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Abstract

High performance underwater acoustic models are of great importance for

enabling real-time acoustic source tracking, geoacoustic inversion, environ-

mental monitoring and high-frequency underwater communications. Given

the parallelizable nature of raytracing, in general, and of the ray superposi-

tion algorithm in particular, use of multiple computing units for the devel-

opment of real-time efficient applications based on ray tracing is becoming

of extreme importance.

Alongside the development of multi-core CPUs in recent years, graphics

processing units (or GPUs) have gained importance in scientific computing.

Desktop GPUs provide vast amounts of processing power at reasonable costs;

while their usage may require extensive re-engineering of existing software,

they represent an attractive possibility for high performance low-cost under-

water acoustic modeling.

OpenCL is a programming standard designed for writing multithreaded

code for a variety of different devices, including CPUs and GPUs. It consists

of extensions to the C language as well as an API and device driver extensions.

The cTraceo raytracing model was developed at SiPLAB, University of

the Algarve1, in order to predict acoustic pressure and particle velocity in

complex waveguides while incorporating backscattering. Intensive testing

through comparisons with other models and experimental data has by now

shown that cTraceo does indeed produce accurate acoustic field predictions[1,

2, 3].

This work addresses the adaptation of the cTraceo model from a single

threaded CPU implementation to an OpenCL parallelized application de-

signed for GPUs. Since the GPU performance of double precision arithmetic

was found to be disappointing when compared to single precision, an effort

was made to make use of single precision arithmetic in the parallel version

of cTraceo. It was found that, for all practical purposes, results are identical

to those of the previous implementation, with the advantage of significantly

reduced processing times. Performance gains between one and two orders of

magnitude were obtained, depending on the configuration of the waveguide

and number of traced rays.

Keywords: underwater acoustics, acoustic propagation modeling, high-

performance computing, OpenCL, parallel computing.

1http://www.siplab.fct.ualg.pt
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Resumo

Os modelos de propagação de alto desempenho para acústica submarina

são de grande importância para possibilitar o seguimento de fontes acústicas

em tempo real, inversão geoacústica, monitorização ambiental, e o desenvolvi-

mento de sistemas de comunicação acústica submarina a alta frequência.

A par do aumento de popularidade dos CPUs de múltiplos núcleos com-

putacionais durante os últimos anos, os processadores gráficos (GPUs) têm

vindo a ganhar importância na computação cient́ıfica. Os GPUs disponibi-

lizam vastos recursos computacionais robustos a custos razoáveis, e embora

o seu uso possa requerer alterações extensas ao código existente, representam

uma alternativa aliciante para avançar a modelação acústica submarina de

alto desempenho a baixo custo.

O OpenCL é um framework que permite a escrita de aplicações pa-

ralelizadas em sistemas heterogéneos. OpenCL é a abreviatura de “Open

Computing Language” e é um standard relativamente recente, criado para

facilitar a programação de sistemas que contenham uma combinação de CPUs

multicore, GPUs e outros tipos de processadores. Tem como objectivo permi-

tir escrever um mesmo programa capaz de utilizar os recursos computacionais

de dispositivos como smartphones, PCs ou mesmo supercomputadores, bas-

tando para tal que esteja presente no sistema uma instalação de OpenCL.

Os CPUs foram desenvolvidos para alternar rapidamente entre tarefas

distintas, e como tal uma grande parte das suas estruturas é dedicada a

tarefas administrativas, tais como gerir privilégios de processos, memória

virtual, mudanças de contexto ou previsão de acções futuras (como branch

prediction e prefetching). Para além destas estruturas administrativas, um

CPU também contém uma ou mais Unidades Lógicas e Aritméticas (em

Inglês, Arithmetic Logic Unit –ALU), nas quais são efectuadas as operações

matemáticas que representam a maior parte do tempo de cálculo em algo-

ritmos de aplicações cientificas. Os CPUs modernos têm pequenos números

de núcleos (cores) complexos com uma frequência de relógio de alguns GHz,

adequados a tarefas generalistas. Os GPUs por sua vez têm grandes números

de núcleos simples práticamente sem lógica de controlo, sendo constitúıdos

quase só por ALUs, e existindo actualmente no mercado GPUs com 4096

núcleos com frequências a rondar 1 GHz. Devido à simplificação extrema

da lógica de controlo, este elevado número de núcleos está sujeito a algu-

mas limitações. Em OpenCL, estes núcleos estão lógicamente associados em
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grupos, geralmente de 16, 32 ou 64 núcleos. Estes grupos são designados de

compute units e são a menor unidade lógica à qual o programador pode ex-

plicitamente atribuir tarefas. Dado que todos os núcleos pertencentes a uma

compute unit partilham a mesma lógica de controlo, têm necessariamente

de executar a mesma instrução em simultâneo. Isto implica que a utilização

de um GPU é eficiente apenas se o algoritmo paralelo realizar simultanea-

mente a mesma operação sobre um grande número de valores de entrada.

Felizmente, este é geralmente o caso em aplicações cient́ıficas.

Do ponto de vista de uma aplicação, um sistema com suporte OpenCL é

constitúıdo por um CPU a agir como anfitrião (host) e um ou mais disposi-

tivos de computação (compute devices). O anfitrião é responsável por gerir a

memória, as operações de entrada e sáıda, bem como controlar a execução de

código nos dispositivos de computação. É nestes dispositivos que é realizado

o trabalho da aplicação paralelizada, sendo que o código neles executado é

designado por kernel.

O TRACEO é um modelo de propagação baseado no traçamento de feixes

Gaussianos, desenvolvido no Laboratório de Processamento de Sinal da Uni-

versidade do Algarve para modelação de pressão acústica e velocidade de

part́ıculas em guias de onda complexos, incluindo efeitos de retro-propagação.

O modelo TRACEO foi desenvolvido na linguagem Fortran 77, tendo como

objectivo principal a precisão das previsões acústicas.

Dada a natureza paralelizável do traçamento de raios, focou-se o desen-

volvimento de uma implementação de alto desempenho do modelo TRACEO

adaptado a GPUs, recorrendo ao framework OpenCL.

Num primeiro passo, o modelo de propagação TRACEO foi reimplemen-

tado em linguagem C, resultando no modelo cTraceo. O cTraceo destaca-se

por desempenho e usabilidade melhoradas, tendo o código sido disponibi-

lizado em open-source2. Deste trabalho resultaram três publicações cientifi-

cas, inclúıdas no Apêndice C.

Devido ao facto dos GPUs proporcionarem muito melhor desempenho

de virgula flutuante em precisão simples do que em precisão dupla, e tendo

em conta que tanto o TRACEO como o cTraceo foram implementados em

2http://eynuel.github.io/cTraceo
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precisão dupla, implementou-se seguidamente uma versão de precisão simples

do cTraceo. Após verificar que a qualidade dos resultados do modelo gerados

em precisão simples eram comparáveis aos resultados gerados em precisão

dupla, constatou-se também que esta alteração resultou num aumento de

desempenho a rondar os 30%.

Seguidamente reimplemtentou-se o modelo de propagação em OpenCL,

dividindo a aplicação em duas componentes. Uma componente administra-

tiva (host) que trata da leitura de ficheiros de entrada, gestão de memória,

controlo do dispositivo computacional e escrita de ficheiros de resultados;

bem como uma componente executada no GPU (i.e., no dispositivo computa-

cional) constitúıda por vários kernels que computam os resultados. Designou-

se o modelo recém implementado de clTraceo.

Implementada a versão OpenCL do modelo de propagação, foram re-

alizados testes comparativos de desempenho, avaliando-se o desempenho do

clTraceo em diferentes dispositivos computacionais, para vários tipos de guias

de onda e com diferentes números de raios. Observou-se um aumento de de-

sempenho substancial entre o cTraceo e o clTraceo, com ganhos crescentes

com o número de raios.

Palavras chave: acústica submarina, modelação, computação de alta per-

formance, OpenCL, computação paralela.
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Chapter 1

Introduction

Ocean engineering and research covers a wide area of applications ranging

from reliable acoustic communications, to seabed surveying and environmen-

tal monitoring. The last field of research is becoming of increasing importance

under the European Union’s directive to ensure that “underwater noise is at

levels that do not adversely affect the marine environment”[4].

Environmental monitoring and prediction applications range from pre-

diction of noise levels from aquaculture and shipping [5] to environmental

impact studies due to the construction and operation of offshore windfarms,

with new applications emerging. With the growing complexity and range of

possible applications, the computational requirements have grown continu-

ously over the decades.

Ray tracing is an efficient approach for the modeling of high frequency

acoustic propagation. Of particular interest in this area is the cTraceo

Gaussian beam model model, which was developed at the Signal Processing

Laboratory of the University of the Algarve1; cTraceo can provide predic-

tions of acoustic pressure and particle velocity in waveguides with complex

boundaries featuring range dependent compressional and shear properties;

backscattering and multiple objects are also supported. Currently cTraceo is

a single-threaded application and for increased performance the development

of a parallelized version is highly desirable.

1www.siplab.fct.ualg.pt
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Since the debut of commercially available multicore processors in mid

200523 Moore’s Law (which states that processor’s computational power dou-

bles roughly every eighteen months) has only remained true when factoring

in the computational power of all cores within a processor. To make use of

the increasingly parallel architectures of CPUs, new software development

methods emerged and tools previously only employed in high performance

computing and data centers entered into the consumer market. After less

than a decade, PC systems featuring sixty four cores are now readily avail-

able, while developing software for these systems remains a challenge.

