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Name: Rogério de Moraes Calazan
College: Faculty of Sciences and Technology
University: University of Algarve
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Abstract

Underwater acoustic models provide a fundamental and efficient tool to parametrically
investigate hypothesis and physical phenomena through varied environmental conditions
of sound propagation underwater. In this sense, requirements for model predictions in
a three-dimensional ocean waveguide are expected to become more relevant, and thus
expected to become more accurate as the amount of available environmental information
(water temperature, bottom properties, etc.) grows. However, despite the increasing
performance of modern processors, models that take into account 3D propagation still
have a high computational cost which often hampers the usage of such models. Thus,
the work presented in this thesis investigates a solution to enhance the numerical and
computational performance of the TRACEO3D Gaussian beam model, which is able to
handle full three-dimensional propagation. In this context, the development of a robust
method for 3D eigenrays search is addressed, which is fundamental for the calculation of
a channel impulse response. A remarkable aspect of the search strategy was its ability
to provide accurate values of initial eigenray launching angles, even dealing with non-
linearity induced by the complex regime propagation of ray bouncing on the boundaries.
In the same way, a optimized method for pressure field calculation is presented, that
accounts for a large numbers of sensors. These numerical enhancements and optimization
of the sequential version of TRACEO3D led to significant improvements in its performance
and accuracy. Furthermore, the present work considered the development of parallel
algorithms to take advantage of the GPU architecture, looking carefully to the inherent
parallelism of ray tracing and the high workload of predictions for 3D propagation. The
combination of numerical enhancements and parallelization aimed to achieve the highest
performance of TRACEO3D. An important aspect of this research is that validation and
performance assessment were carried out not only for idealized waveguides, but also for
the experimental results of a tank scale experiment. The results will demonstrate that
a remarkable performance was achieved without compromising accuracy. It is expected
that the contributions and remarkable reduction in runtime achieved will certainly help to
overcome some of the reserves in employing a 3D model for predictions of acoustic fields.

Keywords: Underwater acoustics, numerical modeling, Gaussian beams, 3D propagation,
parallel computing, GPU.





v
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Resumo

Modelos de previsão acústica submarina são ferramentas eficientes e fundamentais para
investigar parametricamente hipóteses e fenómenos f́ısicos através de variadas condições
ambientais da propagação do som subaquático. Tais modelos resolvem a equação da onda,
a qual descreve matematicamente a propagação do som no oceano, para gerar previsões de
campos acústicos através do cálculo do campo de pressão transmitido por um conjunto de
fontes acústicas, e recebido em um conjunto de hidrofones. Além de resolver a equação
da onda o modelo deve ser capaz de lidar com fenómenos adicionais como, por exemplo,
perdas devido a reflexão no fundo, atenuação volumétrica e/ou espalhamento volumétrico e
espalhamento devido a reflexão nas fronteiras. A necessidade de gerar previsões que levem em
consideração um guia de ondas a três dimensões tem se tornado mais relevante nos últimos
anos, em simultâneo com o requisito de ir melhorando as previsões a medida que aumenta a
quantidade de informação ambiental (temperatura da água, propriedades do fundo oceânico,
etc) dispońıvel. Uma abordagem simples para gerar previsões em 3D consiste em “cortar”
o guia 3D de ondas em transectos (planos 2D verticais), e utilizar um modelo 2D para
calcular a previsão no transecto (técnica conhecida como modelagem N × 2D). Entretanto,
uma batimetria 3D pode induzir propagação não confinada dentro do plano 2D mesmo em
casos simples, um efeito conhecido por “propagação fora-do-plano”. Em termos gerais, para
calcular apropriadamente o campo acústico, um modelo de propagação 3D precisa levar em
consideração a variabilidade do ambiente em distância, profundidade e azimute, bem como
posśıveis interferências dessa variabilidade no cálculo da propagação.

A busca de autoraios (eigenrays, em inglês) é igualmente um aspeto importante das pre-
visões 3D. Os autoraios podem ser definidos como raios espećıficos, que para uma geometria
dada de um guia de ondas conectam a fonte ao recetor. O cálculo preciso de autoraios é
um problema de grande interesse, porque eles são utilizados para o cálculo das previsões
do sinal recebido, o qual é extremamente senśıvel ao tempo de propagação e ao ângulo
de lançamento do raio. Num guia de ondas bidimensional o problema pode ser resolvido de
modo eficiente usando um algoritmo de cálculo de ráızes a uma dimensão, a qual corresponde
ao ângulo de elevação; a extensão deste método de busca para encontrar autoraios em um
guia de ondas tridimensional é uma tarefa complexa, a qual requer que a busca aconteça
em um plano de elevação e azimute, sendo ela guiada principalmente pela minimização da
distância entre a posição final do raio e a posição do hidrofone; além disso, a busca não pode
acontecer ao longo de uma determinada direção devido ao regime complexo de propagação,
o qual frequentemente precisa levar em conta a “propagação fora-do-plano” ou variações
ambientais complexas, tais como ondas internas ou variações espaciais das fronteiras. O
problema também é computacionalmente intenso, visto que requer o cálculo inicial de uma
grande quantidade de raios. De fato, desde o ińıcio do seu desenvolvimento, os cálculos de
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previsões de propagação em 3D são bem conhecidos por consumirem tempos elevados de
processamento; apesar do aumento de desempenho dos processadores modernos tal situação
verifica-se ainda hoje, o que dificulta frequentemente o emprego de tais modelos. A modo de
exemplo pode ser referido que nas aplicações de processamento por ajustamento do campo
(matched-field processing, em inglês), que requer a geração de milhares de previsões do campo
acústico, os modelos 3D são preteridos em favor dos modelos 2D. As melhorias em termos
de precisão que podem advir da utilização de um modelo 3D neste caso representam de fato
uma das principais razões de desenvolvimento e aprimoramento deste tipo de modelos.

No contexto da discussão previamente referida foi desenvolvido um método robusto para
busca de autoraios 3D, baseado no método Simplex, que foi implementado no modelo de
traçamento de raios 3D TRACEO3D. A estratégia computacional de otimização Simplex
foi projetada para se apoiar em uma seleção eficiente de candidatos na região inicial que
inclui um determinado recetor, de modo que a pesquisa possa ser realizada eficientemente
utilizando uma antena vertical ou horizontal. Um aspeto notável da estratégia de busca foi
sua habilidade de prover valores precisos de ângulos iniciais de lançamento dos autoraios,
mesmo lidando com a não-linearidade induzida pelo regime complexo de reflexão dos raios nas
fronteiras. O método fornece uma estimativa precisa do tempo de propagação e amplitude de
cada raio, que são fundamentais para prever a resposta impulsiva do canal. Adicionalmente,
é apresentado um método otimizado para cálculo do campo de pressão usando um elevado
número de sensores. A combinação das melhorias acima referidas permitem que o código
sequencial do TRACEO3D seja computacionalmente eficiente e preciso.

Além das melhorias o desempenho do modelo foi aprimorado por intermédio da com-
putação paralela. Regra geral (e consoante a arquitetura paralela adotada) um algoritmo
sequencial precisa ser reescrito como um algoritmo paralelo para reduzir o seu tempo de
computação e melhorar o seu desempenho. Paralelizar implica igualmente adicionar ex-
tensões ao algoritmo, especificando conjuntos de etapas que podem ser realizadas simul-
taneamente; o código paralelo também pode exigir o tratamento da sincronização de pro-
cessadores nos vários estágios de execução do programa, ou o gerenciamento de acessos
a posições de memória compartilhada por vários núcleos de processamento. Do ponto de
vista do hardware verifica-se que para aumentar o desempenho dos programas a indústria
de microprocessadores tem apostado no desenvolvimento de processadores com múltiplos
núcleos dadas as limitações inerentes ao aumento da frequência de cálculo do processador.
Embora na atualidade as CPUs possam conter vários núcleos de cálculo (variando entre as
unidades e as dezenas) verifica-se em contraste que as GPUs possuem um elevado número
de processadores (normalmente de centenas a milhares), dedicados exclusivamente ao pro-
cessamento paralelo; tal número de processadores aumenta a cada nova geração de GPUs.
Estas diferenças substanciais entre processadores motivaram a transferência de partes com-
putacionalmente intensas do modelo 3D para execução paralela na GPU.

Assim, o trabalho apresentado nesta tese considera o desenvolvimento de algoritmos par-
alelos que possam tirar proveito da arquitetura da GPU, verificando atentamente o inerente
paralelismo do algoritmo de traçamento de raios, assim como o alto volume de processamento
no cálculo em 3D do TRACEO3D. A combinação de aprimoramento numérico e paralelização
visou alcançar o mais alto desempenho do modelo, exibindo aumentos de desempenho combi-
nados de até 692 vezes superior ao da versão original. Um aspeto importante desta pesquisa
é que a validação e avaliação de desempenho foram realizadas não apenas para guias de ondas
idealizados, mas também para resultados experimentais coletados em um tanque de testes
localizado no Laboratoire de Mécanique des Fluides et d’Acoustique – Centre National de
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la Recherche Scientifique (LMA-CNRS) laboratório em Marseille. A experiência do tanque
decorreu em 2007 com o objetivo de coletar dados de propagação acústica 3D usando um
fundo inclinado em um ambiente controlado. A busca de autoraios 3D baseada no método
Simplex (e implementada no TRACEO3D) foi validada através de comparações com resul-
tados do modelo 2D TRACEO e com os resultados da experiência no tanque. As previsões
do método Simplex exibiram uma semelhança notória com os resultados da experiência, rev-
elando zonas modais de sombra, interferência entre modos, e chegadas múltiplas de modos;
neste contexto foram observadas conexões importantes na estrutura de equivalência raio/-
modo. Foram detetadas igualmente algumas discrepâncias, que podem estar relacionadas
com a falta de conhecimento sobre o sinal emitido e/ou não ter tido em conta deslocamento
do feixe nas reflexões no fundo (um efeito que melhora as previsões do modelo quando
aplicado na fronteira de sua validade). De modo geral os resultados demonstram que foi
alcançado um desempenho notável sem ter comprometido a precisão do modelo. Espera-se
que as contribuições apresentadas nesta tese (em particular a redução notável do tempo de
execução) tornem atrativa a utilização do TRACEO3D nos problemas de processamento por
ajustamento do campo.

As contribuições cient́ıficas deste trabalho são:

1. Desenvolvimento de uma solução para o cálculo de autoraios 3D baseada na otimização
Simplex. A estratégia de busca baseada no Simplex foi considerada capaz de calcular
autoraios 3D de forma precisa e eficiente para um guia de ondas com um fundo pe-
netrável inclinado, gerando previsões de padrões de chegada ao longo do plano, a qual
replicou aspetos elaborados de zonas de sombra modais, interferência entre modos e
múltiplas chegadas de modos.

2. Desenvolvimento de uma estratégia para o cálculo das influências dos raios baseada
em uma grade de recetores, que é atualizada dinamicamente ao longo da trajetória do
raio. O método foi considerado computacionalmente eficiente utilizando antenas com
um grande número de recetores.

3. Desenvolvimento de algoritmos paralelos para execução em GPU do modelo
TRACEO3D, os quais foram validados para busca de autoraios 3D e para o cálculo
de influências, exibindo melhorias significativas entre a versão sequencial e a versão
paralela do modelo. Pretende-se partilhar o código paralelo para permitir a validação
adicional e eventual aplicação do modelo por outros grupos de investigação, assim
como para servir de referência de paralelização de um modelo 3D.

Palavras-chave: Acústica submarina, modelagem numérica, feixes Gaussianos, propagação
3D, computação paralela, GPU.
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Chapter 1

Introduction

Synopsis: This chapter presents initial considerations regarding underwater acoustic mod-

eling and three-dimensional propagation, reviews the state of the art and describes the moti-

vation for numerical enhancements and parallel GPU development of the TRACEO3D un-

derwater acoustic model. Section 1.1 briefly outlines 3D propagation, Section 1.2 reviews

the state of the art, Section 1.3 presents the motivation and Section 1.4 presents the thesis

organization.

1.1 Three-dimensional propagation

Underwater acoustic models provide a fundamental and efficient tool to parametrically in-

vestigate hypothesis and physical phenomena through varied environmental conditions of

sound propagation underwater [1]. Such models solve the wave equation, which mathemat-

ically describes sound propagation in the ocean, to generate field predictions through the

calculation of the pressure field transmitted by a set of acoustic sources, and received on

a set of hydrophones [2]. Besides solving the wave equation the model should be capable

to handle additional phenomena like, for instance, bottom loss, volume attenuation and/or

boundary and volume scattering.

Ocean acoustic models can be classified into different types, depending on the particular

1



2 Chapter 1. Introduction

analytical approximation of the wave equation that the model implements numerically. Ray

tracing models, for instance, are based on geometrical optics, and address the solution of

the wave equation using a high frequency approximation, which leads to the calculation

of wavefronts based on ray trajectories. Ray tracing theory has some inherent drawbacks

like, for instance, the prediction of perfect shadow zones and caustic singularities. The

theory is not well suited for problems of geoacoustic inversion (which require predictions

at low frequencies), yet it is ideal if modeling is required for an environment with complex

boundaries and/or a complex sound speed distribution [3] (as long as high frequencies are

being considered). In this sense, ray theory seems to be an ideal choice for such problems as

underwater communications [4] and source tracking [5], for which execution time is a critical

factor.

Requirements for model predictions in a three-dimensional ocean waveguide are expected

to become more relevant, and thus expected to become more accurate as the amount of

available environmental information (water temperature, bottom properties, etc.) grows [1].

A simple approach to provide three-dimensional predictions is to “slice” the waveguide with

different transects (i.e. vertical 2D planes), and to rely on a two-dimensional model to

produce a prediction along the transect (a technique, known as N × 2D modeling). Yet,

a three-dimensional boundary (either by itself or combined with a sound speed field) can

induce propagation not confined to the 2D plane even in the simplest of cases, an effect

known as out-of-plane propagation [3]. Generally speaking, to calculate properly the acoustic

field a three-dimensional propagation model needs to take into account the environmental

variability in range, depth and azimuth, as well as possible interferences of this variability in

the calculation of propagation. Research in three-dimensional acoustic propagation modeling
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is not recent [6–8]. However, the topic was often regarded as being too complex, lacking

accurate environmental data, and requiring computational capabilities available only in

supercomputers [3]. Nowadays interest in three-dimensional modeling is again receiving

attention thanks to the availability of detailed environmental data [9–11], combined with

the steady growth of computational power [2]. Research had been conducted regarding

3D propagation effects considering sea mountains [3], submarine canyons [12–14] and other

bathymetries with elaborated features [15–17], with most of the 3D predictions obtained

using a 3D parabolic equation model. The impact of out-of-plane effect comes mostly from

bottom topography but, as discussed in [18] and [19], ocean fronts and wedges can also

modify significantly the acoustic field affecting the estimation of source distance and creating

shadow coastal zones. Additionally, predictions of sonar performance can take advantage of

full 3D modeling to improve accuracy, with a ray model playing a central role in such task

due to its capability to handle high frequencies [1,20]. Furthermore, monitoring of shipping

noise represents also an important field of research since shipping noise propagates at long

distances, with 3D effects becoming more relevant as distances increase. On the other side,

bottom interactions are significant in shallow waters and littoral environments, making 3D

effects important in the vicinity of harbors, where ship density is high [21,22].

Calculation of eigenrays is also an important aspect of 3D predictions. Eigenrays can be

defined as particular rays, that for a given waveguide geometry connect the source to the

receiver [2]. In two-dimensional waveguides the problem can be solved efficiently using root

finder algorithms in one dimension; in this case the problem can be stated as searching for the

zeros of a cost function, which depends only on the elevation angles. The extension of such

root finder algorithms to find eigenrays in a three-dimensional waveguide is a cumbersome
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task, which requires the search to take place on the two-dimensional plane of elevation and

azimuth, and would be guided mainly by the minimization of the distance between the final

position of the ray and the position of the hydrophone; besides, unlike the one-dimensional

search, the search for a minimal value of the cost function on the elevation/azimuth plane

can not take place along a particular direction due to the complex regime of propagation,

which often needs to account for out-of-plane effects, non-linear internal waves or boundary

features [3,23]. The problem is also computationally demanding, since it often relies on the

shooting of a large amount of initial rays [24].

