see that the difference among the
implementations are of the same order of magnitude regarding the whole array of
receivers. However, due to the far field discrepancies, the MSE differences among
implementations are 0.084 dB from Grid to Bisection and 0.011 dB from GPU
grid to Bisection. The parallel implementation only achieves such accuracy by
using IEEE 754 compatible mathematical functions [26], and compiling without
the flag –fast-math; because this flag enables performance optimization at the
cost of introducing some numerical inaccuracies.

Table 3. Results of runtime and speedup ratio for TL predictions.

Model CPU (Bisection) CPU (Grid) CPU + GPU (Grid)

Runtime (s) 542.3 191.16 3.18
Speedup ratio 1 2.83 60.11

14 Calazan et al.

(a)

(b)

Fig. 6. (a) Runtime and (b) speedup for TL predictions of the tank scale experiment.
Speedup rates are presented separately, comparing the improvement regarding the
numerical enhancement and the improvement achieved with the parallel GPU imple-
mentation.

Fig. 7. MSE of TRACEO3D predictions against experimental data (LMA CNRS H1
@ 180.05 kHz) using three different approaches: Bisection, Grid and GPU Grid.

Title Suppressed Due to Excessive Length 15

6 Conclusion

The discussion presented in this paper proposed numerical enhancements and a
parallel GPU implementation of the TRACEO3D model. The calculation of ray
influence was addressed using a receiver grid, i.e. a subset of adjacent receivers
within the array, with the goal of decreasing runtime while keeping accuracy.
After the enhancement of numerical issues parallel algorithms were developed
considering a GPU architecture, that could take advantage of the inherent ray
tracing parallelism and the high workload of 3D propagation. The validation
results were performed using experimental data collected from a tank scale ex-
periment. The method was found to be computationally efficient and accurate
dealing with arrays containing a large number of sensors, although some opti-
mization was required in order to define the proper borders of ray influence given
by the finite beam width.

Performance results show that the implementation achieved a speedup around
170 times faster than the sequential one, combining the improvements of numer-
ical enhancement and parallel implementation without compromising accuracy.
Despite the significant improvements in speedup it can be not guaranteed that
the adopted parallel algorithms exhausted all solutions of parallelization. It is
believed that additional combinations of thread granularities and memory orga-
nization can have the potential to achieve a greater performance. The speedup
issue is certainly of immense interest for intensive applications of a 3D model, a
topic which is currently under intense discussion. Future work will be oriented
to further validation in typical ocean environments with complex bathymetries
and tests with different thread granularities, requiring new memory organization
and execution configuration parameters.

References

1. O. G. Johnson, “Three-dimensional wave equation computations on vector comput-
ers,” Proceedings of the IEEE, vol. 72, pp. 90–95, Jan 1984.

2. A. Tolstoy, “3-D propagation issues and models,” Journal of Computational Acous-
tics, vol. 4, no. 03, pp. 243–271, 1996.

3. F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational
Ocean Acoustics. New York: Springer Science & Business Media, 2th ed., 2011.

4. T. Jenserud and S. Ivansson, “Measurements and modeling of effects of out-of-plane
reverberation on the power delay profile for underwater acoustic channels,” IEEE
Journal of Oceanic Engineering, vol. 40, no. 4, pp. 807–821, 2015.

5. F. Sturm and A. Korakas, “Comparisons of laboratory scale measurements of three-
dimensional acoustic propagation with solutions by a parabolic equation model,”
The Journal of the Acoustical Society of America, vol. 133, no. 1, pp. 108–118,
2013.

6. P. C. Etter, Underwater Acoustic Modeling and Simulation. CRC Press, 4th ed.,
2013.

7. S. M. Reilly, G. R. Potty, and M. Goodrich, “Computing acoustic transmission loss
using 3D Gaussian ray bundles in geodetic coordinates,” Journal of Computational
Acoustics, vol. 24, no. 01, pp. 1650007/1–24, 2016.