Alongside the development of multicore CPUs, a quieter (r)evolution with

enormous potential for scientific computing has taken place in the form of

graphics processing units (GPUs). Originally developed in the mid nineties as

highly specialized add-on gaming “3D-accelerators” which complemented ex-

isting 2D graphics adapters , GPUs have since combined both functionalities

and have evolved into high performance general purpose vector processors.

GPUs containing 2048 cores on a single chip are now readily available,

requiring new programming paradigms for efficient usage. Currently, two

frameworks for GPU programming share the market: CUDA and OpenCL.

CUDA is a product developed by NVidia for use with their range GPUs,

and is thus restricted to this vendor’s hardware. OpenCL is a multi-vendor

industry standard targeted at software development for so-called “hetero-

geneous” systems, i.e., it is intended not only for developing software for

GPUs, but also for multicore CPUs, mobile devices and other systems. Thus,

OpenCL offers an approach for simultaneous software development for CPUs

and GPUs, eliminating the need to master several development toolchains.

Given the parallelizable nature of of raytracing in general, and of the ray

superposition algorithm in particular, adaptation of cTraceo to multiple com-

pute cores promises to advance the quest for realtime efficient applications.

In this work, the parallelization of the cTraceo raytracing model using

the OpenCL framework is addressed. This report is organized as follows:

in Section 2 some of the theoretical background of raytracing is presented,

2The Intel Pentium D Dual Core processor was launched on the 25th of May 2005.
3The AMD Athlon 64 X2 was introduced on the 5th of June 2005.
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while Section 3 offers some insight into the OpenCL framework. The design

considerations for the parallelization are addressed in Section 4, with perfor-

mance comparison results shown in Section 5;Sections 6 and 7 present the

conclusions and suggestions for future work, respectively.
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Chapter 2

Theoretical Background

This chapter will give a brief overview of the raytracing theory on which the

clTraceo model is based.

2.1 The Acoustic Wave Equation

For a medium with constant density the Acoustic Wave Equation is given by

[6]:

∇2p(~r, t)− 1

c2
∂p(~r, t)

∂t2
= 0, (2.1)

where p(~r, t) is the pressure of the acoustic wave, c is the sound speed and

∇ is the Nabla differential operator. Applying a Fourier Transform to both

sides of Eq. (2.1), one can obtain the Helmholtz Equation:

[
∇2 +

ω2

c2

]
P (~r, ω) = 0, (2.2)

where ω is the angular frequency and P is the acoustic pressure in the fre-

quency domain. Assuming a plane wave approximation to the solution of

Eq. (2.2), the expression for acoustic pressure can be written as:

P (~r, ω) = A(~r)e−iωτ(~r), (2.3)

4



where τ(~r) is a rapidly varying phase function known as the Eikonal, and A(~r)

is a much more slowly varying envelope function incorporating the effects

of geometrical spreading and various loss mechanisms [7]. By substituting

Eq. (2.3) in Eq. (2.2) and by considering the following high frequency

approximation [6, 8],
∇2A(~r)

A(~r)
� ω2

c2
, (2.4)

the Eikonal Equation follows from the real part of the resulting equation:

(∇τ)2 =
1

c2
, (2.5)

while the Transport Equation follows from the imaginary part:

2(∇A · ∇τ) + A∇2τ = 0. (2.6)

The solutions of Eq. (2.5) and Eq. (2.6) will be described in the following

sections.

2.2 Solution of the Eikonal Equation

From the solution of the Eq. (2.5) one can obtain the surfaces of constant

phase (wavefronts). Ray paths are orthogonal to the wavefronts and indicate

the direction of energy flow [7]. The solution of the Eikonal Equation requires

solving the set of equations given by [8]:

d

ds

(
1

c(s)

dx

ds

)
=

∂

∂x

(
1

c(s)

)
,

d

ds

(
1

c(s)

dy

ds

)
=

∂

∂y

(
1

c(s)

)
,

d

ds

(
1

c(s)

dz

ds

)
=

∂

∂z

(
1

c(s)

)
,

(2.7)
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where s stands for the distance traveled by the acoustic wave along the ray

path, c(s) is the sound speed along the ray trajectory and the derivatives dx
ds

,
dy
ds

and dz
ds

define the ray tangent ~es.

By replacing the sound speed c with sound slowness σ = 1/c, and after

simplifying the set of equations given by Eq. (2.7) for a waveguide with

cylindrical symmetry, the following set of equations can be obtained:

dr

ds
= c(s)σr(s),

dz

ds
= c(s)σz(s),

dσr
ds

= − 1

c2
∂c(s)

∂r
,

dσz
ds

= − 1

c2
∂c(s)

∂z
,

(2.8)

where σr, σz are the vector components of the sound slowness σ. The initial

conditions for solving Eq. (2.8) are given by [8]:

r(0) = r0, z(0) = z0, σr(0) =
cos (θ0)

c0
, σz(0) =

sin (θ0)

c0
, (2.9)

where θ0 is the launching angle of the ray, [r0, z0] is the source’s position and

c0 is the sound speed at the source position. By solving Eq. (2.8) together

with the initial conditions (2.9) the ray paths and travel times through the

waveguide can thus be determined. The next step will be determining the

amplitude of the rays by solving the transport equation.

2.3 Solution of the Transport Equation

The classical solution for the ray pressure P (s, ω) can be written as [6]:

P (s, ω) =
1

4π

√
c(s)

c0

cos (θ0)

J
e−iωτ(s), (2.10)

where J stands for the Jacobian, τ(s) is the travel time along the ray c(s) is

the sound speed along the ray trajectory and ω is the angular frequency.

Unfortunately, the classical solution breaks down in the vicinity of caus-

6



tics, due to the fact that the Jacobian tends to zero [6, 7, 8]. These singu-

larities can be addressed using the Gaussian Beam Approximation, which is

discussed in the following section.

2.4 The Gaussian Beam Approximation

In the Gaussian Beam Approximation the ray is considered to be the central

axis of a beam, which features a Gaussian intensity distribution along the

ray normal, as shown in Fig. 2.1.

Figure 2.1: Gaussian beams: amplitude decay along the normal.

Thus a particular Gaussian beam solution for acoustic pressure, compatible

with cylindrical spreading, can be written as [9]:

P (s, n) =
1

4π

√
cos θ0
c0

c(s)

rq(s)
e
−iω

[
τ(s) +

1

2

p(s)

q(s)
n2

]

, (2.11)

where r is the range coordinate, n is the normal distance to the beam’s

central axis, and p(s) and q(s) are auxiliary functions, derived by solving a

system of differential equations in the neighborhood of the ray axis [9]; q(s)

7



is also proportional to the Jacobian [6]. The approximation given by Eq.

(2.11) solves the issues of the singularities at caustics, but it introduces other

artifacts. Specifically, rays being returned to the source will correspond to

focusing (instead of reflected) waves. And since the cylindrical approximation

breaks down in the vicinity of the origin, the field of such backpropagating

rays will increase as the ray aproaches the source, instead of decaying as

raylength increases. A solution for the drawbacks of Eq. (2.11) is presented

in the following section.

2.5 The Gaussian Beam Aproximation in Carte-

sian Coordinates

The typical Gaussian Beam Approximation for a waveguide with cylindrical

symmetry is given by Eq. (2.11). After a carefull review of the beam expres-

sions on the (x, z) plane, the following expression for a ray centered Gaussian

Beam Approximation can be obtained [8, 1]:

P (s, n) =
1

4π

√
c(s)

c0

cos (θ0)

q⊥(s)q(s)
e
−iω

[
τ(s) +

1

2

p(s)

q(s)
n2

]

, (2.12)

where n is the normal distance to the central axis of the Gaussian beam,

and p(s), q(s) and q⊥(s) are auxilliary parameters, which determine the

beamwidth along the arclength s. In contrast to the solution for a waveguide

with cylindrical simmetry as given by Eq. (2.11), q⊥(s) stands in the place

of the radial coordinate r. Because the full Gaussian beam expression is

solved on (x, z) plane instead of on the (r, z) plane, backscattering can now

be accomodated. The approximation given by Eq. (2.12) is the basis for the

calculation of ray amplitudes in cTraceo.

8



2.6 Attenuation

In Equation (2.12) the ray amplitude A is given by:

A =
1

4π

√
c(s)

c0

cos (θ0)

q⊥(s)q(s)
. (2.13)

The solution given by Eq. (2.13) does not incorporate the losses introduced

by volume attenuation and reflections at media interfaces. To include these

loss mechanisms, A is replaced by a corrected amplitude a, given by:

a = AφrφV , (2.14)

where φr represents the total decay due to interface reflections, and φV rep-

resents the volumetric attenuation.

2.6.1 Volumetric Attenuation

The volumetric attenuation factor φV is given by:

φV = e−αT s, (2.15)

where s is the ray arclength and αT is the frequency dependent Thorpe

attenuation in dB/m, as given by [10]:

αT =
40f 2

4100 + f 2
+

0.1f 2

1 + f 2
, (2.16)

where the frequency f is given in kHz.

9



2.6.2 Boundary Reflection

The total amplitude decay due to reflections at media interfaces is given by:

φr =





1 nr = 0

∏nr

i=1Ri nr > 0

, (2.17)

where nr is the total number of reflections at interfaces, and Ri is the complex

reflection coefficient at the ith reflection. cTraceo considers four types of

interfaces:

• Absorbent: the wave energy is transmitted completely to the medium

beyond the interface, so R = 0, thus terminating the ray propagation.