3D predictions and eigenray calculations within the context of the TRACEO3D model

will be addressed in detail in Chapter 2. Before the model discussion the state of the art is

to be reviewed in the following section.

1.2 State of the art

1.2.1 3D modeling

The 3D Hamiltonian ray-tracing model HARPO was one of the first implementations of 3D

propagation based on ray theory [25]; HARPO was able to provide field predictions, ray

travel times and field phase within the corresponding limitations of ray-theory. The model

was later updated in order to calculate 3D eigenrays using a method which considered the

final distance of the ray to the receiver (hereafter called proximity) [26]; given two pairs of

shooting angles and corresponding proximities one could use linear interpolation to shoot a

ray with a smaller proximity; the process was repeated iteratively and the iteration stopped

when the proximity was less than 5 m. For the method to be efficient ray trajectories were

required to change smoothly over iterations, thus the method was not able to handle non-



1.2. State of the art 5

linearity due to complex boundary interactions. The discussion presented in [26] considered

a speed field typical of the ocean mesoscale, showing only eigenrays (i.e. without results of

amplitudes or travel times) and ignoring boundary reflections. Additional results after [26]

were not found in the literature, possibly because at that time HARPO was no longer

supported by its authors (and so it remains).

A different approach to ray tracing can be found in [27,28], which relies on the Gaussian

beam method to avoid the generation of shadow zones and infinities of intensity at caustics;

the method calculates a pressure field as a sum of beam influences at each receiver. The

Gaussian beam method is discussed in detail in [27,29], and was the basis for the development

of the 3D models BELLHOP3D [30,31] and TRACEO3D [11,30].

Regarding eigenrays the discussion presented in [32] avoids their direct calculation by

considering a dense fan of rays, which can be discretized from the source to a final range of

interest over a predefined set of spatial mesh cells. In a given cell the field intensity can be

calculated as an average from ray contributions, in proportion to each ray arclength within

the cell. Additional computation is needed sorting rays into families in order to compute the

coherent ray pressure, and travel time within the cell is then associated to each ray family. To

this end a root finding algorithm is needed to determine the position within the cell in which

the normal to the ray intersects the position of the receiver; linear interpolation is further

used to calculate the travel time between a given cell and the receiver. Results regarding only

2D calculations are shown for a parallel implementation in a high-end computer workstation;

the reverberation model MOC3D (renamed later as REV3D) is based on this method [33].

Results presented in [34] suggest that the method is highly time consuming.

An analytic approach to the eigenray problem was proposed in [35], which stated the
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calculation of eigenrays as a variational problem. Thus, an initial set of eigenrays calculated

for a receiver close to the source can be used to calculate eigenrays for an arbitrary receiver

position; caustics could be taken into account by considering a ray amplitude, which was

frequency dependent. The numerical implementation of the method for general sound profiles

required the introduction of parameterized smoothing functions, and the performance of

the method accounting for 3D bathymetries was not considered. A summation method

based on the superposition of complex source beams proposed to rely on beam shooting to

avoid eigenray calculations [36, 37]; to this end the beams need to be properly collimated

through the proper selection of beam parameters for the given geometry of propagation. The

discussion was again limited to 2D propagation and did not account for boundary reflections.

A rather different approach for a 3D Gaussian ray model using geodetic coordinates is

discussed in [20], looking to calculate transmission loss for sonar training systems. Eigenrays

are to be found for each sensor position by considering the closest point of approach (CPA)

of the ray to the receiver; then, second order Taylor series can be used to calculate launching

angles and travel time corrections by taking into account the CPA. The approach was found

to be less efficient than an implementation based on Cartesian coordinates, and very time

consuming when considering a large numbers of sensors. The model was used to investigate

horizontal refraction although it exhibited a limited success predicting experimental data

[38].

As will be shown in Chapters 3 and 5 this thesis will discuss and validate an efficient and

robust strategy of 3D eigenray calculations, based on the Simplex method. The approach

relies on a small set of parameters (which need to be determined only once) and is able to

handle arbitrary 3D waveguide features, such as sound speed distributions and/or bathyme-
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tries. The computational strategy of Simplex optimization was designed in order to rely on

an efficient selection, within the original region of candidates that encloses a given receiver,

such that the search can be accomplished efficiently with either a vertical or a horizontal

array. In fact, Simplex optimization guides the ray solution accounting for all environmen-

tal influences (even non-linearity induced by the complex regime of ray bouncing on the

boundaries), finding take-off angles that allow a given ray to pass near the receiver within

a user-defined distance. In this context, the method provides an accurate estimate of ray

travel time and amplitude, which is fundamental to predict the channel impulse response.

1.2.2 GPU-based ray tracing

Since its early development, predictions of 3D propagation are well known to be highly time

consuming; initial research in this area relied in fact on special computers to carry on model

execution [3, 39]. Even today, despite the increasing performance of modern processors,

models that take into account 3D propagation still have a high computational cost [2]. This

high runtime can easily explain why 3D models are generally put aside to generate replicas

for acoustic inversion [9, 34], which is based on matching the acoustic field recorded at an

array of sensors with replicas from a numerical model, which are generated for a broad set

of parameters [1]; matched field methods are in fact one of the main reasons driving the de-

velopment of underwater acoustic models. Model performance can be significantly improved

through parallel computing. To reduce computing time, improve performance and solve

more complex problems, a serial algorithm needs to be rewritten as a parallel algorithm by

taking advantage of the underlying parallel hardware. Generally speaking, a serial algorithm

is a sequence of steps that solve a given problem using a single processor. In the same way,
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a parallel algorithm is a set of steps that solve the same problem, using multiple processors.

However, defining the steps is not sufficient. Parallelization also implies adding extensions

to the algorithm, specifying sets of steps that can be performed simultaneously [40]. Addi-

tionally, the parallel code may require dealing with the synchronization of processors at the

various stages of program execution, or managing accesses to data shared by multiple pro-

cessors. Often, different choices yield the best performance on different parallel architectures

or under different parallel programming paradigms.

The microprocessor industry has followed the many-core direction to improve perfor-

mance due to the designs limitation, by boosting clock speed. Although central processing

units (hereafter CPU) can be found with a few to dozens of cores, graphic processing units

(hereafter GPU) have a larger number of cores (usually from hundreds to thousands), de-

voted to parallel processing; such number of cores increases at each GPU generation. The

design differences between CPUs and GPUs resulted in a large performance gap between

parallel and sequential program execution, which motivated the transfer of computationally

intensive parts of a code to the parallel execution on a GPU [41]. This capability motivated

several implementations of scientific applications, including underwater acoustic models. For

instance, a split-step Fourier parabolic equation model implemented in a GPU is discussed

in [42]. The work considered only high idealized waveguides and the results showed a signif-

icant improvement, with the parallel version of the code being 20-35 times faster than the

sequential one. As further indicated in the reference GPU computing has a potential to en-

able interesting new approaches to 3D modeling. The discussion presented in [43] describes

a GPU-based version of a Beam-Displacement Ray-Mode code; although it considers only

2D propagation in idealized waveguides the parallel model was found to be 30 times faster
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than the sequential one. A parallel implementation of BELLHOP (not to be confused with

BELLHOP3D) addressed to a GPU architecture was presented in [44]; the parallel model

had the capability to calculate only ray trajectories and amplitudes. The discussion presents

only runtime results, with the performance being increased for a high numbers of rays. How-

ever, pressure computation was kept in the CPU since the runtime of the parallel version

was worse than the one of the sequential version due to memory transfers. A parallel version

of the C-based version of TRACEO (called cTRACEO), based on a GPU architecture, was

discussed in detail in [45]; the discussion showed that parallelization drastically reduces the

computational burden when a large number of rays needs to be traced. Such parallel version

of cTRACEO was able to calculate travel times, amplitudes, eigenrays and pressure. Per-

formance results for such 2D model indicated a promising advantage addressing the GPU

architecture for the 3D case.

The present work considered the development of parallel algorithms with the recent

tools available to take advantage of the GPU architecture, looking carefully to the inherent

parallelism of ray tracing and the high workload of predictions for 3D propagation. The

results, to be presented in Chapter 5, will demonstrate through comparisons based on

simulations and experimental results that a remarkable performance was achieved without

compromising accuracy.

1.3 Motivation of this work

An important component of the work developed in this thesis was the availability of the

TRACEO3D ray tracing model, which is described in detail in Chapter 2. Within this

context the thesis was motivated by the interest in providing accurate predictions, that can
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take into account out-of-plane effects in high frequency based models; one therefore needs to

address the development of a robust method for 3D eigenrays search, which is fundamental

for the calculation of a channel impulse response; additionally, it was addressed also the issue

of long runtime, which often hampers the usage of 3D models. It was explored the possibility

for numerical enhancements and optimization regarding calculations in the sequential version

of TRACEO3D, leading to improvements in performance and accuracy; conclusion of such

exploration was to be followed by a careful analysis of the GPU hardware multithread, coding

the sequential model structure into a parallel algorithm. The combination of numerical

enhancement and parallelization aimed to achieve the highest performance of TRACEO3D.

Finally, an important aspect of this research is that validation and performance assessment

were carried out not only for idealized waveguides, but also for the experimental results of

the tank scale experiment described in [9].

The objectives of this thesis can then be summarized as follows:

• To investigate and develop a search method to calculate 3D eigenrays for channel

impulse response predictions, and to optimize the method for pressure field calculation

that account for horizontal effects using a large numbers of sensors. In both cases

the enhancement should allow the sequential code to be computationally efficient and

accurate.

• To develop parallel algorithms that take advantage of the GPU architecture, and

restructure the memory access pattern to improve performance.

• To validate the model through comparisons between original and enhanced versions

(prior to parallelization), and between the sequential and parallel versions, not only in
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terms of performance, but also in terms of accuracy.

1.4 Thesis organization

This thesis is organized as follows: Chapter 2 describes the theoretical and numerical for-

malisms in which the TRACEO3D Gaussian beam model is based. Enhancements are pre-

sented in Chapter 3, describing the strategies to calculate 3D eigenrays and optimizing the

calculations of ray influence. The detailed structure of the parallel GPU implementation is

presented in Chapter 4, providing a brief introduction to the GPU architecture and CUDA

programing. Chapter 5 presents the validation results, in which simulations and experi-

mental data are considered. Conclusions and future work are in Chapter 6, presenting the

contributions and indicating future directions of research. The appendix explains how to

compile the model, the structure of the input file, and an example of 3D predictions using

the sequential and the parallel versions of the model.
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Chapter 2

The TRACEO3D Gaussian beam
model

Synopsis: This chapter describes the TRACEO3D Gaussian beam model and it is organized

as follows: Section 2.1 provides a compact description of the model, Section 2.2 describes

the theory behind TRACEO3D calculations, and Section 2.3 discusses important numerical

issues.

2.1 General description

The TRACEO3D Gaussian beam model represents the three-dimensional extension of the

TRACEO Gaussian beam model [46]. The first version of TRACEO3D was written by

Orlando Camargo Rodŕıguez of the Signal Processing Laboratory (SiPLAB), but current

authorship has been extended to the thesis author given the relevance of his contributions

to the model. TRACEO3D was developed in order to provide different types of predictions,

namely:

• ray trajectories;

• ray travel time and amplitude along the trajectory;

• eigenrays (i.e. rays connecting a source to a receiver);

13
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• predictions of acoustic pressure for different array configurations (horizontal, vertical,

linear, planar);

• particle velocity calculations (of relevance for the development of Vertical Sensor Ar-

rays).

Additionally, TRACEO3D can account for a rather large class of waveguide features, such

as

• water sound speed profiles and sound speed fields;

• non-flat boundaries (wavy surfaces, bottom wedges, sea mountains, canyons, etc.);

• spatial variability of boundary properties (density, attenuation, sound speed).

However, TRACEO’s capability to consider ray bouncing on underwater objects located

between the surface and the bottom is still not implemented in TRACEO3D due to the

complexity of defining 3D meshes, and the associated problem of ray/mesh intersection and

mesh interpolation. Important theoretical and numerical issues of the model are discussed

in the following sections.

2.2 Theoretical background

By order of importance the theoretical aspects of the model can be organized into the

following items:

• calculation of ray trajectories;

• calculation of amplitude parameters;
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• calculation of beam influence;

• calculation of particle velocity;

• calculation of amplitude corrections due to ray-boundary reflections and volume at-

tenuation.

Each item will be described in detail in the following sections.

2.2.1 The Eikonal equations

The starting point for the calculation of three-dimensional ray trajectories is given by the

solution of the Eikonal equations, which can be written in different ways [2, 29, 47]; in the

TRACEO3D model they correspond to

dx

ds
= c(s)σx ,

dy

ds
= c(s)σy ,

dz

ds
= c(s)σz ,

dσx
ds

= − 1

c2
∂c

∂x
,
dσy
ds

= − 1

c2
∂c

∂y
,
dσz
ds

= − 1

c2
∂c

∂z
,

(2.1)

where c(s) represents the sound speed along the ray, σx, σy and σz stand for the components of

the vector of sound slowness, and s stands for the ray arclength. The derivatives dx/ds, dy/ds

and dz/ds define the unitary vector es, which is tangent to the ray; the plane perpendicular

to es defines the plane normal to the ray. On this plane one can introduce a pair of unitary

and orthogonal vectors e1 and e2 (known as the polarization vectors [47], see Fig.2.1), which

define a ray normal n as:

n = n1e1 + n2e2 , (2.2)

where n1 and n2 represent the normal components in the ray-centered system of coordinates.

The integration of Eq.(2.1) requires the knowledge of the source position (x(0), y(0), z(0))
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e
s

e1

e2

Ray trajectory

Figure 2.1: Ray tangent es, and polarization vectors e1 and e2.

and of the initial direction of propagation, which is given by es(0) and can be written as

es(0) =

 cos θ(0) cosφ(0)
cos θ(0) sinφ(0)

sin θ(0)

 (2.3)

where θ(s) stands for the ray elevation (i.e. the ray slope relative to the plane XY ) and φ(s)

stands for the ray azimuth (i.e. the slope of the ray projection on the XY plane relative to

the X axis; see Fig.2.2). The travel time τ(s) is further obtained after integration of ds/c(s)

along the ray trajectory.

2.2.2 The dynamic equations

Besides ray trajectories TRACEO3D relies on the Gaussian beam approximation to compute

the ray amplitude [48]. To this end one needs to calculate a set of 2×2 matrices represented

generally as C, M and P; the system is given by the following relationships [47]:

M = PQ−1 , (2.4)

and

d

ds
Q = c(s)P ,

d

ds
P = − 1

c2(s)
CQ , (2.5)
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Figure 2.2: Ray elevation θ and azimuth φ.

where

Cij =
∂2c

∂ni∂nj

; (2.6)

the elements of C correspond to second order derivatives of sound speed along the polar-

ization vectors e1 and e2. Generally speaking P describes the beam slowness in the plane

perpendicular to es, while Q describes the beam spreading. The pair of expressions given

by Eq.(2.5) is called the dynamic equations of the Gaussian beam formulation.