16 Calazan et al.

8. C. Soares, F. Zabel, and S. M. Jesus, “A shipping noise prediction tool,” in OCEANS
2015-Genova, pp. 1–7, IEEE, 2015.

9. R. Calazan and O. C. Rodŕıguez, “TRACEO3D ray tracing model for underwater
noise predictions,” in Doctoral Conference on Computing, Electrical and Industrial
Systems, pp. 183–190, Springer, 2017.

10. D. B. Kirk and W. H. Wen-Mei, Programming massively parallel processors: a
hands-on approach. Morgan kaufmann, 2013.

11. P. Hursky and M. B. Porter, “Accelerating underwater acoustic propagation mod-
eling using general purpose graphic processing units,” in OCEANS 2011, pp. 1–6,
IEEE, 2011.

12. X. Sun, L. Da, and Y. Li, “Study of BDRM asynchronous parallel computing
model based on multiple cuda streams,” in Computational Intelligence and Design
(ISCID), 2014 Seventh International Symposium on, vol. 1, pp. 181–184, IEEE,
2014.

13. E. Ey, “Adaptation of an acoustic propagation model to the parallel architecture
of a graphics processor,” Master’s thesis, University of Algarve, 2013.

14. R. Calazan, O. C. Rodŕıguez, and N. Nedjah, “Parallel ray tracing for underwater
acoustic predictions,” in Proceedings of the 17th ICCSA2017, vol. 10404, (3–6 July,
Trieste, Italy), pp. 43–55, 2017.

15. “Open source high performance computing.” https://www.open-mpi.org/. Ac-
cessed 2018-06-13.

16. “Ocean acoustics library.” http://oalib.hlsresearch.com/. Accessed 2018-07-03.
17. O. C. Rodriguez, F. Sturm, P. Petrov, and M. Porter, “Three-dimensional model

benchmarking for cross-slope wedge propagation,” in Proceedings of Meetings on
Acoustics, vol. 30, (25–29 June, Boston, MA), p. 070004, ASA, 2017.

18. R. Calazan and O. C. Rodŕıguez, “Simplex based three-dimensional eigenray search
for underwater predictions,” The Journal of the Acoustical Society of America,
vol. 143, no. 4, pp. 2059–2065, 2018.

19. O. C. Rodriguez, J. M. Collis, H. J. Simpson, E. Ey, J. Schneiderwind, and P. Felis-
berto, “Seismo-acoustic ray model benchmarking against experimental tank data,”
The Journal of the Acoustical Society of America, vol. 132, no. 2, pp. 709–717, 2012.

20. V. Červenỳ and I. Pšenč́ık, “Ray amplitudes of seismic body waves in laterally
inhomogeneous media,” Geophysical Journal International, vol. 57, no. 1, pp. 91–
106, 1979.

21. M. M. Popov, Ray theory and Gaussian beam method for geophysicists. Salvador,
Bahia: EDUFBA, 2002.

22. M. B. Porter, “BELLHOP3D user guide,” tech. rep., Heat, Light, and Sound Re-
search, Inc., 2016.

23. “CUDA C programming guide,” tech. rep., Nvidia Corporation, 2018.
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html. Accessed
2018-05-16.

24. “The GNU FORTRAN compiler.” https://gcc.gnu.org/onlinedocs/gfortran/
Interoperability-with-C.html. Accessed 2018-06-05.

25. A. Korakas, F. Sturm, J.-P. Sessarego, and D. Ferrand, “Scaled model experiment
of long-range across-slope pulse propagation in a penetrable wedge,” The Journal
of the Acoustical Society of America, vol. 126, no. 1, pp. EL22–EL27, 2009.

26. “Floating point and IEEE 754 compliance for NVIDIA GPUs,” tech. rep., Nvidia
Corporation, 2018. https://docs.nvidia.com/cuda/floating-point/index.html. Ac-
cessed 2018-05-31.