• Rigid: the wave energy is reflected completely, with no phase change,

so R = 1.

• Vacuum: the wave energy is reflected completely, with a phase change

of π radians, so R = −1.

• Elastic: the wave energy is partially reflected, with R being a complex

value and |R| < 1.

The reflection coefficient for an elastic medium is calculated through the

following set of equations [11]:

R(θ) =
D(θ) cos θ − 1

D(θ) cos θ + 1
, and D(θ) = A1

(
A2

1− A7√
1− A2

6

+ A3
A7√

1− A5/2

)
,

(2.18)

where θ is the ray’s angle relative to the boundary’s tangent, and with

A1 =
ρ2
ρ1
, A2 =

∼
cp2
cp1

, A3 =

∼
cs2
cp1

, (2.19)

A4 = A3 sin θ, A5 = 2A2
4, A6 = A2 sin θ, A7 = 2A5 − A2

5,

10



where

∼
cp2 =

cp2

1 +
∼
α
2

cp

(
1− i∼αcp

)
,

∼
cs2 =

cs2

1 +
∼
α
2

cs

(
1− i∼αcs

)
, (2.20)

∼
αcp =

αcp
40π log e

,
∼
αcs =

αcs
40π log e

,

where the attenuation values are given in dB/λ. The reflection coefficient

is real when there is no attenuation and the angle of incidence is less than

the critical angle

θc = arcsin

(
cp1
cp2

)
.
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Chapter 3

OpenCL

OpenCL is an open standard for cross-platform parallel programming of

heterogeneous systems developed by an industry consortium coordinated

through the Khronos Group [12]. OpenCL allows for developing software

on CPUs, GPUs, FPGAs and custom devices (e.g. hardware video decoders)

and is currently supported on Windows, Linux, Mac OS, iOS (iPhones and

iPads) as well as Android and with support for web browsers currently under

development [13]. Supporting such a diverse range of target architectures is

possible through an abstracted system representation as presented in Sec-

tion 3.1. The actual computational work is done in kernels, written in a

programming language derived from C99 (OpenCL C), while an Application

Programming Interface (API) is used for device control.

An overview of the workflow of an OpenCL application is given in Section

3.2.

3.1 System Representation in OpenCL

An OpenCL system consists of one host and one or more compute devices,

each having it’s own distinct memory space.

The host executes host code and is responsible for work scheduling and

initialization tasks like querying the system for available compute devices,

configuring compute devices and taking care of all memory allocation and
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memory transactions, as discussed brieflyl in Section 3.2. The host process

also assigns computational work to a compute device, which performs it’s

tasks asynchronously from the host.

Functions running on a compute device are written in a derivative of the

C language (OpenCL C) and are called kernels. Kernels may be offloaded to

one or more compute devices, connected to the host by a generic data bus.

For a device to be available for use in OpenCL, it’s corresponding OpenCL

driver must be installed.

Furthermore, computational tasks which for one reason or another are

deemed inefficient to run on a compute device may be executed in host code

instead, in parallel to the device code.

In the case of a typical desktop PC system containing a CPU and a GPU,

the host code will be run by a single CPU thread, with the host’s memory cor-

responding to the system’s random access memory (RAM). Kernels are then

executed on the GPU with it’s own dedicated memory, which is connected

to the host through a PCI-Express bus as seen in Figure 3.1.

Figure 3.1: Simplified OpenCL system representation of a typical Desktop PC containing
a single compute device.
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It is important to note that as OpenCL can be used on many different

systems, the distinction between host and device may become less clear than

in this example. This is the case when running OpenCL kernels on a multi-

core CPU, where the host code will be executed by one CPU thread, while

each CPU core will also be running kernel thread(s) to perform computa-

tional work. In some cases, the same compute device may be simultaneously

supported by more than one driver. This is the case for some Intel CPUs

which are supported by both the Intel and AMD OpenCL drivers, in which

case the software will be able to choose between two drivers for the same

hardware. Throughout this text, unless otherwise noted, the compute device

will be assumed to be a single GPU.

Compute devices are subdivided into one or more Compute Units, which

are the smallest entities to which the host may explicitly assign work. As can

be seen in Figure 3.1, each compute unit may contain one or more cores, or

Processing Elements in OpenCL terminology. As the reader may be familiar

with the term, in this text processing elements will be referred to as cores.

Compute units contain a limited amount of private memory which pro-

vides very low latency and high bandwidth for frequently used variables and

which is flexibly split up among the threads assigned to it. A group of threads

assigned to run on a compute unit is called a workgroup, within which each

thread has access to it’s own reserved private memory space. Although the

number of threads per compute unit -i.e. the workgroup size- may be higher

than the number of cores within the compute unit, it may still be limited

by the total amount of private memory physically available to the compute

unit.

All cores within a compute unit, and thus all threads within a workgroup,

share Local Memory, which provides higher latency and lower bandwidth

than private memory and may be used for sharing data between threads or

to store less frequently used data.

Global memory is generally a compute device’s largest memory space and

is accessible to threads from all workgroups. However, it generally also has

the highest latency and lowest bandwidth.

Table 3.1 shows a comparison of the bandwidths and latencies for the
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various memory regions available on a NVidia GeForce GTX 580 graphics

card.

Private Local Global
Size 16×128 KiB1 16×64 KiB2 3 GiB

Bandwidth 2.9 TiB/s 1 - 2 TiB/s 179 GiB/s
Latency < 1 ns 3 - 4 ns 100 - 150 ns

Table 3.1: Overview of memory bandwidths and latencies of NVidia GTX 580.

It should be noted that a GPU’s global memory, although being it’s

“lowest bandwidth” memory, may still be an order of magnitude faster than

a PC’s RAM.

A GPU’s processing cores, private and local memory are generally con-

tained within a single integrated circuit, while the much larger global memory

is located off-chip on the printed circuit board of the graphics adapter.

In a CPU architecture, private, local and global memory all map to the

system’s RAM. While some performance differences between the memory

spaces may exist due to optimization of cache usage, this will be implemen-

tation dependent and highly variable between architectures.

1In each of the GPU’s 16 compute units, 128 KiB are flexibly divided up among 32

cores.
2Each compute unit contans 64 KiB of local memory.
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3.2 OpenCL Workflow

Although most (if not all) of an application’s computational work is offloaded

to compute devices, the host process retains all control tasks. OpenCL pro-

vides the host with a large and complex API for these control tasks, the

complete description of which would be beyond the scope of this text (for a

more detailed background the reader may refer to [14]).

In a nutshell, the workflow of an OpenCL application consists of:

1. Probe the system for available OpenCL platforms (i.e., installed drivers).

2. Probe for compute devices available through each driver.

3. Load files containing the kernel source code3 and compile it for the

selected compute device(s).

4. Allocate required memory on the compute device(s) and copy (“up-

load”) any required data to the device. Since the OpenCL API allows

for asynchronous operation, this may be done in parallel to the kernel

compilation.

5. Queue the kernel for execution on the device and either wait for it to

finish or perform other tasks while waiting.

6. Copy (“download) the results from the compute device and perform

any required post-processing.

7. Optionally repeat steps 4 to 6 to perform further work.

The host process is also responsible for explicitly freeing any memory

allocated on the compute device. The results of failing to do so may vary

greatly, depending on device vendor, operating system and driver version.

Between having no consequence whatsoever to resulting in a complete system

crash, a wide range of consequences can be possible.

3An intermediate representation for kernel code has been included as an optional ex-
tension in the OpenCL 1.2 standard.
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Chapter 4

Implementation

This chapter will address several design decisions made before the actual

implementation of the parallelized version of cTraceo. The structure of this

chapter is as follows: Section 4.1 a set of test cases, which are used for various

benchmarking purposes during the development; Section 4.2 investigates the

viability of using single precision floating point arithmetic, while Section 4.3

addresses issues of local memory organization. Finally, Section 4.4 provides

an overview of the structure adopted for the parallelized raytracing kernels.

4.1 Test Cases

In order to perform detailed comparisons, several waveguide configurations

with varying complexity were chosen for benchmarking purposes:

• The Pekeris test case is a well known short range shallow water waveg-

uide chosen for its simplicity. It consists of flat rigid bottom, flat sur-

face with a vacuum above it, and an isovelocity sound speed profile, as

shown in Figure 4.1a.

• The Munk test case is a long range deep water waveguide, with a flat

surface with a vacuum above it, a flat rigid bottom and an interpolated

user provided Munk sound speed profile, as shown in Figure 4.1b.
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• The Sletvik waveguide is based on a real world bathymetry and mea-

sured sound speed profile, which is in contrast to the other test cases,

which are based on synthetic data. This short range shallow water

waveguide is modeled with a vacuum above the surface and elastic

bottom properties as shown in Figure 4.1c.

Table 4.1 shows an overview of the test cases’ properties.

Test Case
Pekeris Munk Sletvik

Max. Range 1 km 100 km 120 m
Max. Depth 100 m 5000 m 25 m
Source Depth 25 m 1000 m 3m
Surface Geometry Flat Flat Flat
Surface Interface Vacuum Vacuum Vacuum
Sound Speed Profile Isovelocity Interpolated Interpolated
Bottom Geometry Flat Flat Interpolated
Bottom Interface Rigid Rigid Elastic

Table 4.1: Overview of the waveguide geometry for the test cases.