Generally speaking the polarization vectors are related to es through the ray torsion and

curvature, which can be cumbersome to determine numerically; a simplified approach, valid

for a sound speed profile, or for a sound speed field with cylindrical symmetry, is to calculate

both vectors using the relationships

e1(s) =

 − sin θ(s) cosφ(s)
− sin θ(s) sinφ(s)

cos θ(s)

 and e2(s) =

 − sinφ(s)
cosφ(s)

0

 . (2.7)

The update of matrices P and Q after a boundary reflection is discussed in detail in [29].
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2.2.3 Beam influence

The solution of the Eikonal and dynamic equations allows to calculate the beam influence

along a given normal based on the expression [48]

P (s,n) =
1

4π

√
c(s)

c(0)

cos θ(0)

det Q
exp

{
−iω

[
τ(s) +

1

2
(Mn · n)

]}
, (2.8)

where · represents an inner vector product; generally speaking the imaginary part of the

product Mn · n induces a Gaussian decay of beam amplitude along n, while the real part

introduces phase corrections to the travel time. As long as detQ 6= 0 the solution given

by Eq.(2.8) is free of the singularities of the classic solution (based on ray tubes); phase

corrections due to caustics can be also easily included. The expression given by Eq.(2.8)

behaves near the source as an spherical wave emitted by a point source, through the choice

of initial conditions [47]

P(0) =

[
1 0
0 cos θ(0)

]
/c(0) (2.9)

and [48]

Q(0) =

[
0 0
0 0

]
. (2.10)

2.2.4 Calculation of particle velocity

Calculation of particle velocity requires the gradient of the pressure field, which can be

written in ray coordinates as

∇P =
∂P

∂s
es +

∂P

∂n1

e1 +
∂P

∂n2

e2 . (2.11)

Partial derivatives in the Cartesian coordinates can be obtained through the expressions

∂P

∂x
= ∇P · ex ,

∂P

∂y
= ∇P · ey ,

∂P

∂z
= ∇P · ez , (2.12)

where ex, ey and ez stand for the unitary vectors along the X, Y and Z axes, respectively.
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2.2.5 Boundary reflections and volume attenuation

After each boundary reflection the amplitude needs to be multiplied by a decaying factor

φr, which is given by the expression

φr =
nr∏
i=1

Ri , (2.13)

where nr represents the total number of boundary reflections, and Ri is the reflection coef-

ficient at the ith reflection. The case with no reflections (nr = 0) corresponds to φr = 1.

Generally speaking, boundaries can be one of four types:

• Absorbent: the wave energy is transmitted completely to the medium above the bound-

ary, so R = 0 and ray propagation ends at the boundary.

• Rigid: the wave energy is reflected completely on the boundary, with no phase change,

so R = 1.

• Vacuum: the wave energy is reflected completely on the boundary, with a phase change

of π radians, so R = -1.

• Elastic: the wave energy is partially reflected, with R being a complex value and

|R| < 1.

The calculation of the reflection coefficient for an elastic medium requires the knowledge of

the following (often depth-dependent) parameters:

• compressional wave speed cp,

• shear wave speed cs,
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• compressional wave attenuation αcp,

• shear wave attenuation αcs,

• density ρ,

(see Fig. 2.3) and it is based on the following expression [49]:

R (θ) =
D (θ) cos θ − 1

D (θ) cos θ + 1
, (2.14)

where

D (θ) = A1

(
A2

1− A7√
1− A2

6

+ A3
A7√

1− A5/2

)
,

A1 =
ρ2
ρ1

, A2 =
c̃p2
cp1

, A3 =
c̃s2
cp1

,

A4 = A3 sin θ , A5 = 2A2
4 , A6 = A2 sin θ , A7 = 2A5 − A2

5 ,

c̃p2 = cp2
1− iα̃cp

1 + α̃2
cp

, c̃s2 = cs2
1− iα̃cs

1 + α̃2
cs

,

α̃cp =
αcp

40π log e
, α̃cs =

αcs

40π log e
,

where the units of attenuation should be given in dB/λ.

Water

ρ1, cp1

Elastic medium

ρ2, cp2, cs2

αcp, αcs

θ

θ1

γ1

Figure 2.3: Ray reflection on an elastic medium.
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In general the reflection coefficient is real when αcp = αcs = 0, and the angle of incidence

θ is less than the critical angle θcr, with θcr given by the expression

θcr = arcsin

(
cp1
cp2

)
. (2.15)

Moreover, attenuation is negligible when θ < θcr, and for small θ the energy transferred to

shear waves in the elastic medium is only a small fraction of the total energy transfered.

Ray amplitude needs to be corrected also along a ray trajectory with a factor φV to

account for volume attenuation, which in the ocean has a chemical nature, and it is induced

by relaxation processes of salt constituents like MgSO4, B(OH)3 and MgCO3. The factor φV

is given by the decaying exponential

φV = exp (−αT s) , (2.16)

where s is the ray arclength and αT is the Thorpe (frequency dependent) attenuation coef-

ficient in dB/m, given by [2]

αT =
40f 2

4100 + f 2
+

0.1f 2

1 + f 2
, (2.17)

with the frequency given in kHz.

2.3 Numerical issues

2.3.1 Solving the Eikonal

In order to solve numerically the Eikonal one can rewrite Eq.(2.1) as a linear differential

vector equation:

dy

ds
= f , (2.18)
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where

y =


x
y
z
σx
σy
σz

 and f =


σx/σ
σy/σ
σz/σ
∂σ/∂x
∂σ/∂y
∂σ/∂z

 ; (2.19)

this system can be integrated using a Runge-Kutta-Fehlberg method, which provides two

solutions at each step of integration; if the solutions differ in more than a particular threshold

the ray step ds is halved, and the integration is restarted with the new step; this process is

repeated until the difference falls below the threshold. Particular care was taken to avoid

infinite loops by setting a maximal number of repetitions.

2.3.2 Solving the dynamic equations

The set given by Eq.(2.5) can be solved using Euler’s method, providing that the ray

trajectories are calculated accurately.

2.3.3 Calculation of derivatives along the polarization vectors

Elements of the matrix C in Eq.(2.6) need to be calculated as derivatives of sound speed

c(x, y, z) along the polarization vectors e1 and e2. Such derivatives can be calculated explic-

itly in Cartesian coordinates using the expressions

∂

∂n1

=

(
∂x

∂n1

)
∂

∂x
+

(
∂y

∂n1

)
∂

∂y
+

(
∂z

∂n1

)
∂

∂z

and

∂

∂n2

=

(
∂x

∂n2

)
∂

∂x
+

(
∂y

∂n2

)
∂

∂y
+

(
∂z

∂n2

)
∂

∂z
.

Second-order derivatives follow directly from the above expressions; for instance:

(
∂

∂n1

)(
∂

∂n2

)
=
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=

(
∂x

∂n1

)(
∂x

∂n2

)
∂2

∂x2
+

(
∂x

∂n1

)(
∂y

∂n2

)
∂2

∂x∂y
+

(
∂x

∂n1

)(
∂z

∂n2

)
∂2

∂x∂z

+

(
∂y

∂n1

)(
∂x

∂n2

)
∂2

∂y∂x
+

(
∂y

∂n1

)(
∂y

∂n2

)
∂2

∂y2
+

(
∂y

∂n1

)(
∂z

∂n2

)
∂2

∂y∂z

+

(
∂z

∂n1

)(
∂x

∂n2

)
∂2

∂z∂x
+

(
∂z

∂n1

)(
∂y

∂n2

)
∂2

∂z∂y
+

(
∂z

∂n1

)(
∂z

∂n2

)
∂2

∂z2
.

For the choice of polarization vectors discussed in Section 2.2.2 it can be found that

∂x

∂n1

= − sin θ cosφ ,
∂y

∂n1

= − sin θ sinφ ,
∂z

∂n1

= cos θ ,

and

∂x

∂n2

= − sinφ ,
∂y

∂n2

= cosφ ,
∂z

∂n2

= 0 .

2.3.4 Beam influence

For a given normal n the calculation of beam influence using Eq.(2.8) requires the calculation

of matrix M; however, during the development of the TRACEO3D model it was found an

alternative (and equally accurate) expression of beam influence, given by

P (s, n1, n2) =
1

4π

√
c(s)

c(0)

cos θ(0)

det Q
Φ11Φ12Φ21Φ22 exp [−iωτ(s)] , (2.20)

where the coefficients Φij are given by

Φij = exp [−(

√
π|ninj|
∆θ

Q−1ij

)
2
]
, (2.21)

with ∆θ standing for the elevation step between successive rays, and Q−1ij representing

the elements of Q−1; n1 and n2 are calculated through the projection of n onto e1 and

e2. Calculations with Eq.(2.20) are faster than with Eq.(2.8) because the step of matrix

multiplication between P and Q−1 is not required.
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2.3.5 Calculation of normals

In the original version of TRACEO3D ray influence at a receiver located at the position rh

was calculated using the following procedure:

• Divide the ray trajectory into segments between successive transitions (surface/bottom

reflection, or bottom/surface reflection, etc.);

• Proceed along all segments to find all ray normals to the receiver; to this end:

– Consider the ith segment; let rA and rB be the coordinates of the beginning and

end of the segment, respectively, and let eA and eB be the vectors corresponding

to es at A and B.

– Calculate the vectors ∆rA = rh − rA and ∆rB = rh − rB.

– Calculate the inner products PA = eA ·∆rA and PB = eB ·∆rB.

– If PA × PB < 0 a normal exists and it can be found through bisection along the

segment; once the normal is found the corresponding influence at the receiver can

be calculated.

– If PA × PB > 0 there is no normal (and no influence at the receiver); therefore,

one can move to segment i+ 1.

• The ray influence at the receiver is the sum of influences from all segments.

The influence of a Gaussian beam decays rapidly along a normal, but it never reaches zero;

therefore, the procedure is to be repeated for all rays and all receivers.

As shown in [11] field predictions using this method exhibit a good agreement with

experimental data, but the runtime is often high and increases drastically as range, number
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Figure 2.4: Normal search along a ray segment. Left: the hydrophone is at a position for which
PA×PB < 0; thus a normal exists, and it can be found by bisection somewhere along the segment.
Right: the hydrophone is at a position for which PA × PB > 0; thus, there is no normal and the
ray segment has no influence at the hydrophone position.

of rays and number of sensor increases. The numerical enhancement of normal calculations

is described in detail in Section 3.2.

2.3.6 Interpolation and calculation of derivatives

N dimensional piecewise n-point barycentric polynomials are used for interpolation and

calculation of derivatives [46]. For each space dimension n points of tabulated data are

used to calculate relative distances between the points and build a polynomial of order

n − 1. Interpolation and calculation of derivatives is then performed at a new point using

the polynomial coefficients and polynomial derivatives. This strategy of interpolation can

be used with a uniform or non-uniform grid of data points, is numerically stable, robust,

and easy to implement for any number of dimensions. The following discussion illustrates

the interpolation of curves, surfaces and volumes using a parabolic (n = 3) barycentric

interpolation1.

1Generally speaking parabolic interpolation is not used very often, because it can lead to unbalanced
estimates of function values depending on the position of the new point relative to the tabulated ones. Yet
the expressions of the polynomials are ideal to illustrate the method.
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• Preliminary definitions: in order to provide a compact description of barycentric

parabolic interpolation the following notation will be introduced:

P n
j (x) =

n∏
i=1,i 6=j

(x− xi) ; (2.22)

for instance:

P 2
1 (x) = (x− x2) , P 2

2 (x) = (x− x1) ,

P 3
1 (x) = (x− x2) (x− x3) , P 3

2 (x) = (x− x1) (x− x3) , P 3
3 (x) = (x− x1) (x− x2) ,

P 4
1 (x) = (x− x2) (x− x3) (x− x4) , P 4

2 (x) = (x− x1) (x− x3) (x− x4) ,

P 4
3 (x) = (x− x1) (x− x2) (x− x4) , P 4

4 (x) = (x− x1) (x− x2) (x− x3) . . .

Additionally, let be

Sj(x) = 2x−
3∑

i=1,i 6=j

xi ; (2.23)

for instance

S1(x) = (2x− x2 − x3) , S2(x) = (2x− x1 − x3) , S3(x) = (2x− x1 − x2) .

• Line interpolation: Consider a set of three points x1, x2 and x3 and a set of function

values f(x1), f(x2) and f(x3). It is required to interpolate the function and its first

and second derivatives at a point x, located between x1 and x3 (see Fig. 2.5).

x1 x2 x3

x

bc bc bcbc X

Figure 2.5: One-dimensional grid considered for piecewise barycentric parabolic interpolation.

The barycentric parabolic polynomial can be written as

f(x) = f(x1) + a2P
3
2 (x) + a3P

3
3 (x) , (2.24)
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where

a2 =
f(x2)− f(x1)

P 3
2 (x2)

and a3 =
f(x3)− f(x1)

P 3
3 (x3)

.

The condition P 3
i (xj) = 0 when j 6= i implies automatically that the polynomial

provides the function values at the grid points. The expressions for the derivatives

become:

df

dx
= a2S2(x) + a3S3(x) and

d2f

dx2
= 2 (a2 + a3) .

• Surface interpolation: consider a two-dimensional grid of points (x1, y1), (x2, y1),

. . ., (x3, y3), with function values f(x1, y1), f(x2, y1), . . ., f(x3, y3). It is required to

interpolate the function and its first and second partial derivatives at a point (x, y)

located inside the grid (see Fig. 2.6). The biparabolic barycentric polynomial can be

written as

f(x, y) = f(x1, y1) +a12P
3
2 (x)P 3

1 (y) +a13P
3
3 (x)P 3

1 (y) +
+ a21P

3
1 (x)P 3

2 (y) +a22P
3
2 (x)P 3

2 (y) +a23P
3
3 (x)P 3

2 (y) +
+ a31P

3
1 (x)P 3

3 (y) +a32P
3
2 (x)P 3

3 (y) +a33P
3
3 (x)P 3

3 (y) ,
(2.25)

where the general expression for the coefficient aij given by

aij =
f(xj, yi)− f(x1, y1)

P 3
j (xj)P 3

i (yi)

with i, j = 1, 2, 3 and a11 = 0; for instance

a12 =
f(x2, y1)− f(x1, y1)

P 3
2 (x2)P 3

1 (y1)
, a13 =

f(x3, y1)− f(x1, y1)

P 3
3 (x3)P 3

1 (y1)
, . . .

Expressions for partial derivatives can be written as

∂f

∂x
=

3∑
i=1

3∑
j=1

aijP
3
i (y)Sj(x) ,

∂f

∂y
=

3∑
i=1

3∑
j=1

aijP
3
i (x)Sj(y) ,

∂2f

∂x2
= 2

3∑
i=1

3∑
j=1

aijP
3
i (y) ,

∂2f

∂y2
= 2

3∑
i=1

3∑
j=1

aijP
3
i (x) ,
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bc
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Figure 2.6: Two-dimensional grid considered for piecewise barycentric biparabolic interpolation.

and

∂2f

∂x∂y
=

3∑
i=1

3∑
j=1

aijSi(x)Sj(y) .

• Volume interpolation: consider a three-dimensional grid of points (x1, y1, z1),

(x2, y1, z1), (x3, y1, z1), . . ., (x3, y3, z3), with function values f(x1, y1, z1), f(x2, y1, z1),

f(x3, y1, z1), . . ., f(x3, y3, z3). It is required to interpolate the function and its first

and second partial derivatives at a point (x, y, z) located inside the grid (see Fig. 2.7).

The triparabolic barycentric polynomial can be written as

f(x, y, z) =
3∑

i=1

3∑
j=1

3∑
k=1

aijkP
3
k (x)P 3

j (y)P 3
i (z) , (2.26)

where the coefficients aijk are given by the expression

aijk =
f(xk, yj, zi)− f(x1, y1, z1)

P 3
k (xk)P 3

j (yj)P 3
i (zi)

with i, j, k = 1, 2, 3 and a111 = 0.

Expressions for partial derivatives can be written as

∂f

∂x
=

3∑
i=1

3∑
j=1

3∑
k=1

aijkSk(x)P 3
j (y)P 3

i (z) ,

∂f

∂y
=

3∑
i=1

3∑
j=1

3∑
k=1

aijkP
3
k (x)Sj(y)P 3

i (z) ,
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Figure 2.7: Three-dimensional grid considered for piecewise barycentric triparabolic interpolation.