4.2 Single Precision

Given the fact that GPUs provide far better single precision than double

precision floating point performance, it is highly desirable to perform all

computations in single precision. Since the baseline cTraceo model is imple-

mented in double precision, this raises the question of whether a conversion

to single precision will introduce numerical stability issues. In order to verify

if such issues occur, a single precision version of cTraceo was implemented

and it’s output was compared against the double precision implementation.

A stage-wise approach to comparing the results was devised. At first the out-

put of the numerical Eikonal and Transport Equation solvers was validated,

while in a second stage the computation of acoustic pressure was addressed.

The Eikonal and Transport Equation solvers produce several output vectors

per traced ray, namely:
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Figure 4.1: Ray trace for test case (a) Pekeris, (b) Munk, (c) Sletvik.
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x - The ray’s x coordinate for each point of it’s trajectory,

y - The ray’s y coordinate for each point of it’s trajectory,

τ - The propagation time along the ray,

A - The complex beam amplitude along the ray.

As a metric of similarity to evaluate the quality of the single precision re-

sults, a cross correlation at zero lag was computed, using Matlab’s xcorr(a,

b, 0, ’coeff’) command. The output of this metric is in the form of a

coefficient in the range [-1, 1] where ’1’ implies that the vectors are identical,

’-1’ indicates the vectors are symmetric, while at ’0’ the vectors are entirely

uncorrelated.

Each of the test waveguides was modeled at 256 rays, with a similarity

coefficient computed for each ray. The mean of these coefficients was then

computed for each waveguide. Results are summarized in Table 4.2. Due to

the fact that many of the resulting values are close to unity, it was chosen to

show the difference between the computed coefficients and unity.

Test Case
Pekeris Munk Sletvik

x 8× 10−5 1× 10−5 1× 10−5

y 2× 10−5 1× 10−5 1× 10−5

τ 8× 10−5 1× 10−5 1× 10−5

A 1× 10−5 1.706× 10−2 1× 10−5

Table 4.2: Difference between unity and the mean similarity coefficients for ray variables
between single and double precision implementations of cTraceo.

The results seen in Table 4.2 lead to the conclusion that for all practical

purposes, the results of the single precision implementation are identical to

those of the double precision version.

Having verified the equivalence of the single precision and double precision

results of the Eikonal and Transport Equation solvers, the same test waveg-

uides were used for comparing acoustic pressure results. For this, acoustic

pressure for each waveguide was computed first along a vertically centered

horizontal array and then along a horizontally centered vertical array, each

with sixteen hydrophones. Comparison results are shown in Table 4.3.
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Horizontal Array Vertical Array
Waveguide Name Re{P} Im{P} Re{P} Im{P}
Pekeris 1× 10−5 1× 10−5 5× 10−5 6× 10−5

Munk 2× 10−5 1× 10−5 5× 10−5 1.2× 10−4

Sletvik 1× 10−5 1× 10−5 1× 10−5 1× 10−5

Table 4.3: Difference between unity and the similarity coefficients of pressure along
sixteen-element hydrophone arrays between single and double precision implementations
of cTraceo.

With the result shown in Table 4.3 showing that the coherent pressure as

computed by the single precision implementation and the double precision

version are close to identical, concerns about the numerical stability when

using single precision floating point were put aside.

A side effect of implementing a single precision version of cTraceo was

an observed reduction of processing times of around 30% across all output

options.

4.3 Local Memory Considerations

While each ray’s solution is mathematically independent from the others’,

computationally this is not necessarily true. As any numerical implemen-

tation of raytracing requires an interpolation of environmental information,

it is hard to predict the memory access patter to this information for the

calculation of each ray, not to speak of the memory access pattern of several

hundred simultaneous threads. GPU memory controllers are built in such a

way that a memory read blocks the entire memory bus, even when reading

less memory than the bus width. This means that best performance is ob-

tained when accessing contiguous blocks of memory, with a total size which

is an integer multiple of the memory bus width. In the case of the Nvidia

Geforce GTX 580 which has a memory bus width of 384 bit, or 12 floats, this

implies that reading a single float from global memory will waste 11/12 or

92% of the available memory bandwidth. With high numbers of concurrent

threads wanting to access global memory simultaneously, memory bandwidth

quickly becomes a performance bottleneck.
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With computational performance of GPUs being highly dependent on

an efficient global memory access pattern, a first step to attain good global

memory performance is to reduce access to this “slow” memory by as much

as possible. By simply keeping frequently accessed data in local memory, the

need to optimize the global memory access pattern can be circumvented.

The waveguide’s environmental information is a prime candidate to be

kept in local memory since it is frequently accessed, and relatively small.

The question then becomes how “small” this data is and whether the GPU’s

local memory is large enough to contain it.

In cTraceo the environmental information is stored in a data structure

named env t, which is defined as

typedef struct{

float top , bottom; //2 * 4 Byte

float left , right; //2 * 4 Byte

interface_t altimetry;

soundSpeed_t soundSpeed;

interface_t bathymetry;

}env_t;

where:

top, bottom, left, right

are the waveguide’s hard limits, i.e., the “box” within which rays

are computed,

interface t

is a data structure which contains an interface’s information, as

shown below, and

soundSpeed t

is a data structure which contains the waveguide’s sound speed in-

formation, also shown below.

The size of the env t struct in bytes is thus given by:

Nenv = 16 +Nalt +Nssp +Nbat, (4.1)

where Nalt, Nssp and Nbat are the number of bytes required for storing

the altimetry, sound speed profile and bathymetry respectively.
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The interface t struct is used to contain both the altimetry and bathymetry

information, and for an interface with elastic properties is defined as:

typedef struct{

uchar interfaceType; // 1 Byte

uchar interfacePropertyType; // 1 Byte

uchar interfaceInterpolation; // 1 Byte

uchar interfaceAttenUnits; // 1 Byte

int nCoords; // 4 Byte

float* x; // nCoords * 4 Byte

float* y; // nCoords * 4 Byte

float* cp; // m * 4 Byte

float* cs; // m * 4 Byte

float* rho; // m * 4 Byte

float* ap; // m * 4 Byte

float* as; // m * 4 Byte

}interface_t;

where:

interfaceType, interfacePropertyType, interfaceInterpolation,

interfaceAttenUnits

are user specified options related to the interface’s properties, who’s

allowable values are listed in Appendix B,

nCoords

specifies the number of coordinates for the interface’s geometry,

x, y

are variably sized vectors which contain the interface’s geometry,

and

cp, cs, rho, ap, as

are variably sized vectors containing the interface’s elastic properties

(compressional wave speed, shear wave speed, density, compressional

wave attenuation and shear wave attenuation respectively). For an

interface with constant elastic properties along it’s geometry one

set of values must be stored, i.e. m = 1. For non-homogeneous

interfaces, one set of elastic properties must be stored for each point

of the interface geometry, thus m = nCoords.

The total size in bytes required for storing an interface Ninterface is then:
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Ninterface = 8 + 4× (2× ninterface + 5×m) , (4.2)

where ninterface is the number of coordinates of the interface’s geometry.

The soundSpeed t struct contains the waveguide’s sound speed informa-

tion and in the case of a profile is defined as:

typedef struct{

uchar cDist; // 1 Byte

uchar cClass; // 1 Byte

int nCoords; // 4 Byte

float* y; // nCoords * 4 Byte

float* c; // nCoords * 4 Byte

}soundSpeed_t;

where:

cDist, cClass

are user specified options, who’s alowable options are listed in Ap-

pendix B,

nCoords

specifies the sound speed profile’s number of points,

y, c

are variably sized vectors containing the depths and corresponding

sound speeds.

The number of bytes required for storing a sound speed profile is then:

NsoundSpeed = 6 + 8× nssp, (4.3)

where nssp is the number of points in the ssp.

It then follows that the total number of bytes required for storing a waveg-

uide environment in memory, Nenv is given by:

Nenv = 38 + 4× (2× (nalt + nssp + nbat) + 5× (malt +mbat)) (4.4)

where nalt is the number of points defining the surface geometry, nssp is the

number of points in the sound speed profile, and nbat is the number of points

defining the bathymetry geometry.
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According to Equation (4.4), a moderately complex waveguide with a flat

homogeneous altimetry (i.e., defined over 2 points), a 128 point sound speed

profile and a 512 point bathymetry would require a total of 15434 bytes of

memory. Considering that the local memory size of the available testing

hardware1 is 64 kB, it was considered acceptable to make use of this mem-

ory to store the environmental data. Still, the user must take some care in

preparing the waveguide data to avoid exceeding the available local memory.

In practice, the env t struct does not directly contain any data vectors,

but instead contains pointers to dynamically allocated memory chunks as

seen in Figure 4.2.

Figure 4.2: Example of a C structure containing pointers to separately allocated memory
chunks.

This would result in having to allocate, copy and assign 17 separate ar-

guments to a kernel for the environmental information alone. To reduce the

number of dynamically allocated memory chunks, a single vector which is

sufficiently large to contain all the environmental data is allocated.

The pointers contained in the env t struct then point to the position cor-

responding to their associated data in the packed environmental information,

as seen in Figure 4.3.

Figure 4.3: Example of a C structure containing pointers to different positions of a
packed vector allocated in a single memory chunk.

This then simplifies further development by reducing the amount of API

1NVidia GeForce GTX 580
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calls required to copy the environmental data from the host to the compute

device.

4.4 OpenCL Kernel Structure

Since a high performance forward model implementation is mostly of interest

when performing large amounts of model runs, it was decided to implement

the output options which are relevant for such a purpose. Specifically, a focus

was made on implementing computation of arrival patterns and acoustic

pressure.