∂f

∂z
=

3∑
i=1

3∑
j=1

3∑
k=1

aijkP
3
k (x)P 3

j (y)Si(z) ,

∂2f

∂x2
= 2

3∑
i=1

3∑
j=1

3∑
k=1

aijkP
3
i (y)P 3

i (z) ,

∂2f

∂y2
= 2

3∑
i=1

3∑
j=1

3∑
k=1

aijkP
3
k (x)P 3

i (z) ,

∂2f

∂z2
= 2

3∑
i=1

3∑
j=1

3∑
k=1

aijkP
3
k (x)P 3

j (y) ,

∂2f

∂x∂y
=

3∑
i=1

3∑
j=1

aijkSk(x)Sj(y)P 3
i (z) ,

∂2f

∂x∂z
=

3∑
i=1

3∑
j=1

aijkSi(x)P 3
j (y)Si(z) ,

∂2f

∂y∂z
=

3∑
i=1

3∑
j=1

aijkP
3
k (x)Sj(y)Si(z) .

2.3.7 Ray/boundary intersection

In TRACEO3D the numerical integration of the Eikonal is accomplished in parallel testing

the intersection of a ray segment with any of the waveguide boundaries, which in general can
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be expected to exhibit any degree of roughness. When the end of the ray segment is found to

be above the surface or below the bottom the point of intersection (xi, yi, zi) is determined.

Using the interpolation polynomials one can find the normal to the boundary f(x, y) at the

intersection point, which can be written as

n = N/ |N|

where

N =

 −∂f/∂x−∂f/∂y
1

 ;

the partial derivatives are to be calculated at (xi, yi, zi). The vector n is required to calculate

the reflection coefficient at the point of intersection; besides, n is also needed to determine

the new direction of propagation after reflection. In fact, let be es the ray tangent before

reflection; the law of specular reflection requires the new tangent to become

(es)
′ = es − 2 n (n · es) ; (2.27)

knowing (es)
′ one can restart the integration the Eikonal at the intersection point along the

direction of specular reflection.

In order to provide accurate estimates of (xi, yi, zi) for any degree of boundary roughness

the following strategy is used:

• Divide the ray segment into a sequence of linearly distributed points, starting on one

side of the boundary and ending on the other side;

• Use the interpolation polynomials to calculate the vertical distance from both start

and end of the ray segment to the boundary (this distance will change sign as one

moves along the segment);
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• Use bisection to determine the pair of points (xk, yk, zk) and (xk+1, yk+1, zk+1) where

the vertical distance changes sign.

• Determine (xi, yi, zi) from (xk, yk, zk) and (xk+1, yk+1, zk+1) using linear interpolation.

This strategy can be expected to be accurate, but it is also computationally demanding.

Yet, it has been found to converge very rapidly in most cases because the ray step is always

smaller than the typical roughness of the boundary.
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Chapter 3

Numerical enhancements

Synopsis: A description of the numerical enhancements of the TRACEO3D ray tracing

model is presented in this chapter, namely, the Simplex-based eigenray search, and the opti-

mization of ray influence calculations. The eigenray Simplex-based search was developed to

efficiently and accurately calculate 3D eigenrays, providing predictions that account for hor-

izontal effects. Ray influence calculations were also improved with the main goal of reducing

the computational time, which often increases drastically as range, number of rays and num-

ber of sensor increases. The structure of this chapter is as follows: Section 3.1 presents the

eigenray Simplex-based search, while Section 3.2 describes the procedures that compound the

ray influence calculations.

3.1 The Simplex-based eigenray search

In the original version of TRACEO3D eigenray search was based on the “proximity” method,

i.e. by launching as many rays as possible, and keeping only rays ending inside a sphere

centered on a given receiver, with the sphere radius being defined by the user. This approach

was found to be computationally demanding and inaccurate. The Simplex method was used

to address the problem efficiently, with the 3D search of eigenrays being based on three

different strategies:

1. To start the search determine a reliable candidate region that encloses the receiver.

33



34 Chapter 3. Numerical enhancements

2. Apply the general rules of Simplex optimization using the candidate region to find an

eigenray.

3. Avoid the storage of duplicated eigenrays.

These strategies are discussed in detail in the following three sections (a compact discussion

and validation is also presented in [50]). The full algorithm is presented in section 3.1.4.

3.1.1 Selection of a reliable candidate region

Let θ and φ be the ray elevation and azimuth, respectively. For a given set of receivers the

initial choice of take-off angles (defined by a set of θ and φ pairs at the source) depends

on many waveguide features, such as boundary variations over the horizontal plane, source-

receiver alignment, and the existence or absence of environmental variations. In any case

a given choice should aim at sweeping the waveguide in such a way, that a large number

of rays should be propagating among all receivers; in such conditions it can be expected

that “enough” eigenrays will be found at every receiver, allowing to predict accurately the

corresponding impulse response. For a given receiver, a vertical plane is calculated using

the normal vector connecting the source to the receiver, and the crossings of rays through

the plane determine the closest distance from each ray to the receiver. Let θi and φj define

the take-off angle of the (i, j)th ray; a candidate search space is then built with the region

defined by the corners [
θi, φj θi, φj+1

θi+1, φj θi+1, φj+1

]
These corners are changed over iterations according to the following rules:

• fix i and increment j until the horizontal deviation of the closest distance vanishes;
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• increment i and repeat the previous step until it covers the vertical deviations.

At each iteration a new search region is created; the corresponding corners are used to divide

the region in triangles using the following combinations:

1. [θi, φj θi+1, φj θi, φj+1];

2. [θi, φj θi+1, φj θi+1, φj+1];

3. [θi, φj θi, φj+1 θi+1, φj+1];

4. [θi+1, φj θi, φj+1 θi+1, φj+1];

The method calculates the barycentric coordinates λ to determine which triangle contains

the receiver, with λ given by x1 x2 x3
y1 y2 y3
z1 z2 z3

λ =

xryr
zr

 ; (3.1)

in Eq(3.1) (x1, y1, z1), (x2, y2, z2) and (x3, y3, z3) represent the coordinates of the triangle

vertex, and (xr, yr, zr) are the coordinates of the receiver. The search considers all triangles;

it decides that the receiver lies inside a given triangle when the components of the normal-

ized λ are all positive. When this happens the take-off angles (θ, φ) of the corresponding

vertex are considered for the next step (i.e. for Simplex optimization). A visualization

of the four corners used for selection is presented in Fig. 3.1, with the candidate region

located at the first combination of launching angles (i.e., at the corners corresponding to

[θi, φj θi+1, φj θi, φj+1]). All triangles are considered until the one containing the receiver

is found. The selection step is fundamental in order to overcome the chaotic distribution of

vertex corners induced by the waveguide. In fact, rays from an initially narrow pyramid will
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end up producing an amorphous cloud of corners near the receiver, with consecutive rays

following completely different trajectories. For instance, one corner can be produced by a

ray coming from the bottom, while another corner can be produced by a ray coming from

the surface.

*

*

*

*

(xk, yk, zk)

(θi, φj)

(θi+1, φj)

(θi, φj+1)

(θi+1, φj+1)

Receiver

Vertical Plane

Figure 3.1: The four corners (represented as asterisks) used to find a reliable candidate region
containing a receiver; all points are located on a vertical plane, associated to the receiver. To each
corner corresponds a set of coordinates (xk, yk, zk), which define the point of ray-plane intersection.
The region is divided into triangles (dashed lines), and barycentric coordinates (solid lines) λ1, λ2
and λ3 are used to determine which triangle contains the receiver.

3.1.2 Simplex optimization

The Simplex method was developed as a general strategy to optimize a function of N

variables [51]. A simplex can be idealized as a geometric figure in N dimensions, defined
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by a set of N + 1 points; for instance, a simplex is a triangle in two dimensions, and in

three dimensions it is a tetrahedron. The method is able to achieve convergence in few

iterations, and requires few function evaluations, a feature which is important when dealing

with complicated objective functions [52].

Within the context of eigenray search the objective function to be minimized can be

defined as

f(θ, φ) =

√√√√√ [xr − x(θ, φ)]2 +

[yr − y(θ, φ)]2 +

[zr − z(θ, φ)]2
, (3.2)

where x(θ, φ), y(θ, φ) and z(θ, φ) represent the ray coordinates on the vertical plane of the

receiver. Each calculation of the objective function requires solving the system of Eikonal

equations for a given pair of angles (θ, φ). The selection of a candidate region (as discussed

in section 3.1.1) delivers a high quality initial guess for the simplex algorithm to start the

minimization of the objective function; each corner corresponds to a point combination

Pk = (θ, φ), with k = 0 . . . N . An initial simplex is computed between each vertex of the

triangle and its centroid. Each calculation of new points produces a simplex with the same

triangular shape inside the initial region. Additionally, overlapping triangles can be used

to restart the optimization in regions in which the convergence is failing. Once the simplex

is started it uses three operations called reflection, contraction and expansion based on the

centroid P̄ , which are defined as follows:

• The reflection is denoted by P ∗ and its coordinates are calculated by the relation

P ∗ = (1 + α) P̄ − αPh (3.3)

where α stands for a positive constant reflection coefficient, and h represents the point

that gives the highest function value. Whether f (P ∗) lies between f (Ph) and f (Pl),
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with l corresponding to the point that gives the lowest function value, Ph is replaced

by P ∗ and the optimization restarts with the new simplex.

• However, if the reflection produces a new minimum, then we expand P ∗ to P ∗∗, given

by

P ∗∗ = γP ∗ + (1− γ) P̄ (3.4)

where γ corresponds to the expansion coefficient, with γ > 1. If the new point gives a

successful expansion, Ph is replaced by P ∗∗ and the process is restarted; otherwise Ph

is replaced by P ∗.

• If reflecting P to P ∗ gives f (P ∗) > f (P ) for all k 6= h then a new Ph is defined to

be either the old Ph or P ∗, whichever produces the closest distance, and forms the

contraction, denoted by

P ∗∗ = βPh + (1− β) P̄ (3.5)

where β stands for the contraction coefficient, with 0 < β < 1. A successful contraction

replaces Ph by P ∗∗, while a failed one replaces all points by (Pk + Pl) /2.

The optimization stops when the value of f(P ) at a given vertex is below a predefined

threshold. For the sake of clarity all steps of simplex optimization are illustrated in the

pseudo-code of Algorithm 1.

During initial tests for a single receiver the algorithm achieved a remarkable convergence

with α = 1.5, γ = 1.65 and β = 0.5. Those values were found to guarantee also the

convergence of the method for multiple receiver configurations1. Yet, it was also found

1 It should be noticed that parallel tests using swarm optimization (not shown here) with different
combinations of “proper” optimization parameters often failed to achieve the desired accuracy, besides
requiring significant amounts of computational time.
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Algorithm 1 Pseudo-code of Simplex optimization

1: calculate initial simplex for points Pk

2: while f (Pl) > threshold do
3: form P ∗ = (1 + α) P̄ − αPh

4: if f (P ∗) < f (Pl) then
5: form P ∗∗ = γP ∗ + (1− γ) P̄
6: if f (P ∗∗) < f (Pl) then
7: replace Ph by P ∗∗

8: else
9: replace Ph by P ∗

10: end if
11: else
12: if f (P ∗) > f (Pk) then
13: if f (P ∗) < f (Ph) then
14: replace Ph by P ∗

15: end if
16: form P ∗∗ = βPh + (1− β) P̄
17: if f (P ∗∗) > f (Ph) then
18: replace all Pk by (Pk + Pl) /2
19: else
20: replace Ph by P ∗∗

21: end if
22: else
23: replace Ph by P ∗

24: end if
25: end if
26: end while
27: return Pl

that a “blind” application of Simplex optimization could lead to the calculation of the

same eigenray using different candidate regions. To avoid this duplication a final step was

implemented, as described in the following section.

3.1.3 Avoiding storage of duplicated eigenrays

To avoid the storage of duplicated eigenrays the following procedure was adopted:

• After the calculation of a given eigenray it was verified that the corresponding pair

(θ, φ) was found to be inside the candidate region. The eigenray was discarded when

the pair was outside.
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• As each eigenray was being calculated the information regarding (θ, φ) together with

the number of bottom and surface reflections was stored in memory; the information

regarding a new eigenray was compared with the information of old ones, and the

eigenray was discarded if already present.

• At the end of calculations the eigenrays were sorted according to the time of arrival.

3.1.4 The Simplex-based algorithm of 3D eigenray search

The complete pseudo-code of Simplex-based 3D eigenray search implemented in TRACEO3D

is shown in Algorithm 2, with proper line identification; two main processing stages can be

noted. The first one (lines 5 to 14), corresponds to the computation of corners for the reliable

candidate region, which are calculated tracing all rays sequentially. For each new ray segment

an intersection test against a given receiver plane is performed. When the intersection occurs

the crossing coordinates are stored. However, depending on the launching angle, rays can

propagate without crossing any receiver plane, or crossing only some of them. In both

cases “invalid” corners are stored in memory to prevent searches in regions without rays.

For horizontal arrays it is desirable to reduce runtime avoiding shooting rays repeatedly for

different receiver ranges. In such case ray-plane intersections are calculated progressively as

rays propagate through the waveguide (see Fig 3.2).

The second working stage (lines 15 to 29) is related to the search itself, and it is performed

over the number of candidate regions. When a candidate region encloses a receiver the

Simplex-based search strives to find an optimized pair of take-off angles (θo, φo), which

fulfills both threshold and duplicated conditions. If that is the case the pair (θo, φo) is

used to calculate the ray trajectory, together with the travel time and amplitude, and the
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Algorithm 2 Pseudo-code for the Simplex-based 3D eigenray search

1: load environmental data
2: let φ = set of azimuth angles
3: let θ = set of elevation angles
4: let r = set of receivers
5: for j := 1→ length (φ) do
6: for i := 1→ length (θ) do
7: while ray (θi, φj) exists do
8: solve the Eikonal equations for segment k
9: if segment crosses rl vertical plane then

10: store ray crossing coordinates
11: end if
12: end while
13: end for;
14: end for;
15: for j := 1→ (length (φ)− 1) do
16: for i := 1→ (length (θ)− 1) do
17: for l := 1→ length (r) do
18: compute barycentric coordinates for (θi, φj), (θi+1, φj), (θi, φj+1), (θi+1, φj+1)

combination
19: if encloses rl then
20: perform Simplex optimization to find (θo, φo)
21: if threshold is satisfied then
22: avoid duplicated eigenray
23: solve the Eikonal equations using (θo, φo)
24: solve the dynamic equations using (θo, φo)
25: end if
26: end if
27: end for
28: end for
29: end for
30: return the eigenrays

information is stored as an eigenray.
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Figure 3.2: Ray-plane intersections, represented as asterisks, for a horizontal line array; the dashed
line corresponds to the planes normal n′.
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3.2 Calculations of ray influence

3.2.1 The receiver grid strategy

To address the problem described in Section 2.3.5 and reduce drastically the runtime without

compromising accuracy one can follow the approach described in [2], which suggests that for

each ray segment one considers not all receivers, but only those “insonified” (i.e. bracketed)

between the endpoints of a ray segment. For a given subset of receivers one can move

from the ocean surface to the ocean bottom within the subset, and rely on simple algebra to

determine the parameters of ray influence; the procedure is then repeated for all ray segments.

An examination of the BELLHOP3D ray tracing code [31] reveals that the determination of

the subset of receivers is achieved by testing all receiver positions within the array, looking

to find the ones within the endpoints of the ray segment. The approach implemented in

TRACEO3D goes further and looks to determine an even smaller subset of receivers (called

the receiver grid, see Fig. 3.3) based on the following considerations:

• A “finite” beam width W is defined along the ray, given by the expression

W =

∣∣∣∣Q11(s)∆θ

cos θ(s)

∣∣∣∣ . (3.6)

• There is no need to consider all receivers from the ocean surface to the ocean bottom,

but only those within the neighborhood defined by W

The main idea on the basis of this strategy is that beyond the distance defined by W the

influence is too small to be of any importance. Therefore, as one moves along each ray

segment the receiver grid is determined by the receivers bracketed by both the ray segment

and W . In this way one can avoid not only the query in the entire set of receivers forming
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the array, but also the query of all receivers bracketed by the ray segment. The method can

take advantage of Cartesian coordinates to determine efficiently the indexes of the receivers

lying inside the receiver grid. The specific details of this enhancement are described in the

next Section.

b
eam

w
id
th

Figure 3.3: The receiver grid: the black dots represent all the receivers of a rectangular array,
while the solid line represents the ray trajectory; the ray influence is only relevant within the limits
of the beam width, represented by the dashed lines, and the gray rectangle represents the grid of
receivers considered for the calculation of ray influence.

3.2.2 Ray influence calculation algorithm

The specific details of optimization are shown in the pseudo-code of Algorithm 3, which

summarizes the sequential steps regarding field calculations. Let n and r stand for the

number of rays and receivers, respectively. The optimization starts by tracing the ray for

a given pair of launching angles. Then, the algorithm marches through the ray segments,

and solves the dynamic equations to calculate the ray amplitude and the beam spreading.

As shown in lines 13 and 14 a subset of receivers is computed from r for each segment k of

the ray. The ray influence is computed only if a normal to the receiver is found at a given
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segment (see lines 15 and 16). Line 22 presents the final step, in which coherent acoustic

pressure for each receiver is calculated. As will be shown in Chapter 4 the set of nested loops

constitutes a fundamental stage of the algorithm, allowing a a substantial improvement of

the model’s performance. Details regarding the computation of the receiver grid are shown

in the pseudo-code of Algorithm 4; in it the integers llow and lhigh control the array indexes

that form the receiver grid according to the finite beam width bw at each coordinate axis.

The receiver indexes increase or decrease their values depending on the position of the ray

segment inside the receiving array; the entire procedure is designed to be flexible enough to

account for different ray directions.

Algorithm 3 Pseudo-code for sequential ray influence calculation

1: load environmental data
2: let φ = set of azimuth angles
3: let θ = set of elevation angles
4: let r = set of receivers
5: consider n = length (φ)× length (θ)
6: for j := 1→ length (φ) do
7: for i := 1→ length (θ) do
8: while ray (θi, φj) exists do
9: solve the Eikonal equations for segment k

10: end while
11: for k := 1→ raylength do
12: solve the dynamic equations of segment k
13: calculate w at segment k
14: compute the receiver grid g from r according to w
15: for l := 1→ length (g) do
16: if rayk and gl are ⊥ then
17: compute rayk influence at gl
18: end if
19: end for
20: end for
21: end for
22: end for
23: return the coherent acoustic pressure for each receiver
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Algorithm 4 Pseudo-code to compute the receiver grid

1: let llow = lower array index inside grid
2: let lhigh = high array index inside grid
3: consider bw as beam width at rayk
4: while lhigh or llow are inside grid do
5: if bw < r (llow − 1) then
6: decrement llow
7: else if bw > r (llow) then
8: increment llow
9: else

10: exit
11: end if
12: if bw < r (lhigh) then
13: decrement lhigh
14: else if bw > r (lhigh + 1) then
15: increment lhigh
16: else
17: exit
18: end if
19: end while



Chapter 4

Parallel GPU Implementation

Synopsis: The goal of this chapter is to describe in detail the structure of the algorithm

leading to the parallel GPU implementation of the TRACEO3D model, and to explain the

design decisions for memory organization and execution configuration. A glimpse of the GPU

architecture and the CUDA C programing model is also provided, by introducing some of the

concepts used in the implementation. The structure of this chapter is as follows: Section

4.1 presents the Data-Parallel execution Model, while Section 4.2 describes the parallel GPU

implementation & memory organization, and discusses the algorithm design.

4.1 Data-Parallel execution Model

4.1.1 CUDA parallel organization

A GPU is a specialized electronic circuit, which is designed with the main goal of accelerating

the creation of images for the corresponding output on a display. In contrast with the CPU,

a GPU is highly parallel, and has optimized many-core processors for high-definition 3D

graphics with high memory bandwidth. While the CPU consists of few cores optimized for

sequential processing, the GPU has a massively parallel architecture consisting of thousands

of cores with more transistors, dedicated to data processing rather than data caching and flow

control [53]. The GPU computing is intended to address problems with a large amount of

data, which is executed by the same program. Among several programming frameworks that

47
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handle with GPU cores the mostly widely used is the Compute Unified Device Architecture

(CUDA), developed by NVIDIA [54]. CUDA is a scalable parallel programming model

and software platform which provides C, C++ and Fortran extensions to develop parallel

programs. This model implements a data-parallel function, denominated kernel, which is

executed by all threads during a parallel step. Generally speaking, a CUDA program starts

in the host, as a CPU sequential program, and when a kernel function is launched, it is

executed in a grid of parallel threads into the GPU or device, as shown in Fig 4.1.

HOST

Kernel

Kernel

DEVICE

Grid 0

Block 0 Block 1 Block 2

Grid 1

Block 0 Block 1 Block 2

Figure 4.1: CUDA heterogeneous computing organization, with kernels launching grids of threads
blocks for parallel processing into a device.

Each grid is organized as an array of blocks, where each block is compounded by an

array of threads. The number of threads in a block and the number of blocks in a grid are

denominated as grid size and block size, respectively. The grid size and block size have to

be specified as execution configuration parameters of the kernel function. Each thread in
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a block has a unique identification value, and each block has a unique identification value

in a grid. These identifications are a 3-component vector, which can identify the thread

using one, two or three dimensional indexes. Thus, a given thread can combine each index

identification with the block size to produce a global identification for itself in the entire

grid. Since each thread executes the same code it creates an efficient way to directly access

a particular part of the data.

4.1.2 Device memories

CUDA relies on additional methods to access different types of memory, that help to over-

come long access latencies and finite bandwidth. As described in Table 4.1 each memory has

its own scope, access type and lifetime, whose combination provides distinct strategies to

improve performance. Memory organization of a generic CUDA device is illustrated in Fig.

4.2: the host can transfer data to the device memory through global, constant or texture

memory, and these spaces are visible among kernels calls. They are accessible by all threads

and present an on-chip cache to improve performance.

Table 4.1: CUDA device memory types.

Memory Device access Scope Lifetime

Global R/W All threads / host Application
Constant R All threads / host Application
Texture R All threads / host Application
Shared R/W Thread block Kernel
Local R/W Thread Kernel
Register R/W Thread Kernel

The global memory can be read and written from both host and device; the constant

and texture memory can be read and written from the host. However, they are read-only
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DEVICE

GPU

SM

core core

core core

registers
shared memory
L1/texture cache
constant cache

SM

core core

core core

registers
shared memory
L1/texture cache
constant cache

DRAM

local/global constant/texture

HOST

Figure 4.2: Generic CUDA device memory organization; it can be manipulated according to
hardware computing capabilities.

from the device. Furthermore, texture memories are accessed through a dedicated read-only

cache, that can be used for linear interpolation as part of the read process through hardware

filtering. While global, constant and texture memories are located in off-chip memory,

register and shared memories are located in on-chip memories, meaning that they have a

very low latency to be accessed, roughly 100 times lower than uncached global memory.

Shared memory can be accessed by all threads in the same block, and provides an efficient

way to combine their partial results. Local variables in the device code are stored in the

register if there is available space, otherwise they are stored in the global memory with local

scope [55].
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4.1.3 Thread execution

In the current GPU generation thread blocks are assigned to hardware resources and orga-

nized into streaming multiprocessors (hereafter SM). When a block is assigned to a given

SM, it is further divided into a group of thread units denominated warp, which is the unit

of thread scheduling. This is illustrated in Fig. 4.3, which presents an hypothetic partition

of blocks into warps for scheduling in a SM. The SM is meant to execute threads in a warp

based on the single instruction multiple thread model (hereafter SIMT). In this way, any

threads in a warp are addressed to an execution unit to perform the same instruction at the

same execution time. The coalescing technique [54] takes advantage of the SIMT model to

improve global memory performance, since optimum access arises when all threads in a warp

access consecutive global memory positions.

Block 0
warp 1 warp 2

0 1 2 293031323334 616263

Block 1
warp 3 warp 4

0 1 2 293031323334 616263

SM

Warp scheduler Warp scheduler

Registers

core core core core core core core core

core core core core core core core core

Shared memory

L1/texture cache constant cache

Figure 4.3: Schematic of blocks partition into warps for scheduling, and multiprocessor streaming
architecture.
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Each SM can execute instructions for a small number of warps at any instant in time.

This strategy allows to fill in latency time operations with work from other threads, belonging

to other warps, ready to be executed, and this is often called latency hiding [41]. These skills

to tolerate long latency operations demonstrate how GPU overcomes the lack of chip area

to cache memories and branch predictions, and dedicate instead more area to float-point

execution resources. However, if threads in the same warp follow different paths due to a

given branch condition, the SIMT hardware will take multiple steps to execute a different

control flow. That is, the divergent path will be executed in sequence for each thread group.

In general, the resource constraints in a given device can have a prominent impact in the

execution speed of CUDA kernels. For instance, registers and shared memory can be useful

in reducing the number of accesses to global memory. However, if the amount available is

exceeded, the number of threads that can reside in a given SM decreases.

The classical approach of CUDA development relies in keeping the SM as busy as possible,

meaning that the execution configuration should be optimized to launch a sufficient amount

of lightweight threads [56]. In this way, it will maximize the hardware occupancy, which

is defined as the ratio of the number of active warps per multiprocessor to the maximum

number of possible active warps [41]. However, some works show that the application may

achieve better performance with low occupancy [57, 58], once it is allowed to share more

register memory per thread which is the fastest on-chip memory. Although this increase in

number of registers certainly decreases the number of threads per SM, it is compensated by

increasing the numbers of operations per thread. An analysis regarding the SM occupancy

and the execution configuration parameters will be presented in Sections 5.3.2 and 5.4.2 for

each validation result.
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4.2 Parallel TRACEO3D implementation

4.2.1 Ray tracing algorithm considerations

Generally speaking, ray tracing has an inherent parallelism, since rays can be computed in-

dependently or in any order. Furthermore, 3D propagation involves launching thousands of

rays to cover the waveguide in elevation and azimuth, a task which represents a computation-

ally demanding workload [59]. Such ray independence, combined with a high workload that

can achieve a massive parallelism, is the main attraction in a GPU hardware multithreading.

Preliminary research into parallelization in a coarse-grained fashion [24] was developed using

OpenMPI [60]. Performance analysis showed that the parallel implementation followed a lin-

ear speedup when each process was addressed to a single physical CPU core. However, such

performance was achieved at the cost of using high-end CPUs, designed for computer servers

without network communication (which probably would decrease the overall performance).

Thus, the best parallel implementation was 12 times faster than the sequential one, meaning

that the execution took place in a CPU with 12 physical cores.

As introduced in Chapter 2, TRACEO3D relies on the 3D solution of the Eikonal equa-

tions to calculate ray trajectories, and on the solution of dynamic equations to calculate ray

amplitudes. A preliminary timing analysis in the sequential code of a generic ray calculation

is presented in Fig. 4.4, which shows that the solution of the Eikonal is the most time con-

suming task; given the dependence of the dynamic equations on ray trajectories a substantial

portion of the code to be parallelized needs to be focused on a balanced combination of such

tasks. The implementation thus adopted the inherent ray tracing parallelism, addressing

each pair of launching angles (θ, φ) as a single parallel thread, even though it could lead to
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the concentration of additional work per thread.

total runtime

other dynamic eq. Eikonal eq.

parallel portion

5% 10% 85%

Figure 4.4: TRACEO3D timing analysis, showing roughly the percentage of runtime required to
perform a generic calculation.

Another important issue is that once initial conditions are loaded into the GPU memory,

rays are computed until the end without any additional request. Since the GPU is a co-

processor this strategy in fact contributes to the achievement of high performance execution

in a GPU architecture, since it avoids the bottleneck represented by data transfer between

the host and the device. Yet, a drawback of the ray tracing algorithm is that each ray

follows a different path, since some rays can experience only refraction, while others may

be bouncing on different boundaries; this diversity of behaviors leads to the execution of

different instructions. When this happens the warp schedule executes the divergent threads

sequentially. Additionally, the access to different environmental information depending on

the ray path can change drastically the pattern of memory access and hamper the use of the

coalescing technique, which is fundamental to improve global memory access performance.

Strategies to deal with those issues are presented in the following sections.

4.2.2 Memory organization

Acoustic predictions in a three-dimensional scenario demand the tracing of a high number

of rays. In the sequential algorithm the ray trajectory information (such as, for instance,

Cartesian coordinates, travel time, complex decay, polarized vectors, caustics, matrices P
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and Q, etc.) are stored in memory to be used at later steps, such as eigenray searching or

ray influence. Such storage makes sense considering that the sequential algorithm keeps one

ray at a time in memory. However, handling thousands of rays in parallel rapidly exceeds

the available memory in a given device. To circumvent this issue calculations of ray paths

and amplitudes are performed in a single step, for each ray segment at a time, storing in

memory only the values required to execute such computation. A sketch of this strategy is

presented in Fig 4.5, where the horizontal arrow represents the direction in which memories

are updated, and t corresponds to the current time in which calculations are taking place;

t−1 and t−2 represent previous values, that are required to be held in memory. Small arrows

connecting memory positions represent the values accessed by the corresponding function to

perform computations in time t. The vertical arrow indicates the order in which functions

are computed in the current time. The same structure is valid for both functions, eigenray

search and ray influence calculation. After calling the functions for a given ray segment

the values stored in memory at time t − 1 are copied to the position t − 2, and the values

regarding t are copied to position t− 1, meaning that the values at t− 2 are discharged. A

new iteration then starts to solve the next ray segment, following the same rules. In this

way, the storage requires only three segments to be held in memory, reducing drastically the

amount of data stored. This organization allows further updates of data into registers to be

kept, reducing the global memory access and overcoming the problems of divergences in the

pattern of memory access. The performance of memory access is also increased by loading

part of the environmental information into the shared memory at the kernel initialization.

An overview of how data from the parallel implementation is organized into device

memories is shown in Table 4.2. The memory type was chosen considering the respective
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Figure 4.5: Schematic representing the memory update sequence (horizontal arrow), where t stands
for current computation time and t−1 and t−2 for previous times when values are held in memory.
Small arrows connecting memory positions represent the values accessed for the corresponding
function to perform computations in time t. The vertical arrow represents the order in which the
functions are executed for a single ray segment.

data size and the frequency in which the data is accessed. For instance, data regarding

environmental boundaries (surface and bottom) was initially put into the shared memory.

However, when representing 3D waveguides, the number of coordinates became too big to

fit in this type of memory and the data was thus moved to the global memory. On the other

hand, the sound speed data was kept in shared memory since it was frequently accessed

during ray trajectory calculations and the access takes place in an unpredictable order.

4.2.3 Parallel eigenray Simplex-based search

A general view of the parallel version of eigenray Simplex-based search is presented in Algo-

rithm 5. The proposed parallel algorithm is logically organized in a grid of b blocks, where

each block has p threads. Generally speaking, p has great impact in the GPU throughput

and needs to be calculated taking into account the GPU features and local memory utiliza-
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Table 4.2: TRACEO3D memory organization into a parallel implementation: nssp is the number
of points in the sound speed profile, nsur and nbot is the number of grid points defining the surface
and bottom, respectively; n stands for the number of rays, h represents the number of receivers
and m is the number of candidate regions.

Data Symbol or name Type Size

source information shared 12
environment parameters shared 14
sound speed profile shared 3 + nssp

array coordinates global 3 + 3× h
surface coordinates global 7 + nsur

bottom coordinates global 7 + nbot

candidate region corners reg global 3× n× h
eigenray values eig global 5×m× h
coherent acoustic pressure cpr global h
cpr all rays ncpr global n× h
ray coordinates register/local 3× 3
travel time τ register/local 3
complex amplitude A register/local 3
polarized vectors register/local 3× 3
P P register/local 3× 4
Q Q register/local 3× 4
general parameters constant 12

tion. Furthermore, p needs to be chosen as a multiple of the warp size of a given device, since

it helps coalescing and increases computing efficiency. Two kernels were used to implement

the eigenray search method. The first kernel (line 7) computes the candidate region corners,

whose total number of parallel threads corresponds to n. Algorithm 6 depicts the kernel

corners calculation, where parallel threads sequentially compute each corresponding ray and

the global thread identification index, which corresponds to ti, is calculated as shown in line

1. When a ray (θi, φj) intersects a receiver plane, the respective intersection coordinates,

represented as q, are stored into reg. The memory index is calculated taking advantage of

the coalescence access as shown in line 8. After the kernel execution a device synchronization

is performed, to ensure that all intersection coordinates were calculated before starting the
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eigenray search.