Since rays are mathematically independent from each other, it was de-

cided to create one thread per launched ray. Each thread can then trace a

single ray from beginning to end, without any need for inter-thread commu-

nication.

• In a first step, a kernel is launched which solves the Eikonal Equation

for all rays simultaneously. This includes detection of ray-interface

intersections and computation of reflection coefficients.

• In a next step, the data generated by the Eikonal solver is passed to

the Transport Equation solver. This kernel again runs with one ray per

thread and computes the beam amplitude along each ray as given by

Equation 2.14.

• Following the computation of all data along the ray path, the next step

in the process is finding each ray’s bracketing indexes of all hydrophone

positions. In other words, with a ray path consisting of a sequence of

points in space, it is necessary to find the index of the ray coordinate

closest to each hydrophone. A simple bisection method is employed

for this purpose; with the corresponding kernel again running at one

thread per launched ray.

At this point the paths diverge, depending on the chosen output option.
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• If computing arrival patterns by proximity, the final step consists in

storing the information of those rays which pass within a user specifi-

able distance of a hydrophone.

• If computing acoustic pressure, parallelism is achieved through a kernel

which computes each ray’s pressure contribution to all hydrophones.

This results in a pressure map for each ray.

• A final step is then required to sum the intermediate per-ray pressure

into a final result. Since realistic hydrophone arrays are of limited

dimensions, it was decided to implement a reduction kernel in single

threaded way, as no performance benefits are expectable at such small

work sizes.
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Chapter 5

Benchmark Results

To analyze the performance of the conversion to OpenCL, acoustic pressure

over an eight element vertical array was computed for the test cases intro-

duced in Section 4.1. Model run times for powers of 2 between 24 and 212

rays were obtained. For every number of rays, thirteen runs were performed

per test case. The maximum and minimum values were then discarded and

the average run time was computed from the remaining eleven runs.

Benchmarks were performed on a desktop PC with an Intel CPU1 and an

NVidia GPU2. The same CPU was used to run the baseline cTraceo model

as well as comparing OpenCL performance with the Intel and the AMD

OpenCL drivers.

Results for all waveguides are shown in Figure 5.1, in which for each

waveguide an overview is shown on the left, while on the right side only run

times within the range of 1500 ms are shown in order to allow for easier

visualization of small values.

1Intel i7-3930k with 6 cores at 3.5 GHz.
2NVidia GeForce GTX580 with 512 cores at 1.5 GHz.
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Figure 5.1: Average model run times for the analyzed test waveguides; Pekeris (a) and
(b), Munk (c) and (d), Sletvik (e) and (f).
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The average run times are also shown in detail in Tables 5.1, 5.2 and 5.3.

Number of Rays
16 32 64 128 256 512 1024 2048 4096 8192

Baseline 14 24 46 88 235 346 708 1547 3584 9121
OpenCL CPU (Intel) 572 571 575 595 608 647 764 936 1322 801
OpenCL CPU (AMD) 47 47 50 58 74 103 167 209 312 396
OpenCL GPU 143 143 144 147 146 148 150 152 192 252

Table 5.1: Average run times in milliseconds for Pekeris test case.

Number of Rays
16 32 64 128 256 512 1024 2048 4096 8192

Baseline 21 41 81 172 405 1060 2685 10536 39797 49536
OpenCL CPU (Intel) 661 664 673 688 710 772 893 1128 1612 2605
OpenCL CPU (AMD) 48 51 58 73 93 137 228 406 794 1610
OpenCL GPU 176 168 166 165 165 166 170 174 233 343

Table 5.2: Average run times in milliseconds for Munk test case.

Number of Rays
16 32 64 128 256 512 1024 2048 4096 8192

Baseline 21 45 85 170 397 635 1477 9929 8757 26483
OpenCL CPU (Intel) 658 663 673 682 714 771 904 1134 1621 1152
OpenCL CPU (AMD) 48 51 60 74 94 140 233 416 459 919
OpenCL GPU 181 177 179 183 186 180 180 187 252 484

Table 5.3: Average run times in milliseconds for Sletvik test case.

It can be seen that the average run time for the baseline model scales

approximately linearly with number of rays for the Pekeris case, i.e., with

the doubling of the number of rays, processing time approximately doubles

as well. This behavior is only partially applicable to the Munk and Sletvik
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test cases, where the run times for high numbers of rays increase at higher

rates.

For low numbers of rays, the OpenCL version running on a CPU with

the Intel driver is slower than the baseline, only gaining the edge at or above

1024 rays, depending on the test case.

For any number of rays and over all test cases, using the AMD OpenCL

driver on the same CPU results in a reduction of processing time between

≈550 and ≈650 milliseconds compared to the Intel driver. Also, it performs

better than baseline at 64 rays and above.

Across all test cases, run times on the GPU stay almost constant with

only minimal fluctuations up around to 1024 rays, only very slightly increas-

ing at higher numbers of rays.

To give a measure of performance gained in relation to the baseline im-

plementation, Figure 5.2 shows ratios between the baseline run time and the

OpenCL run times.

In Figure 5.2 it can be seen that the baseline implementation is fastest

when modeling the test cases at less than 64 rays. For up to 512 rays,

best performance was obtained when running the test cases on the CPU

with AMD driver. From 1024 rays onward, best performance is consistently

provided by the GPU. The Intel driver consistently provided the lowest per-

formance of the OpenCL devices.
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Figure 5.2: Ration between run times of baseline cTraceo implementation and on different
OpenCL platforms; Pekeris (a), Munk (b) Sletvik (c).
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Chapter 6

Conclusions

From the discussions presented in the previous chapters the following con-

clusions can be drawn:

• Algorithmically, the amount of computational work is linearly depen-

dent on the number of traced rays which would imply that the process-

ing time should increase at the same rate as the amount of rays. It was

seen that in fact this does not always hold true for the baseline cTraceo

model when running at high numbers of rays.

• The OpenCL framework is complex and comes with a steep learning

curve, but it offers potentially large performance benefits. Particularly,

it’s explicit management of memory spaces (through global, local and

private memory) forces the programmer to take the hardware structure

into account which can help in improving performance.

• The linear offset in processing times on the same CPU between the Intel

and AMD OpenCL drivers, with otherwise similar trend leads to the

conclusion that the Intel driver incurs a large initialization overhead of

around ∼550 to ∼650 milliseconds when compared to the AMD driver.

Due to this and due to the model’s otherwise short run times, the Intel

driver is currently ill suited for use with clTraceo.

• With the good performance provided by the AMD OpenCL CPU driver,

this seems to be a good option for real world cases.
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• Due to the GPU’s high number of cores (512), and due to the fact that

each ray trajectory is mapped to one thread, the GPU is in effect being

underutilized when computing less than 512 rays. This explains why

up to this number of rays the model run times remain approximately

constant and only start increasing at higher numbers of rays.

• The start-up and initialization time incurred due to OpenCL reduces

the performance gains for simple waveguides and low numbers of rays,

but this is more than made up for when modeling at high numbers of

rays.
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Chapter 7

Future Work

Overall, the performance gain obtained by the parallelization can be consi-

dered a success. In order to improve on this work, the following future work

is proposed:

• With model run time already dominated by start-up and initialization

tasks instead of actual computations, any algorithmic optimization will

only result in minor performance improvements. It would thus be de-

sirable to alter the model so as to model multiple waveguides without

reinitializing.

• Several global variables which are computed for every step along a ray

trajectory are computed in the solveEikonal kernel and later used

in the solveDynamicEq kernel, as seen in Table 7.1. These variables

are in fact temporary variables and storing them in global memory

produces an unnecessary performance hit. By merging the code from

these two kernels into a single one, and by keeping said temporary

variables in private memory, the amount of allocated global memory

could be reduced by almost half. More significant than the reduction

in global memory usage would be the increase in performance gained

from eliminating this low bandwidth bottleneck.

• Currently, the model relies on the user to provide a workgroup size,

thus defining how many threads are assigned to each compute unit.
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Used in Kernel
Variable name Type solveEikonalEq solveDynamicEq calcPressure

x float X X X
y float X X X
tau float X - X
amp complex - X X
decay complex X X -
phase float X - X
s float X X -
ic float X X -
caustc float - X X
c float X X X1

p float - X -
q float - X X
boundaryTg vector X X -
interfaceID char X X -

Table 7.1: Usage of global variables in kernels; highlighted variables are temporary vari-
ables which don’t require global storage.

Choosing this value has a big impact on performance, specially on

GPUs, and will vary between devices. It may be desirable to automate

this in order to simplify usage of the model by removing the need for

the user to have an understanding of the GPU hardware.

• Currently, the complexity of modeled waveguides is limited by the size

of environmental information, in other words, by the amount of avail-

able local memory. In order to model larger or more complex waveg-

uides, it would be desirable to automatically subdivide the environment

into smaller parts which will fit into the available memory. While ray-

tracing, rays which leave one “subenvironment” must then be passed

to the adjacent subenvironment and their propagation be resumed.

Besides enabling larger or more complex waveguides, this would also be

a step in implementing support for multiple bottom layers and trans-

missive objects.

• Finally, the model might be expanded to add support for more output
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options, like transmission loss or particle velocity.