Algorithm 5 Parallel eigenray Simplex-based search

1: let φ = set of azimuth angles
2: let θ = set of elevation angles
3: let r = set of receivers
4: consider n = length (φ)× length (θ)
5: let p = number of threads per block
6: let b = n/p (number of blocks)
7: kernel � b, p� corners calculation
8: synchronize
9: consider m = (length (φ)− 1)× (length (θ)− 1)

10: let p = number of threads per block
11: let b = m/p (number of blocks)
12: kernel � b, p� eigenray search
13: select eigenrays
14: return eigenrays values

The second kernel (line 12 from Algorithm 5) performs the eigenray search using the

candidate region corners computed during the first kernel execution. For this configuration

the total amount of threads launched into the device corresponds to m. The details of the

second kernel are shown in Algorithm 7. Each thread is addressed to a search region in

order to perform triangle divisions that may enclose a given receiver. Otherwise, the thread

computation goes to the next receiver (if there is another one), or it is concluded. When

the Simplex algorithm finds an optimized pair of launching angles (θo, φo) it uses the pair to

compute ray coordinates, travel time and amplitude decay, and stores the information as an

eigenray. As in the first kernel, the memory index was calculated to perform a coalescence

access to the global memory, as shown in line 12. Because of the unpredictability in which

the receiver/region combination allows to find an eigenray, the size of eig (see Table 4.2) is

calculated with enough space in memory, so each thread can store directly the corresponding

eigenray data; this also allows to prevent a sequential thread memory access that might

produce unnecessary synchronization or race conditions. At the end, a sequential procedure
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is performed by the host to select valid eigenrays among those computed in parallel (line 13

from Algorithm 5).

Algorithm 6 Kernel corners calculation

1: let ti = block index × grid index + thread index;
2: let θi = ti mod length (θ)
3: let φj = ti/length (θ)
4: while ray (θi, φj) exists do
5: l = first receiver index
6: solve the Eikonal equations for each ray segment
7: if segment crossing vertical plane regarding rl then
8: reg[ti+ n× l] = q
9: increment l

10: end if
11: end while

Algorithm 7 Kernel eigenray search

1: let ti = block index × grid index + thread index;
2: let θi = ti mod (length (θ)− 1)
3: let φj = ti/ (length (θ)− 1)
4: for l := 1→ length (r) do
5: compute barycentric coordinates for (θi, φj), (θi+1, φj), (θi, φj+1), (θi+1, φj+1) combi-

nation
6: if encloses rl then
7: perform Simplex optimization to find (θo, φo)
8: if threshold is satisfied then
9: avoid duplicated eigenray

10: solve the Eikonal equations using (θo, φo)
11: solve the dynamic equations using (θo, φo)
12: eig[ti+m× l] = A, τ , (θo, φo)
13: end if
14: end if
15: end for

There are two possibilities to speedup the 3D eigenray search. The first one would

calculate ray coordinates in parallel, using only the kernel corners calculation, and would

then perform the search sequentially into the host, meaning that Algorithm 5 executes only

lines 1 to 8, and then jumps to line 15 of Algorithm 2. This approach will produce ray

coordinates, travel time and amplitude along the entire trajectory, and it is suitable for an
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array with a small number of receivers, or when the ray information is of interest. The second

option is to call all functions in parallel, using the two kernels presented in Algorithm 5. This

configuration delivers only eigenray values at the receiver position, and is well suited for large

arrays (which is of interest for matched field processing [61,62]), or when the ray trajectories

are not required. However, pairs of launching angles for each eigenray are provided allowing

the corresponding information to be recovered if needed.

4.2.4 Parallel field calculation

Algorithm 8 shows a summarized version of the parallel calculation of the pressure field.

Two kernels were used to implement the parallel code. The first kernel (line 8) calculates

the ray influence, where the number of threads launched into the device corresponds to

n. An overview of the kernel ray influence calculation is shown in Algorithm 9. Each

Algorithm 8 Parallel field calculation

1: load environmental data
2: let φ = set of azimuth angles
3: let θ = set of elevation angles
4: let r = set of receivers
5: consider n = length (φ)× length (θ)
6: let p = number of threads per block
7: let b = n/p (number of blocks)
8: kernel � b, p� ray influence calculation
9: synchronize

10: let p = number of threads per block
11: let b = h/p (number of blocks)
12: kernel � b, p� pressure by sensor reduction
13: return the coherent acoustic pressure

thread computes the propagation of a single ray and its contributions to the entire field; the

contributions are stored separately by ray. It should be noted that, as shown in Table 4.2,

the size of ncpr corresponds to n × h. After the kernel execution a device synchronization

is performed to ensure that the acoustic field calculation for all rays was concluded. Then,
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a second kernel is launched to perform a parallel reduction over the values in ncpr. Each

thread is addressed to a given receiver, and it adds sequentially the contribution of each ray

to the corresponding receiver, as described in Algorithm 10.

Algorithm 9 Kernel ray influence calculation

1: let ti = block index × grid index + thread index
2: let θi = ti mod length (θ)
3: let φj = ti/length (θ)
4: while ray (θi, φj) exists do
5: solve the Eikonal equations for segment k
6: compute the dynamic equations for segment k
7: compute the receiver grid g from r
8: for l := 1→ length (g) do
9: if rayk and gl are ⊥ then

10: ncpr[ti+m× l] = acoustic pressure regarding rayk at gl
11: end if
12: end for
13: end while

Algorithm 10 Kernel pressure by sensor reduction

1: let ti = block index × grid index + thread index;
2: consider n number of rays;
3: consider r as a thread local memory;
4: for k := 1→ n do
5: r = r + ncpr [k + (n× ti)];
6: end for;
7: cpr [ti] = r;
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Chapter 5

Validation

Synopsis: This chapter presents the validation results regarding model predictions of 3D

eigenray search and transmission loss. Details regarding the software/hardware platform are

presented in Section 5.1 addressing the enhanced parallel model for performance analysis.

The comparisons were carried out based on simulations and experimental data. The 3D

acoustic propagation data were acquired in 2007 during a laboratory-scale experiment, that

took place at the LMA-CNRS laboratory in Marseille. The experiment is described in Section

5.2, while the validation (together with a performance analysis) is discussed in Sections 5.3

and 5.4.

5.1 Implementation

The original version of TRACEO3D was written using the FORTRAN programing language

in double precision. Therefore, the first GPU parallel version of the model was developed

using the CUDA FORTRAN 17.1 Community Edition compiler, developed by PGI [63].

Preliminary calculations exhibited in fact unsatisfactory performance, which was later found

to be a result of particular restrictions regarding the device subprograms [64]. To overcome

this problem the CUDA C platform was chosen to encode the parallel portion (as discussed in

Section 4.2.1), meaning that the only interface kept in TRACEO3D was that of FORTRAN,

using its functions to read the inputs and write the outputs. The CUDA C and FORTRAN

63
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environments were connected using the ISO C Binding library [65], which is a standardized

way to generate procedures, derived-type declarations and global variables, which are inter-

operable with C. The parallel implementation was compiled in a single precision version

(numerical stability was already addressed in [45]); to properly clarify this issue comparisons

regarding precision will be shown between the parallel and the sequential version. The

single precision version allows the use of low-end devices or mobile equipments to provide

predictions with high performance. Additionally, the FORTRAN sequential implementation

was compiled with the optimization flag −O3, which was found to decrease the total runtime

in 50%. The hardware and software features that were addressed when comparing the

sequential and parallel model implementations of TRACEO3D are shown in Table 5.1.

Fifteen runs per test case were performed for every validation case. The maximum and

minimum values were then discarded, and the average run time was computed from the

remaining thirteen runs.

Table 5.1: Host/Device hardware and software features.

Feature Value Unit

Host - CPU Intel i7-3930k
Clock frequency 3500 MHz
Compiler gfortran 5.4.0 –
Optimization flag −O3 –
Device - GPU GeForce GTX 1070
CUDA capability 6.1 –
CUDA driver 9.1 –
Compiler nvcc 9.1.85 –
Optimization flag none –
Clock frequency 1683 MHz
Number of SM 15 –
Max threads per SM 2048 –
Warp size 32 –
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5.2 The tank experiment

The laboratory-scale experiment took place at the indoor tank of the Laboratoire de

Mécanique des Fluides et d’Acoustique – Centre National de la Recherche Scientifique

(LMA-CNRS) laboratory in Marseille. The experiment was carried out in 2007 in order to

collect 3D acoustic propagation data using a tilted bottom in a controlled environment. A

brief description of the experiment (which is described in great detail in [9,66]) is presented

here. The inner tank dimensions were 10 m long, 3 m wide and 1 m deep. The bottom was

filled with sand and a rake was used to produce a mild slope angle α ≈ 4.5◦ (see Fig.5.1).

The ASP-H data set (for horizontal measurements of across-slope propagation) is composed

of time signals, recorded at a fixed receiver depth denominated zr, and source/receiver

distances starting from Y = 0.1 m until Y = 5 m in increments of 0.005 m, providing a

sufficiently fine representation of the acoustic field in terms of range.

Figure 5.1: Indoor shallow-water tank of the LMA-CNRS laboratory of Marseille (from [9]).
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The transmitted signal was a five-cycle pulse with a Gaussian envelope and with 0.04 ms

duration. The signal presents a frequency spectrum with a main lobe centered at 150 kHz,

with 100 kHz bandwidth, and a secondary lobe above 200 kHz. The source and the receiver

were both aligned along the across-slope direction, as depicted in Fig 5.2. The receiver was

located at 10 mm depth from the surface, bottom depth at the source position was D(0)

= 48 mm. Three different source depths were considered, namely zs = 10 mm, 19 mm

and 26.9 mm, corresponding to data subsets referenced as ASP-H1, ASP-H2 and ASP-H3,

respectively. Bottom parameters corresponded to cp = 1700 m/s, ρ = 1.99 g/cm3 and αp =

0.5 dB/λ. Sound speed in the water was considered constant, and corresponded to 1488.2

m/s for ASP-H1 and 1488.7 m/s for ASP-H2 and ASP-H3.

Figure 5.2: Across-slope geometry: α corresponds to the bottom slope, D(0) is the bottom depth
at the source position, zs stands for the source depth (shown as a double circle), the horizontal
array is located along the Y axis.

For simulation purposes a scale factor of 1000 : 1 is required to properly account for the
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frequencies and lengths of the experimental configuration in the model. Thus, experimental

frequencies in kHz become model frequencies in Hz, and experimental lengths in mm become

model lengths in m. For instance, an experimental frequency of 150 kHz becomes a model

frequency of 150 Hz, and an experimental distance of 10 mm becomes a model distance of

10 m. Sound speed remains unchanged, as well as compressional and shear attenuations.

Validation and performance of predictions of three-dimensional eigenray search were

obtained through comparisons against an equivalent (flat) two-dimensional waveguide, and

against results presented in [9] and are discussed in Section 5.3; validation and performance of

predictions of transmission loss (hereafter TL) were obtained through comparisons against

an experimental TL curve from the ASP-H1 subset at frequency of 180.05 kHz, and are

discussed in Section 5.4.

5.3 Eigenray predictions

5.3.1 Validation results

Given the “mild” slope of the experimental setup described in the previous section a prelim-

inary set of comparisons was performed between the TRACEO3D and TRACEO models,

for a source frequency of 150 Hz. The horizontal array was idealized starting at 0.1 km until

5 km, in increments of 0.1 km. Given the lack of knowledge regarding the source spectrum

a synthetic five-cycle pulse with a Gaussian envelope was considered as the emitted signal.

The received signal was computed using the model output of amplitudes and delays for each

receiver range and depth. For Fourier synthesis only frequencies between 100 Hz and 200

Hz were considered, outside the interval the acoustic field was set to zero; the signal in the

time domain was calculated using an inverse Fourier transform.
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Table 5.2: Geometric parameters used in the numerical predictions for the ASP-H data set.

zs [m] zr[m] D(0)[m] slope[degrees]

ASP-H1 6.7 11.0 43.9 4.5
ASP-H2 15.0 11.0 43.9 4.5
ASP-H3 27.0 11.0 43.9 4.5

Preliminary TRACEO3D predictions (not shown here) failed to produce satisfactory

results using the parameters provided by the refinement discussed in [9]; therefore, alternative

geometries were considered. The configuration shown in Table 5.2 was found to best replicate

the results presented in Fig.3 from the reference. Three-dimensional predictions, together

with equivalent TRACEO calculations for a flat waveguide, are shown in Fig.5.3. Not only

the patterns of propagation between the 2D and 3D predictions are strikingly different, but

additional inspection of Fig.5.3(d-f) reveals that the set of parameters given by Table 5.2

allows TRACEO3D to predict the features visible in the experimental data, such as the

numbers and position of the modes, as well as mode shadow zones, intra-mode interference

and mode arrivals. The only exception was the ASP-H3 data set; it is believed that most

discrepancies are due to the proximity of the source to the bottom for the corresponding

geometry, for which beam displacement corrections can be relevant [1].

As suggested in [7, 8, 23] the 3D effects can be explained based on ray/mode analogies.

A mode can be considered as a standing wave in the vertical plane, and as a traveling wave

describing a hyperbolic path on the horizontal plane, with the ray initially propagating itself

upslope; at some point in the range the hyperbolic path crosses the across-slope direction; this

analogy is fundamental for the discussion that follows. Predictions of normalized amplitudes

for 2D and 3D calculations, regarding the ASP-H1 configuration, are shown in Fig.5.4. The
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3D results in the figure also reveal modes in the (θ, φ) plane, allowing to determine take-off

angles for different modes. The dashed lines approximately represent the edges of the shadow

zones for each mode, with each shadow zone being a complex function of different parameters,

such as frequency, wedge slope and bottom properties. The across-slope direction where the

source is aligned with the synthetic horizontal array is taken as φ = 0; this angle increases

towards the wedge apex.

The waveforms presented in Fig.5.3(a) correspond to 2D predictions for the ASP-H1

configuration, with a source depth of 6.7 m. At short ranges the predicted time signals seem

to merge together. Above a certain range they start to separate, increasing the relative time

delay between them as the receiver moves away from the source. As a receiver approaches

the range of 5 km late arrivals progressively lose more energy. Similar patterns can be seen

in the other two configurations (see Fig.5.3(b-c)). The ASP-H1 2D prediction is further

supported by Fig.5.4(a-e), in which the behavior of amplitudes over range exhibit a typical

distribution for a flat waveguide: amplitudes can be seen to decrease steadily over elevations

θ, while the number of eigenrays increase with range. Such steady decay can be explained

by taking into account that 2D eigenrays are confined exclusively to the vertical plane,

and thus often bounce off the bottom losing more and more energy as elevation and range

increase. A completely different pattern can be seen in Fig.5.3(d), in which the waveforms

were calculated accounting for full 3D effects. The figure shows an interesting pattern of

mode arrivals: above 2 km the modes M1 and M2 exhibit well resolved first and second

arrivals, and the time delay between them decreases as the receiver moves away from the

source; near 2 km the expected first and second arrivals from mode M3 merge together, and

the mode quickly vanishes due to the transition of M3 into a shadow zone; additionally, as
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Figure 5.3: Numerical simulations calculated with TRACEO (top) and TRACEO3D (bottom) for
the geometry presented in Table 5.2; four modes can be identified regarding 3D predictions for the
ASP-H1 configuration.
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range decreases below 2 km, modal refraction on the horizontal plane is such that the mode

M4 becomes well resolved in time, but exhibiting only a single arrival.

Similar modal patterns can be seen in Fig.5.3(e-f). All mentioned features can be ex-

plained in more detail in Fig.5.4(f-j), which shows that higher order modes are more in-

tensively refracted at short ranges due to their large initial elevation θ; such modes rapidly

bounce off the bottom at the critical angle and thus vanish (i.e. enter into a shadow zone) af-

ter being absorbed. Low order modes, on the other hand, are able to produce first and second

arrivals at larger ranges due to an interesting combination of propagation conditions: for a

single “small” elevation θ one can find a pair of azimuths φ1 and φ2 (with φ1 < φ2), in which

the ray with take-off angles (θ, φ2) propagates over shallower regions, but bounces more often

off the bottom than the ray propagating with angles (θ, φ1), and therefore leaks energy more

rapidly. Thus, the entire 3D set of eigenray, travel time and amplitude calculations allows

for the establishment of a remarkable connection between eigenray azimuth/elevation (θ, φ),

mode order n and receiver range r, with the parameters (θ, φ, n) increasing simultaneously

as r decreases. These general conclusions, based mostly on ray theory, coincide with the

discussion presented in [66]. Obviously there are some amplitude discrepancies between the

results shown in Fig.5.3(d-f) and those presented in Fig. 3 from [9]; the discrepancies were

in fact expected. During the calculations of arrival patterns different synthetic pulses were

considered, besides the Gaussian one; it was found that the structure of propagating modes

was highly sensitive to the particular choice of emitted signal. Such sensitivity can perhaps

explain the usage in [9] of the recorded transmitted signal, instead of the synthetic one, to

predict the arrival patterns. A final insight into the problem can be found in the comparison

of eigenrays, calculated with TRACEO for the flat case, and calculated with TRACEO3D
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Figure 5.4: Predictions of normalized amplitudes versus launching angles for the ASP-H1 con-
figuration over range: TRACEO (left); TRACEO3D (right). The corresponding regions where
modes can exist are indicated over the (θ, φ) plane. The dashed lines stand roughly for the critical
launching angle.
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for the wedge waveguide (see Fig.5.5). At a first glance there seems to be a perfect one-to-

one correspondence of eigenrays in terms of elevations θ, and thus one could expect both 2D

and 3D amplitudes to exhibit a similar correspondence. In fact that is not the case; in the

wedge waveguide most eigenrays propagating up then down slope are bouncing on regions

where bottom depth is smaller than the one of the 2D waveguide; as a consequence, instead

of spreading progressively over elevations as shown in Fig.5.4(b), the amplitudes of arrivals

become clustered between the limits of an elevation interval, as shown in Fig.5.4(g).
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Figure 5.5: Eigenray predictions for the ASP-H1 configuration: TRACEO, flat waveguide (top);
TRACEO3D, across-slope propagation on the wedge waveguide (bottom). Source and receiver
depth corresponds to 6.7 m and 11.0 m, respectively.

5.3.2 Performance analysis

To properly address the performance analysis of eigenray search an optimization step is

required, based on the device resources, looking to define the best parameters of kernel

execution configuration, together with the number of registers per thread, which influence

the SM occupancy rate. Thus, model runs using the parallel eigenray search algorithm for

the predictions of Fig.5.3(d) were performed with block sizes from 32 to 1024, and number
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of registers from 32 to 256, increasing each as a factor of the warp size and power of two,

respectively. Runtime results for such combinations are presented in Fig.5.6, and show

that the performance improves for high numbers of registers per thread, which means low

occupancy. In general, better results occurred for an occupancy rate lower than 25% (up to

128 registers per thread), and the best result was achieved with p = 64, using 255 registers

per thread which means 12.5% of occupancy.

Figure 5.6: Execution configuration results for different block sizes p and number of registers per
thread; vertical lines stands for the occupancy rate (%) in each SM. The best option (red dot)
corresponds to p = 64 with 255 registers per thread; areas with no data represent parameter
combinations that the device can not handle due to lack of resources.

One can therefore conclude that performance can increases as threads individually have

more registers available, even when less threads share the SM simultaneously. It is impor-

tant to remark that runtime interpolated results provided an important guide regarding the

configuration of parameters, despite the specific choice of p multiples of warp size. Addi-

tionally, it was also found that when using the occupancy-based launch configurator of the

application programming interface (API) [54], which heuristically calculates the block size,

runtime results increased around 70%; such unexpected result is believed to be due to the
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fact that the API strives mostly to achieve high occupancy, which not always guarantees the

highest performance in every case.

Table 5.3: Results of runtime and speedup ratio regarding predictions of the LMA CNRS H1 @
150 Hz in the time domain.

Model CPU CPU + GPU (1 kernel) CPU + GPU (2 kernels)

Runtime (s) 2287.8 238.22 64.48
Speedup ratio 1 9.6 35.47

The best results during the execution of the configuration optimization are presented in

Table 5.3 and Fig.5.7, where CPU corresponds to the sequential algorithm, while CPU +

GPU (1 kernel) and CPU + GPU (2 kernels) correspond to the two different parallel imple-

mentations, discussed in Section 4.2.3. The results show that the parallel implementation

was over 35 times faster than the sequential one, reducing the runtime from 2,287.8 s to

64.48 s. The mean square error (MSE) between the sequential and parallel implementations

is presented in Fig.5.8. One can see that the difference between the values is lower than

10−4. The parallel implementation only achieves such accuracy by using IEEE 754 compat-

ible mathematical functions [67], and compiling without the flag –fast-math; it is believed

that this flag enables performance optimization at the cost of introducing some numerical in-

accuracies. Comparisons using the proximity method are not presented because the method

failed to provide 3D predictions.

5.4 Numerical predictions of transmission loss

5.4.1 Comparisons with experimental data

The set of waveguide parameters provided by the tank scale experiment was also used to

calculate predictions in the frequency domain. TL results are presented in Fig.5.9, where
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(a) (b)

Figure 5.7: (a) Runtime and (b) speedup of model predictions using the 3D eigenray search
algorithm for the tank scale experiment.

Figure 5.8: MSE of TRACEO3D predictions against parallel implementations.

Bisection means the original algorithm that the sequential version of TRACEO3D uses to

calculate ray influence, Grid stands for the sequential method presented in Section 3.2, and

GPU Grid corresponds to the parallel implementation. In general, model predictions were
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able to follow accurately the experimental curve over the full across-slope range. Neverthe-

less, a slight shift in phase can be observed at 2 Km and 2.4 Km in all simulation predictions.

Besides, minor discrepancies can be noted between the predictions at the far field.

Figure 5.9: Comparisons with the experimental data for LMA CNRS H1 @ 180.05 Hz.

5.4.2 Performance analysis

As previously, the algorithm of parallel field calculation required an optimization step in

order to define the best parameters of the kernel execution configuration and the number

of registers per thread. Thus, model runs generating the predictions presented in Fig.5.9

were performed with block sizes from 32 to 1024, and number of registers from 32 to 256,

increasing as a factor of the warp size and power of two, respectively. Runtime results for

such combinations are presented in Fig.5.10, which shows that the performance improves

for number of registers per thread between 64 and 128, which means the occupancy rate is

between 50% and 25%. The best result was achieved with p = 64 and using 64 registers per
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thread, which means 50% of occupancy.

Figure 5.10: Execution configuration results for different block sizes p and number of registers
per thread; vertical lines stands for the occupancy rate (%) in each SM. The best option (red
dot) corresponds to p = 64, with 64 registers per thread; areas with no data represent parameter
combinations that the device can not handle due to lack of resources.

Again, as discussed in Section 5.3.2, runtime interpolated results are valid only for values

of p multiples of warp size. The occupancy-based API delivered an occupancy of 100% with

p = 256 and 32 registers per thread, which represented an increase of 90% in the runtime.

Table 5.4: Results of runtime and speedup ratio for TL predictions.

Model CPU (Bisection) CPU (Grid) CPU + GPU (Grid)

Runtime (s) 542.3 191.16 3.18
Speedup ratio 1 2.83 60.11

The best result found during the execution configuration optimization is presented on

both Table 5.4 and Fig.5.11. Different from the comparison shown in Section 5.3.2, speedup

rates are presented separately, comparing the improvement regarding the numerical enhance-

ment and the improvement achieved with the parallel GPU implementation. Thus, the

speedup ratio of CPU (Grid) is calculated dividing the Bisection runtime by the Grid run-
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time, and for the CPU + GPU (Grid) dividing the Grid runtime by the GPU runtime. It is

important to remark that the CPU (Grid) was able to decrease the runtime in 2.83 times,

while the parallel GPU implementation achieved 60 times of performance, which indeed rep-

resents a outstanding improvement. Combining both speedups the total improvement was

about 170 times (2.83 × 60.11), reducing the runtime from 542.3 s to 3.18 s. The mean

square error (MSE) between the model implementations and the experimental data is shown

in Fig.5.12. One can see that the difference among the implementations are of the same order

of magnitude. As already indicated in Section 5.3.2 the GPU achieves such accuracy using

IEEE 754 compatible mathematical functions, and compiling without the flag –fast-math.

(a) (b)

Figure 5.11: (a) Runtime and (b) speedup for TL predictions of the tank scale experiment.
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Figure 5.12: MSE of TRACEO3D predictions against experimental data (LMA CNRS H1 @ 180.05
Hz) using three different approaches: Bisection, Grid and GPU Grid.

5.4.3 Comparisons with an analytical solution

The analytical solution for sound propagation in a 3D penetrable wedge discussed in [10]

represented also an important reference for additional model predictions [11]. The solution

is inspired by the image method presented in [68], in which the contribution of each image is

represented in terms of a Bessel function expansion inside a certain improper integral. For

small wedge angles acoustic propagation can be considered adiabatic; in the case of constant

sound speed the corresponding expression for the acoustic field can be written compactly

using the wavenumbers of the Pekeris problem, calculated at the position of the acoustic

source. Again a geometry of across-slope wedge propagation was considered, similar to the

one shown in Fig.5.2, but considering a wedge angle α = 0.5◦. Waveguide parameters and

corresponding values are summarized in Table 5.5; the parameters for the non-adiabatic case

correspond to the well-known 3D ASA wedge benchmark [69]. A rectangular array (RA)

was considered for predictions; the RA was aligned along the Y axis, with X = 0, and was

composed of 44 receivers in depth from zr = 1m until D (0)− 1, and 501 receivers in range,

starting from Y = 35m until Y = 5000m, providing a mesh of 44 × 501 receivers equally

spaced in range and depth; source frequency corresponded to 122 Hz. The results are shown
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in Fig.5.13 and show that the predictions replicate the elaborate pattern of interference of

the analytical solution as range increases. Some discrepancies can be seen between transition

areas, but they were in fact expected because the low value of frequency is on the edge of

validity of ray theory. Even so, the main goal of the comparisons was to demonstrate the

ability of the finite beam width strategy to calculate TL fields preserving the accuracy, while

decreasing significantly runtime. Additionally, model predictions can be provided for any

type of waveguide, while the analytical solution is valid only in wedges with small slopes.

Table 5.5: Wedge parameters and corresponding notation.

Parameter Symbol RA Units

Bottom slope α 0.5 degrees
Source frequency f 122 Hz
Depth at source position D (0) 44.4 m
Source depth zs 8.3 m
Maximal range R 5000 m
Water sound speed cw 1500 m/s
Bottom compressional speed cb 2000 m/s
Bottom compressional density ρb 2 g/cm3

Bottom compressional attenuation αb 0.5 dB

5.4.4 Performance analysis

Since the tunning procedure was already achieved for the kernel of parallel field calculation

(as described in Sec. 5.4.2), the same execution configuration parameters were used to

generate the predictions of Fig.5.13. The performance analysis regarding such calculations

is presented in both Table 5.6 and Fig.5.15, which shows that the CPU (Grid) was able to

decrease the runtime in 32.76 times, while the parallel GPU implementation performed 21

times better. Note that the speedup ratio was calculated as explained in Section 5.4.2.

Combining both speedups the total improvement was about 692 times (32.76 × 21.13),
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reducing the runtime from 18,279.1 s to 26.40 s, which indeed represents a remarkable

improvement. The difference between these results and the ones presented in Section 5.4.2

can be explained by keeping in mind that the receiver grid strategy becomes more efficient

as the number of sensors increases, while the opposite happens for the bisection algorithm.

Besides, memory requirements for these computations are too large to fit into the GPU at

once. Thus, the calculation was divided into a serial loop for calling kernels and execute

memory transfers between the host and the device, which decreases the GPU performance.

The MSE between the sequential and parallel model implementations and the experimental

data is shown in Fig.5.12. One can see that the differences between the implementations are

almost of the same order of magnitude, except for the Grid result, in which the divergence

was about 3 dB. As discussed in Section 5.3.2 the GPU achieved such accuracy using IEEE

754 compatible mathematical functions, and compiling again without the flag –fast-math.

Table 5.6: Runtime and speedup ratio regarding the calculations of TRACEO3D predictions of
wedge problem @ 122 Hz using different methods.

Model Analytical Solution CPU (Bisection) CPU (Grid) CPU + GPU (Grid)

Runtime (s) 2.54 18,279.1 557.87 26.40
Speedup ratio – 1 32.76 21.13
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(a) Analytic Solution

(b) CPU Bisection

(c) CPU Grid

(d) GPU Grid

Figure 5.13: Adiabatic wedge: TL results.
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Figure 5.14: MSE of TRACEO3D predictions of the analytic solution of the wedge problem using
three different approaches: bisection, Grid and GPU Grid.

(a) Runtime (b) Speedup

Figure 5.15: Runtime and speedup for TL model predictions of the wedge problem.



Chapter 6

Conclusions

Synopsis: This chapter presents an overview of the research developed within the frame-

work of the thesis, including published results, and suggestions for future work. Concluding

remarks are presented in Section 6.1, while publications are listed in Section 6.2; Section 6.3

discusses future directions of research.

6.1 Concluding remarks

The theoretical background and numerical issues of the TRACEO3D Gaussian beam model

were discussed in detail in Chapter 2 in order to establish a firm basis for additional issues

regarding model enhancements, parallelization and validation. Such discussion allowed to

conclude that the main task of TRACEO3D is to keep the calculation of ray trajectories

as accurate as possible, to which end a high order integrator was used; that task was con-

sidered an immutable clause for further optimization and parallelization. In the original

version of TRACEO3D the eigenray search was based on the method of proximity (see Sec-

tion 3.1), which was found to be computationally demanding and inefficient. Additionally,

calculations of ray influence were found to be accurate, but time consuming, with runtime

increasing drastically as range, number of rays and number of sensor increased (see Section

85
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2.3.5). Both issues were analyzed carefully before the development of the parallel algo-

rithms (in which optimization strives mainly to deal with data bottlenecks) by developing

new methods that parallel computing was not able to overcome. In this context the Sim-

plex method to find 3D eigenrays was implemented in TRACEO3D, and the corresponding

validation was carried out against predictions from the TRACEO 2D model, and against

results from a tank scale experiment. The 3D predictions exhibited a remarkable similarity

with most experimental features, replicating mode shadow zones, intra-mode interference,

and mode arrivals; important connections in the ray/mode equivalence framework were no-

ticed. TRACEO predictions, unsurprisingly, were found to be valid only close to the source.

Simplex-based eigenray search allows an efficient and accurate calculation of 3D eigenrays by

determining values of the corresponding take-off angles, which lead to the shooting of rays

passing as close as desired to the position of a given receiver after multiple (and complex)

boundary reflections. Minor discrepancies found in the comparisons against experimental

results are believed to be related to beam displacement and/or signal processing issues, and

to ray theory being applied on the edge of its validity. Yet such discrepancies are completely

independent of the proposed method of eigenray search, which was found to be extremely

efficient and robust.

The calculation of ray influence was addressed using a receiver grid, i.e. a subset of adja-

cent receivers within the array, with the goal of decreasing runtime while keeping accuracy.

The validation results were performed using experimental data collected from a tank scale

experiment, and against simulated results from an analytical solution for sound propagation

in a 3D penetrable wedge. The method was able to achieve the same precision as the original

(and much slower) version of TRACEO3D using bisection. Besides, the method was found
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to be computationally efficient even when dealing with arrays containing a large number of

sensors, although some optimization was required in order to define the proper borders of

ray influence given by the finite beam width.