1The interpolated sound speed at source position, c0, is used only once at the beginning
of calcPressure. Since no other indices of this vector are accessed, this kernel doesn’t
require full access to this vector; passing c0 as a scalar would suffice.
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Appendix A

Quick User Guide to clTraceo

A.1 Usage

When running clTraceo an OpenCL device has to be chosen. This is done

by passing the command line switch ’-d’ followed by the device number, like

so:

$> cltraceo -d 0 munk

To see the list of available opencl devices, the model should be run with

the ’–listDevices’ option:

$> cltraceo --listDevices

Some devices (like GPUs) require choosing a custom workgroup size in

order to get the best performance. This is done by using the ’–wgSize’ option:

$> cltraceo -d 0 --wgSize 16 munk

Some notes on workgroups:

• Workgroup sizes should be powers of 2.

• Default wgSize is 1.

• Changing workgroup sizes on CPUs does not seem to yield improve-

ments.
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• Best results on NVidia GTX 580 GPU are obtained with wgSize 16.

• In general -on the GPU- the larger the workgroup size, the better the

performance (wgSize 16 results in 2-3× better performance than wgSize

1)

• If an ’out of resources’ error occurs, then the chosen workgroup size is

to big -try lowering it.

By default, the part of the model which is run on the OpenCL compute

device has to be compiled every time the model is run, which causes a large

run time overhead. To avoid this, the compiled device code can be stored in

binary form for use in the next run by making use of the ’–saveBinKernel’

and ’–loadBinKernel’ options:

$> cltraceo -d 1 --saveBinKernel filename.bin munk

$> cltraceo -d 1 --loadBinKernel filename.bin munk

Note that changing some variables of the modeled environment requires

recompiling the kernels. These are:

• the number of points in the altimetry;

• the altimetry’s type, i.e., if it is homogeneous or non-homogeneous;

• the sound speed distribuition type and class;

• the number of points in the sound speed field/profile;

• the number of points in the bathymetry;

• the bathymetry’s type, i.e., if it is homogeneous or non-homogeneous;

• the number of ray coordinates (which depend on the size of the rangge

box and the the integration step size);

• the type of hydrophone array;

• the number of hydrophone’s in the array;
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Also:

• the workgroup size;

• the assumed hardware vector dimension;

In short, any change which would require the model to allocate a different

amount of memory. In other words, between model runs, all values of the

environment may change as long as it’s basic configurations stays the same.

This should not be a restriction for most inversion scenarios.

The run time information which was shown at the end of cTraceo has been

removed as it’s output is not correct when using OpenCL. For performance

comparisons, the linux ”time” command may be used to obtain run time

measures:

$> time cltraceo -d 0 flat

A.2 Troubleshooting

Running clTraceo with the AMD APP SDK v2.8 the following message may

be shown:

FATAL: Module fglrx not found.

Error! Fail to load fglrx kernel module! Maybe you can

switch to root user to load kernel module directly

This error occurs on machines using AMD OpenCL SDK, which do not have

an AMD GPU, i.e., when running on a CPU. This error is related to a driver

bug and has no functional impact on the model; the code runs as expected.

Another possible error is:

Setting of real/effective user Id to 0/0 failed

WARNING: Deprecated config file /etc/modprobe.conf , all

config files belong into /etc/modprobe.d/.
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As in the previous case, this error is driver related and has no functional

impact on the model; the code runs as expected.

Segmentation fault.

On machines accessed remotely via ssh, segmentation faults are likely to oc-

cur when using ssh -X or ssh -Y. This is due to the fact that the -X and -Y

options connect the local system’s X server session to the remote system’s X

server which in turn causes problems with OpenCL drivers.

Failed to find any OpenCL platform.

On some machines, calling clTraceo from within Matlab will sometimes cause

clTraceo to return this error message. This is similar to the previous situation

where calling clTraceo over an ssh connection caused an error. This problem

can be circumvented by running Matlab without a graphical interface from

a linux terminal:

$> matlab -nojvm It is currently unknown if this issue occurs on windows

machines.

A.3 Compilation

To compile the clTraceo code the first requirement will be to install an

OpenCL driver for the system.

For testing on a multicore CPU, the AMD OpenCL driver is recomended1.

This will work on both Intel and AMD systems and actually delivers better

results on Intel systems than Intel’s own driver.

Next the makefile will need to be adapted along with the SOURCE PATH

definition in the source/constants.h file.

Compilation should then be straight forward.

1The AMD OpenCL’s marketing name is AMD Accelerated Parallel Processing
SDK (or AMD APP SDK ) and it’s available at http://developer.amd.com/tools-and-
sdks/heterogeneous-computing/amd-accelerated-parallel-processing-app-sdk/downloads/

43



Appendix B

Constant Values

Throughout the model’s source code, there are several variables which may

only take a specific set of values. These values are defined in the constants.h

file which is part of the source distribution and is reproduced in part below.

The interfaceType variable is part of the interface t struct and it’s

possible values are:

#define INTERFACE_TYPE__ABSORVENT 1

#define INTERFACE_TYPE__ELASTIC 2

#define INTERFACE_TYPE__RIGID 3

#define INTERFACE_TYPE__VACUUM 4

The interfacePropertyType variable is part of the interface t struct

and it’s possible values are:

#define INTERFACE_PROPERTY_TYPE__HOMOGENEOUS 5

#define INTERFACE_PROPERTY_TYPE__NON_HOMOGENEOUS 6

The interfaceInterpolation variable is part of the interface t struct

and it’s possible values are:

#define INTERFACE_INTERPOLATION__FLAT 7

#define INTERFACE_INTERPOLATION__SLOPED 8

#define INTERFACE_INTERPOLATION__2P 9

#define INTERFACE_INTERPOLATION__3P 10

#define INTERFACE_INTERPOLATION__4P 11
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The interfaceAttenUnits variable is part of the interface t struct

and it’s possible values are:

#define INTERFACE_ATTEN_UNITS__dBperkHz 12

#define INTERFACE_ATTEN_UNITS__dBperMeter 13

#define INTERFACE_ATTEN_UNITS__dBperNeper 14

#define INTERFACE_ATTEN_UNITS__qFactor 15

#define INTERFACE_ATTEN_UNITS__dBperLambda 16

The cDist variable is part of the soundSpeed t struct and it’s possible

values are:

#define C_DIST__PROFILE 17

#define C_DIST__FIELD 18

The cClass variable is part of the soundSpeed t struct and it’s possible

values are:

#define C_CLASS__ISOVELOCITY 19

#define C_CLASS__LINEAR 20

#define C_CLASS__PARABOLIC 21

#define C_CLASS__EXPONENTIAL 22

#define C_CLASS__N2_LINEAR 23

#define C_CLASS__INV_SQUARE 24

#define C_CLASS__MUNK 25

#define C_CLASS__TABULATED 26

The calcType variable defines the model’s chosen output option and it’s

possible values are:

#define CALC_TYPE__RAY_COORDS 27

#define CALC_TYPE__ALL_RAY_INFO 28

#define CALC_TYPE__EIGENRAYS_REG_FALSI 29

#define CALC_TYPE__EIGENRAYS_PROXIMITY 30

#define CALC_TYPE__AMP_DELAY_REG_FALSI 31

#define CALC_TYPE__AMP_DELAY_PROXIMITY 32

#define CALC_TYPE__COH_ACOUS_PRESS 33

#define CALC_TYPE__COH_TRANS_LOSS 34

#define CALC_TYPE__PART_VEL 35

#define CALC_TYPE__COH_ACOUS_PRESS_PART_VEL 36

The arrayType variable sets the type of hydrophone array to be used in

a given waveguide.
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#define ARRAY_TYPE__RECTANGULAR 37

#define ARRAY_TYPE__HORIZONTAL 38

#define ARRAY_TYPE__VERTICAL 39

#define ARRAY_TYPE__LINEAR 40
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Acoustic predictions of the recently developed TRACEO ray model, which accounts for bottom shear

properties, are benchmarked against tank experimental data from the EPEE-1 and EPEE-2 (Elastic

Parabolic Equation Experiment) experiments. Both experiments are representative of signal propa-

gation in a Pekeris-like shallow-water waveguide over a non-flat isotropic elastic bottom, where

significant interaction of the signal with the bottom can be expected. The benchmarks show, in par-

ticular, that the ray model can be as accurate as a parabolic approximation model benchmarked in

similar conditions. The results of benchmarking are important, on one side, as a preliminary experi-

mental validation of the model and, on the other side, demonstrates the reliability of the ray

approach for seismo-acoustic applications.
VC 2012 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4734236]

PACS number(s): 43.30.Zk, 43.30.Ma, 43.20.Dk [AIT] Pages: 709–717

I. INTRODUCTION

Tank experiments constitute a fundamental reference for

underwater acoustic modeling, by providing valuable data for

model benchmarking. In particular these types of experiments

are important because of the difficulties and costs involved

with obtaining high-quality ocean acoustic data at sea. In con-

trast with benchmarking analytic solutions,1–5 which are gen-

erally difficult to obtain for a broad set of geometries and

boundary properties, benchmarking to tank experimental data

imposes important constraints to numerical models. On one

side, propagation conditions can be carefully controlled; on

the other side, despite such control, mismatch will be always

observed since the numerical model is an approximation of

the theoretical solution. The importance of benchmarking to

tank experimental data was shown, for example, by the EPEE-

1 (Ref. 6) and EPEE-2 (Elastic Parabolic Equation Experi-

ment) (Ref. 7) experiments, which demonstrated the excellent

accuracy of the ROTVARS model, based on the variable rotated

elastic parabolic equation.8 The high quality of the data

acquired during these tank experiments is extremely important

because both experiments are representative of propagation in

a shallow water waveguide, with an elastic bottom and range-

dependent bathymetry involving sharp slope changes. Ray

models9–12 are also interesting candidates for benchmarking

against the tank experimental data. The ray solution to the

acoustic wave equation is an asymptotic approximation, which

improves as frequency increases, and ray methods are compu-

tationally efficient in waveguides with complex characteris-

tics, such as variable boundaries and range-independent or

range-dependent sound speed distributions. Additionally, for a

ray model to be accurate under such conditions, shear effects

need to be included as well. Naturally, a question arises

whether a ray model will be able to exhibit the same degree of

accuracy as a parabolic equation solution, when benchmarked

(in particular) to the data of the EPEE-1 and EPEE-2 tank

experiments. The main purpose of the discussion presented

here is to develop a systematic benchmarking of a ray model

against such experimental data. To this end the tank experi-

ments are briefly reviewed in Sec. II, while Sec. III describes

the recently developed TRACEO ray model, which is bench-

marked in detail in Sec. IV. The conclusions of benchmarking

and future work are presented in Sec. V.