After the enhancement of numerical issues parallel algorithms were developed considering

a GPU architecture, that could take advantage of the inherent ray tracing parallelism and

the high workload of 3D propagation, keeping in mind that the memory access pattern was

a serious drawback to consider. The parallelism was based on the natural ray tracing organi-

zation, addressing each pair of launching angles (θ, φ) as a single parallel thread. A detailed

description of the parallel algorithms for 3D eigenrays search and ray influence calculation

was presented in Chapter 4. Besides, a device memory organization was also proposed,

which allowed for the improvement of performance in a non-classical fashion by requiring

low occupancy and high register use per thread. For each validation result a performance

analysis was carried out looking to optimize the execution configuration parameters and

number of registers per thread; this optimization procedure delivered the double of perfor-

mance at the final speedup. Considering the 3D eigenray search, the parallel implementation

was 35 times faster than the sequential version, reducing runtime from 2,287.8 s to 64.48

s. Performance comparisons with the numerical enhancement for eigenray calculations were

not shown because the proximity method failed to provide 3D predictions. Regarding TL

calculations and comparisons with experimental data the enhanced implementation was 2.83

times faster than the bisection method, while the parallel implementation was 60.11 times

faster than the sequential one. Combining both speedups the improvement was around 170

times faster (2.83 × 60.11), reducing the runtime from 542.3 s to 3.18 s. Considering the

comparison with the analytical solution the enhanced implementation was 32.76 times faster
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than the bisection method, while the parallel implementation was 21.13 times faster than

the sequential one. Combining both speedups the improvement was around 692 times faster

(32.76× 21.13), reducing the runtime from 18,279.1 s to 26.40 s. In general, parallelization

does not degrade the accuracy as long as compatible IEEE 754 mathematical functions are

used, and as long as one avoids using CUDA compilation flags for optimization. Despite

the significant improvements in speedup it can be not guaranteed that the adopted parallel

algorithms exhausted all solutions of parallelization. It is believed that additional combina-

tions of thread granularities and memory organization can have the potential to achieve a

greater performance, but the exploration of such cases was beyond the original goal of this

work. The speedup issue is certainly related to the requirements needed to use a 3D model,

a topic which is currently under intense discussion. This thesis stands on the firm conviction

that the contributions and remarkable reduction in runtime achieved will certainly help to

overcome some of the reserves in employing a 3D model for predictions of acoustic fields.

6.2 Contributions

The contributions of this work can be summarized as follows :

1. Development of a solution for the calculation of three-dimensional (3D) eigenrays based

on Simplex optimization. It was found that the search strategy based on Simplex

optimization was able to calculate 3D eigenrays efficiently and accurately for a wedge

waveguide, thus providing predictions of arrival patterns along cross-slope range, which

replicated elaborate patterns of mode shadow zones, intra-mode interference, and mode

arrivals.

2. Development of an strategy for ray influence calculations, by relying on a grid of
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receivers, that were updated along a ray trajectory. The method was found to be

computationally efficient when dealing with arrays with a large number of receivers.

3. Development of GPU-based parallel algorithms for the TRACEO3D model with val-

idation for 3D eigenray search and ray influence, showing significant improvements

between the sequential and parallelized versions of the model. The parallel code will

be made available to allow other researchers to carry out 3D calculations, or to be used

as a reference for code parallelization.

All contributions were presented progressively in the following publications [22,24,50,59,

70,71]:

1. R.M. Calazan and O.C. Rodŕıguez, “TRACEO3D Ray Tracing Model and its Parallel

Implementation”, Poster in Ciência 2016, Lisboa, Portugal, July 2016.

2. R.M. Calazan and O.C. Rodŕıguez, “TRACEO3D ray tracing model for underwater

noise predictions”, in Doctoral Conference on Computing, Electrical and Industrial

Systems, pp. 183–190, Springer, 2017.

3. R.M. Calazan and O.C. Rodŕıguez, and N. Nedjah, “Parallel ray tracing for underwater

acoustic predictions”, in International Conference on Computational Science and Its

Applications, pp. 43–55, Springer, 2017.

4. R.M. Calazan and O.C. Rodŕıguez, “Three-dimensional eigenray search for vertical

line array”, in UACE2017 - 4th Underwater Acoustics Conference and Exhibition, pp.

941–946, UACE Proceedings, 2017.

5. R.M. Calazan and O.C. Rodŕıguez, “Simplex based three-dimensional eigenray search
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for underwater predictions”, The Journal of the Acoustical Society of America, vol.

143, no. 4, pp. 2059–2065, 2018.

6. R.M. Calazan and O.C. Rodŕıguez, “GPU-Based 3D eigenrays search for underwater

acoustics predictions”, Poster in Ciência 2018, Lisboa, Portugal, July 2018.

6.3 Future work

Future directions of research can be described as follows:

• Further validation looking to assess the model’s performance and accuracy, through

the calculation of 3D eigenrays and ray influence in typical ocean environments with

complex bathymetries like sea canyons, or complex sound speed fields like the one

produced by an upwelling regime. It is believed that such complex waveguide features

will require the development of smoothing criteria in order to handle eventual erratic

behaviors of propagating rays.

• Incorporation of additional theoretical methods into the TRACEO3D model in order

to improve its accuracy at low frequencies.

• Addition of code to allow TRACEO3D to read tabulated reflection coefficients.

• Tests with different thread granularities, requiring new memory organization and ex-

ecution configuration parameters; within this context the following issues are to be

considered:

– Take advantage, when possible, of GPU hardware filtering for 2D/3D interpola-

tion using texture memory for boundary intersections and sound speed calcula-
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tions.

– Improve the copy host - device using asynchronous transfers during the kernel

computation; this improvement can be important for calculations when the device

memory is not sufficient to store the data, as discussed for the RA TL results (see

Section 5.4.4).

• Improve the OpenMPI version to calculate 3D eigenrays exploiting multiple CPU cores

in super computers (clusters, for instance) and scaling the parallel model in multiple

GPU nodes.

• Unlike the sequential version of TRACEO3D the parallelized version of the model lacks

the code to support calculations of particle velocity. Thus, a code update to fix this

issue can be expected in the future.
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Appendix A

Installation

A.1 Pre-installation tasks

The parallel version was developed based on the heterogeneous programing CPU + GPU

considering the CUDA platform. Thus, gfortran GNU and nvcc CUDA® compilers are

needed. CUDA is a parallel computing platform and programming model developed by

NVIDIA. Users have to follow the NVIDIA CUDA Installation Guide procedures to install

the CUDA toolkit [72]. The validation tests were performed using an Ubuntu 16.04 LTS

operation system.

The input file generates a structure with the environmental information and model

configuration. In the same file, the model is called to perform calculations. The input

file have to be loaded using MATLAB® or Python. More details about the input file are

presented in Appendix B.

A.2 Model installation

Before running the install script on the command line the user should review the corre-

spondent definitions and adapt them to his local machine. After a successful compilation

the user can place the resulting binary (gputraceo3d.exe) in a folder, where the system
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can find it.

To install the model open a command line and execute the install script

$ . / i n s t a l l . sh

This script creates the objects, the execution file and clean the objects code; specific

details can be found inside the script file.

A.3 Compiling options

The following list shows the definitions used in the installation file:

CC = GPU compi le r
FC = FORTRAN compi le r
CFLAGS = CUDA c a p a b i l i t y
SDFLAGS = l i b r a r y f l a g s l o c a t i o n
EXECUTABLE = executab l e f i l e name
CMODULES = cuda model source f i l e s
COBJECTS = cuda o b j e c t s
SOURCES = FORTRAN model source f i l e s
PSOURCES = FORTRAN model source f i l e s for br idge pourposes

A.4 Compilation file example

A particular makefile is shown below:

# MAKEFILE CPU/GPU TRACEO3D
# by Rogerio Calazan and Orlando Rodriguez
# Faro−PT, Sat Ju l 7 18 :21 :27 WEST 2018

# ∗∗∗∗∗ COMPILER ∗∗∗∗∗
CC = nvcc
FC = g f o r t r a n

# ∗∗∗∗∗ COMPILER FLAGS ∗∗∗∗∗
CFLAGS = −−gpu−a r c h i t e c t u r e=sm 50
SDFLAGS = −L / usr / local /cuda/ l i b 6 4 −I / usr / local /cuda/ inc lude / thrus t −l cuda r t −l cuda

# ∗∗∗∗∗ EXEC NAME ∗∗∗∗∗
EXECUTABLE = gputraceo3d . exe
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# ∗∗∗∗∗∗ GPU TRACEO3D F i l e s ∗∗∗∗∗∗
CMODULES = cudabridge . cu \

k e r n e l s . cu \
f d e v i c e s . cu \

COBJECTS = cudabridge . o \
k e r n e l s . o \

f d e v i c e s . o \

SOURCES = baryco2d . for \
baryco3d . for \

brcket . for \
bdryr . for \

b l i i 1 d . for \
bcui1d . for \
b l i i 2 d . for \
bcui2d . for \
b l i i 3 d . for \
bcui3d . for \
bpai2d . for \
c a l r c o . for \
c a l e i s . for \
cnvnts . for \
cramer . for \

c r o s s . for \
c s v a l s . for \
cva l s 1 . for \
cva l s 2 . for \
cva l s 3 . for \
dtelcm . for \

. . .

. . .

. . .
r k f45 . for \
sbdyi . for \

s i2p2d . for \
s i3p2d . for \
s i4p2d . for \

s o r t i . for \
r2x2 . for \

rayb i . for \
r e f l c t . for \
s e i k e q . for \
sdyneq . for \
thorpe . for \
c a l c p f . for \

g p r e s s f . for \
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bracketRece ive r . for \
invmat . for \

sdyneqPress . for \
c a l c p f i i . for \

g p r e s s f i i . for \

PSOURCES = c a l e i s g p u . for \
ca l e sgpu . for \

ca lcprgpu . for \
calgpu . for \

s implex . for \
s e ikeqSegPlanInt . for \

i n t s e g p l a n e . for \

a l l p : modc execp i n s t a l l c l ean

modc : $ (CMODULES)
$ (CC) $ (CFLAGS) −−device−c $ (CMODULES) −−re source−usage
$ (CC) $ (CFLAGS) −−device−l i n k $ (COBJECTS) −−output− f i l e l i n k . o
−−re source−usage

execp : $ (OBJECTS)
$ (FC) −fbounds−check −o $ (EXECUTABLE GPU) traceo3d . for
$ (SOURCES) $ (PSOURCES) $ (COBJECTS) l i n k . o $ (SDFLAGS) −O3

execs : $ (OBJECTS)
$ (FC) −o $ (EXECUTABLE) t raceo3ds . for $ (SOURCES) −O3

i n s t a l l :
mv ∗ . exe ˜/ bin

c l ean :
rm ∗ . o
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Input file structure

B.1 Running options

The general structure of the input file (hereafter called INFIL) can be better understood

if one thinks of it as composed of blocks; each block describes a particular element of the

waveguide, from top to bottom. In order to provide a friendly view of the INFIL the blocks

are separated with a long line, which is ignored by the model. The structure of the INFIL

is as follows:

T i t l e
Source Block
Alt imetry Block
Sound Speed Block
Objects Block
Bathymetry Block
Array Block
Output Block

The Title is a character string, which is written in the LOGFIL (the file with the *.log

extension). The structure of each block is as follows:

Source Block:

source data . ds ray step
source data . p o s i t i o n source coo rd ina t e s
source data . f source f r equency
source data . the ta s e l e v a t i o n ang l e s
source data . phi azimuth ang l e s
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source data . nthetas number o f e l e v a t i o n ang l e s
source data . nphi number o f azimuth ang l e s
source data . xbox range box in x a x i s
source data . ybox range box in y a x i s

Altimetry Block:

s u r f a c e d a t a . type s u r f a c e type
s u r f a c e d a t a . ptype s u r f a c e p r o p e r t i e s
s u r f a c e d a t a . i t ype s u r f a c e i n t e r p o l a t i o n
s u r f a c e d a t a . x s u r f a c e coo rd ina t e s
s u r f a c e d a t a . y s u r f a c e coo rd ina t e s
s u r f a c e d a t a . z s u r f a c e coo rd ina t e s
s u r f a c e d a t a . un i t s a t t enuat ion un i t s
s u r f a c e d a t a . p r o p e r t i e s s u r f a c e p r o p e r t i e s

surface type can be one of the following characters:

’A’ absorbent surface
’E’ elastic surface
’R’ rigid surface
’V’ vacuum over surface

surface properties can be one of the following characters:

’H’ homogeneous surface
’N’ non-homogeneous surface

interpolation type can be one of the following characters:

’FL’ flat surface
’2P’ piecewise linear interpolation

units can be one of the following characters:
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’F’ dB/kHz
’M’ db/meter
’N’ dB/neper
’Q’ Q factor
’W’ db/λ

Sound Speed Block:

s sp data . ctype type o f sound speed d i s t r i b u t i o n
s sp data . x po int coo rd ina t e s
s sp data . y po int coo rd ina t e s
s sp data . z po int coo rd ina t e s
s sp data . c sound speed data

For a sound speed field both range and depth derivatives are calculated using a bi-

dimensional barycentric parabolic interpolator, on the grid of points. For a sound speed

profile all range derivatives are zero; depth derivatives are calculated depending on the value

of type, which can be one of the following strings:

’ISOV’ isovelocity profile
’TABL’ tabulated profile

When specifying the sound speed profile or field it is highly recommended to use an

evenly spaced grid, avoiding vertical segments where a smooth variation is followed by an

isovelocity layer. Including such segments introduce unrealistic artifacts, which result from

the calculation of inaccurate sound speed gradients.

Object Block:

The 3D object capability is under development, but the following line is mandatory:

ob j e c t da ta . nob j e c t s = 0 ;
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Bathymetry Block:

The structure of this block is identical to the structure of the altimetry block.

Array Block:

output data . x s e n s o r s in x coord ina te
output data . y s e n s o r s in y coord ina te
output data . z s e n s o r s in z coo rd ina te
output data . nxa number o f s e n s o r s a long x
output data . nya number o f s e n s o r s a long y
output data . nza number o f s e n s o r s a long z

Array geometry definition:

• single receiver: x,y,z with one element;

• vertical line array: x and y with one element; z with depth coordinates;

• horizontal line array in x: y and z with one element; x with range coordinates;

• horizontal line array in y: x and z with one element; y with range coordinates;

• vertical plane array in x: y with one element; x with range coordinates; z with

depth coordinates;

• vertical plane array in y: x with one element; y with range coordinates; z with

depth coordinates.

Output Block:

output data . ctype output type
output data . miss e i genray parameter

The option outype defines the type of output and can correspond to one of the following

strings:
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’CPR’ output Coherent acoustic PRessure
’EIR’ output Eigenrays, parallel regions
’EIS’ output Eigenrays, parallel regions and Simplex

The miss parameter is used as a threshold to find the 3D eigenrays.

B.2 Model output

After creating the input file (for instance, munk.in) the user can run the model with the

command

$ gputraceo3d . exe munk

according to the desired output the model will create one of the following Matlab mat files:

1. cpr.mat: coherent acoustic pressure; and

2. eig.mat: eigenray information



Appendix C

Example

A example using the environmental and geometry information from the tank scaled experi-

ment (see Section 5.2) and considering a source-hydrophone range of 2 km is provided here

to illustrate the model utilization. The plots shown in Figs C.1 and C.2 are produced by

running the model with the output option ’EIR’ and using the follow command under the

Matlab prompt

$tank gputraceo3d

All the files mentioned in these appendix are distributed together with the model code.
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(a)

(b)

Figure C.1: Eigenray predictions for TRACEO3D, across-slope propagation on the wedge waveg-
uide; (a) horizontal plane and (b) perspective view. Source-receiver ranger corresponds to 2 km.

Figure C.2: Predictions of normalized amplitudes versus launching angles for a receiver at 2km.
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