II. THE EPEE-1 AND EPEE-2 TANK EXPERIMENTS

The tank experiments are described in great detail in the

literature;6,7 therefore, a sufficiently compact description is

presented in this section. Polyvinyl chloride (PVC) slabs

with the elastic parameters given in Table I were suspended

in a water tank by cables, that were attached to each slab

corner at substantial distances from the sound source to

avoid reflections. Source and receiver hydrophones were

positioned over the slabs with a robotic arm, allowing

for accurate positioning. Sound speed in the water is con-

sidered constant and corresponds to 1482 m/s. Acoustic

a)Author to whom correspondence should be addressed. Electronic mail:

orodrig@ualg.pt
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transmissions were performed for a wide set of frequencies,

up to 1 MHz, but for the purposes of benchmarking only

three frequencies are here considered, namely, 125, 200, and

275 kHz. Due to the nature of the source used in the experi-

ment, data within the 100–300 kHz band are considered valid

for comparison purposes.

Acoustic propagation calculations are performed at a

scale of 1000:1; thus, for a proper modification of parameter

values the following conversion of units is adopted: experi-

mental frequencies in kHz become model frequencies in Hz

and experimental lengths in mm become model lengths in m

(for instance, an experimental frequency of 100 kHz

becomes a model frequency of 100 Hz and an experimental

distance of 10 mm becomes a model distance of 10 m).

Sound speeds remain unchanged, as well as compressional

and shear attenuations, which are given in dB/k (where k
stands for the acoustic wavelength). In EPEE-1 the slab

allowed both range-independent, “flat,” and range-dependent

waveguides (see Fig. 1). In EPEE-2 the slab geometry

allowed three different types of range-dependent bottom

bathymetries, namely, flat to downslope, upslope to flat, and

upslope to downslope. Different configurations of the acous-

tic source and receiver were considered in both experiments,

but the benchmarking presented here will be limited to a sin-

gle position of both source and receiver; geometric parame-

ters for the waveguides of both experiments are shown in

Table II.

III. THE RAY MODEL

The ray model benchmarked in the current work is the

TRACEO Gaussian beam model, which is under current devel-

opment at the SiPLAB of the University of Algarve.13 The

code TRACEO was developed in order to

(1) Predict acoustic pressure and particle velocity in envi-

ronments with elaborate upper and lower boundaries,

which can be characterized by range-dependent com-

pressional and shear properties. Modeling particle veloc-

ity is important for vector sensor applications and can be

used, in particular, for geoacoustic inversion with high

frequency data.14–16

(2) Include one or more targets in the waveguide.

(3) Produce ray, eigenray, amplitude, and travel time infor-

mation. In particular, eigenrays are to be calculated even

if rays are reflected backwards on targets located beyond

the current position of the hydrophone.

The following sections compactly describe the theory

behind TRACEO calculations of acoustic pressure, shear inclu-

sion and particle velocity calculations; a numerical example

is presented as well.

A. Theoretical background

The starting point for the general description of a three-

dimensional Gaussian beam is given by the expression17

Pðs; nÞ¼ 1

4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðsÞ
cð0Þ

coshð0Þ
detQ

s
exp �ix sðsÞþ1

2
ðMn �nÞ

� �� �
;

(1)

where s stands for the ray arclength, n is the normal to the

ray (such normal lies on a plane, which will be introduced

later), M and Q are 2� 2 matrices (whose meaning will be

explained below), the center dot represents the inner vector

TABLE I. PVC elastic properties at 300 kHz (k represents the acoustic

wavelength).

Parameter Unitsa Value

Density kg/m3 1378

Compressional speed m/s 2290

Shear speed m/s 1050

Compressional attenuation dB/k 0.76

Shear attenuation dB/k 1.05

aA note of advice: Compressional and shear attenuations are given in Ref. 6

as 0.33 dB/m and 1.00 dB/m, respectively. Attenuation is given here in dB/k,

which are the units used by the ROTVARS model.

FIG. 1. EPEE-1, sloped case (top) and EPEE-2, upslope to downslope case

(bottom).

TABLE II. Geometric parameters for the waveguides of the EPEE-1 and

EPEE-2 tank experiments.

Flat Upslope Flat/down Up/flat Up/down

zs (m) 69.1 63.4 74.2 73.5 72.1

zr (m) 137.1 15.6 75.8 78.7 74.8

z0 (m) 144.7 132.9 143.9 245.9 183.0

z1 (m) 145.4 45.4 152.1 151.2 147.2

z2 (m) N/A N/A 238.2 145.7 198.4

r1 (m) N/A N/A 988.8 985.9 1000.3

rmax (m) 1200 1200 1898.0 1898.0 1898.0
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product, hð0Þ is the initial ray elevation (i.e., the angle rela-

tive to the horizontal plane, which is formed by the X and Y
axes; the angle on the XY plane relative to the X axis will be

called, hereafter, the azimuth), and cðsÞ represents the sound

speed along the ray trajectory:

cðsÞ ¼ cðs; 0Þ : (2)

The travel time sðsÞ in Eq. (1) is calculated solving the set of

Eikonal equations18

dx

ds
¼ cðsÞrx;

dy

ds
¼ cðsÞry;

dz

ds
¼ cðsÞrz;

drx

ds
¼ � 1

c2

@c

@x
;

dry

ds
¼ � 1

c2

@c

@y
;

drz

ds
¼ � 1

c2

@c

@z
;

(3)

where rx, ry, and rz stand for the components of the vector

of sound slowness. The derivatives dx=ds, dy=ds, and dz=ds
define the ray tangent es; the plane perpendicular to es

defines the plane normal to the ray. Introducing on such

plane a pair of unitary and orthogonal vectors e1 and e2 one

can write the ray normal as

n ¼ n1e1 þ n2e2 ; (4)

where n1 and n2 are arbitrary quantities. The matrices M and

Q are required to be complex; therefore, the imaginary part of

the product Mn � n induces a Gaussian decay of beam ampli-

tude along n, while the real part introduces phase corrections

to the travel time. As long as detQ 6¼ 0 the solution given by

Eq. (1) does not exhibit singularities. Besides Q and M the

Gaussian beam approximation involves two additional 2� 2

matrices, represented generally as P and C; all four matrices

are related through the following relationships:19

M ¼ PQ�1 ; (5)

d

ds
Q ¼ cðsÞP; d

ds
P ¼ � 1

c2ðsÞCQ; (6)

where

Cij ¼
@2c

@ni@nj
; (7)

i.e., the elements of C correspond to second order derivatives

of sound speed along either e1, e2, or both. Generally speak-

ing P describes the beam slowness in the plane perpendicular

to es, while Q describes the beam spreading. The pair of

expressions given by Eq. (6) is called the dynamic equations
of the full Gaussian beam formulation. The expression given

by Eq. (1) behaves near the source like an spherical wave

emitted by a point source through the choice of initial

conditions19

Pð0Þ ¼ 1 0

0 cos hð0Þ

� �.
cð0Þ (8)

and17

Qð0Þ ¼ 0 0

0 0

� �
: (9)

Generally speaking the full Gaussian beam approach is

difficult to implement numerically, with the main difficulties

being related to refraction effects (the problem of ray bound-

ary reflection is in fact much easier to account for). In partic-

ular, when horizontal refraction is considered, rays with a

common initial azimuth exhibit ray trajectories which do not

lie on a common plane; besides, horizontal refraction also

leads to the rotation of polarization vectors along a given ray

trajectory, inducing a large variability of beam shapes within

any group of rays (even if the initial orientation of polariza-

tion vectors was the same for all rays). Additionally, the cal-

culation of beam influence (which requires a proper

calculation of the matrix C) for the arbitrary position of an

hydrophone is cumbersome. Other issues related to the

calculation of eigenrays, such as determining arrivals and re-

spective amplitudes, are also difficult to implement. In order

to develop a two-dimensional application of Eq. (1), TRACEO

relies on the particular solution of dynamic and Eikonal

equations when horizontal refraction is absent. For such case

there is no rotation of the polarization vectors; thus, choos-

ing e2 to lie on the horizontal plane fixes the positioning of

e1 on a plane of constant azimuth (perpendicular to e2).

Beam amplitude is then calculated by TRACEO on the plane of

constant azimuth by considering the particular solution with

n2¼ 0. Since the particular solution does not exhibit cylin-

drical symmetry the approximation used by TRACEO can be

regarded as a Gaussian beam solution on the ðx; zÞ plane

(i.e., on the plane corresponding to azimuth zero).

Under the conditions above considered (i.e., absence of

horizontal refraction and e2 placed initially on the horizontal

plane) one can write that

C ¼ c11 0

0 0

� �
: (10)

Without loss of generality the matrix Q can be represented as

QðsÞ ¼ qðsÞ 0

0 q?ðsÞ

� �
(11)

so detQ ¼ qðsÞq?ðsÞ. Combining the initial conditions for a

point source with the given approximations one can substi-

tute the pair Eq. (6) with the expressions

d

ds
q ¼ cðsÞ ; d

ds
p ¼ � c11

cðsÞ2
q; (12)

where p ¼ p11 [it can be shown that p12 ¼ p21 ¼ 0,

p22 ¼ cos hð0Þ=cð0Þ]; thus, the particular solution of Eq. (1)

can be written as

Pðs; n1; n2Þ¼
1

4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðsÞ
cð0Þ

coshð0Þ
q?ðsÞqðsÞ

s

�exp �ix sðsÞþ1

2

pðsÞ
qðsÞn

2
1þ

1

2IcðsÞ
n2

2

� �� �
;

(13)
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where

IcðsÞ ¼
ðs

0

cðs0Þ ds0 (14)

and

q?ðsÞ ¼
cos hð0Þ

cð0Þ IcðsÞ: (15)

Taking n2 ¼ 0 in Eq. (13) and representing n1 simply as n
one can write the solution on the plane of constant azimuth

as

Pðs; nÞ ¼ 1

4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðsÞ
cð0Þ

cos hð0Þ
q?ðsÞqðsÞ

s

� exp �ix sðsÞ þ 1

2

pðsÞ
qðsÞ n

2

� �� �
: (16)

Equation (16) is similar to the Gaussian beam expres-

sion for a waveguide with cylindrical symmetry18,20

Pðs; nÞ¼ 1

4p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cðsÞ
cð0Þ

coshð0Þ
rqðsÞ

s
exp �ix sðsÞþ1

2

pðsÞ
qðsÞn

2

� �� �
:

(17)

The term 1=
ffiffi
r
p

appears in Eq. (17) due to the cylindrical

spreading of the pressure field, and the expression itself is an

asymptotic solution of the wave equation, which breaks

down at the source position. Therefore, a “blind” numerical

application of Eq. (17) to rays propagating back to the source

produces waves, which are focused back to the source and

break down in its vicinity. When compared to Eq. (17) one

can notice that Eq. (16) contains the parameter q?ðsÞ instead

of r; since q?ðsÞ is proportional to the ray arclength, beam

amplitudes given by Eq. (16) always decrease independently

of rays propagating forwards or backwards. This feature of

Eq. (16) is expected to be relevant for backscattering studies.

The field given by Eq. (16) is not sufficient for TRACEO to

account properly for phase and amplitude corrections every

time a ray hits a boundary; in such case the beam amplitude is

multiplied by a boundary reflection coefficient, which takes

into account shear speed and shear attenuation;21 the full

expression of such reflection coefficient is presented in Appen-

dix A. Additional corrections to the ray amplitude are intro-

duced using finite element ray tracing22 and phase corrections

induced by caustics (which are described in detail in Ref. 18).

To understand the method implemented in TRACEO for

particle velocity calculations let us recall that particle veloc-

ity v is related to acoustic pressure P in the frequency do-

main through the relationship23

v ¼ � i

xq
rP; (18)

where q represents the watercolumn density, and x stands

for the frequency of the propagating wave. The factors q and

x only affect the amplitude of v, while the imaginary unit

implies a phase shift of p=2 radians. Without these factors

particle velocity can be viewed as the gradient of acoustic

pressure. To obtain this gradient, TRACEO calculates the

acoustic pressure on a star-shaped stencil, with the hydro-

phone located at the star’s center; outer points are located at

the coordinates ðr 6 D; z 6 DÞ. The points aligned along the

horizontal are used to calculate the coefficients of a para-

bolic interpolator (described in Appendix B), and those coef-

ficients allow determination of the horizontal derivative at

the center; a similar procedure is followed for the points

aligned along the vertical. To avoid aliasing, the spacing

between an outer point and the center is taken (arbitrarily) as

corresponding to D ¼ k=10, where k represents the acoustic

wavelength. Interpolation is preferred to analytic expressions

derived from Eq. (16) or Eq. (17) because either of them is

written in terms of ray coordinates ðs; nÞ, instead of horizon-

tal and vertical coordinates. Such analytic expressions are

elaborate and can be used only with a Gaussian beam model,

while the interpolation approach is valid for any model and

can easily be extended to three dimensions.

B. Numerical example

The capabilities of TRACEO require intense testing

through comparisons with other models, a discussion of

backscattering issues in more detail and comparison between

experimental data and field predictions when targets are

present in the water column (just to mention a few further

directions of research). Such issues go far beyond the main

goals of the discussion presented here and will be addressed

in future studies. The numerical example in this section is

limited to a comparison of TRACEO predictions of the horizon-

tal and vertical components of particle velocity (hereafter

represented as u and w, respectively), with the corresponding

values found from analytic expressions for an elastic bottom

Pekeris waveguide (shear included); the compressional and

shear potentials of such a waveguide are well known in the

literature,24 and the particle velocity components are easily

calculated from the analytic expressions for both potentials.

It is worth remarking that, from the point of view of normal

modes, the contribution of lower-order modes is enhanced in

the field of u, while the field of w is enhanced by the contri-

bution of higher-order modes.25 The comparison between

particle velocity calculations from the analytic solution and

TRACEO predictions for the flat waveguide (200 Hz,

z0 ¼ z1¼ 145 m) is shown in Fig. 2; in both cases the ana-

lytic solution is indicated by the solid curve, while the model

prediction is indicated by the dashed curve. The interpola-

tion approach is so accurate in the case of u that the two

curves are difficult to distinguish [Fig. 2(a)]. The approach is

less accurate for w, with the model exhibiting some over-

shooting of the analytic solution [Fig. 2(b)], although it does

correctly reproduce the interference pattern in both phase

and amplitude in range.

IV. BENCHMARKING

Seismo-acoustic benchmarking of the ray solution

against tank data is discussed in this section through a

712 J. Acoust. Soc. Am., Vol. 132, No. 2, August 2012 Camargo Rodrı́guez et al.: Ray model benchmarking against tank data

Downloaded 06 Dec 2012 to 194.210.253.176. Redistribution subject to ASA license or copyright; see http://asadl.org/terms



systematic set of comparisons with transmission loss curves

calculated from tank experimental data at model frequencies

of 125, 200, and 275 Hz. Comparisons against EPEE-1 data

are discussed in Secs. IV A and IV B for the flat and upslope

waveguides, while comparisons againts EPEE-2 data for the

flat to downslope, upslope to flat, and upslope to downslope

waveguides are discussed in Secs. IV C–IV E. Results from

Secs. IV A and IV B can be related to Figs. 4 and 7 from

Ref. 6, respectively; the results for the EPEE-2 data concern

source-receiver configurations not discussed in Ref. 7. In all

sections, tank data is shown in the figures as a solid curve,

while the dashed curve indicates TRACEO predictions; addi-

tionally, the plots are arranged with frequency increasing

from top to bottom; geometries (source depth, receiver

depth, and source-receiver range) are all given in model val-

ues. It is worth remarking that the benchmarking was not

limited to the mentioned set of frequencies. Additional com-

parisons were performed at model frequencies of 100 and

300 Hz, with no appreciable deviation from what was found

at the chosen set of frequencies. Since no new information

was provided by the benchmarking at such frequencies, com-

parisons are not included in the discussion. In order to pro-

duce TRACEO predictions as objectively as possible the

following procedure was followed: the number of rays was

taken, arbitrarily, as high as 201 rays, in order to ensure that

field coherence was properly modeled at all frequencies.

Source aperture corresponded to 55:25�; that value was

obtained by minimizing the standard deviation over aper-

tures in the interval [35�, 85�] of the difference between the

experimental transmission loss and the model transmission

loss for the flat waveguide at the “central” model frequency

of 200 Hz. Thus, 201 rays between �55.25� and 55.25� were

calculated by TRACEO at all frequencies, for all waveguides,

and for all considered source/receiver configurations.

FIG. 2. Particle velocity calculations at 200 Hz for the flat waveguide

(z0 ¼ z1¼ 145 m): u (top); w (bottom). Solid curve: analytic solution;

dashed curve: TRACEO’s prediction (compare with the middle plot of Fig. 3).

FIG. 3. Benchmarking for the flat waveguide, source at 69.1 m and receiver

at 137.1 m: 125 Hz (top); 200 Hz (middle); 275 Hz (bottom). Solid curve: tank

data; dashed curve: TRACEO’s prediction (compare with Fig. 4 of Ref. 6).
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A. Flat waveguide

Tank experiment and model curve comparisons for the

flat waveguide are shown in Fig. 3. In all cases the ray model

consistently and accurately reproduces the phase and ampli-

tude behavior of experimental data, although occasional

overshooting is observed. Despite the eventual limitations

that one would expect from ray predictions at low frequen-

cies the match between TRACEO and experimental data is

remarkably accurate at 125 Hz. The results can be compared

directly with Fig. 4 of Ref. 6 and indicate that for the given

configuration the accuracy of both TRACEO and ROTVARS is

nearly the same.

B. Upslope waveguide

Tank experiment data and model curve comparisons for

the upslope waveguide are shown in Fig. 4. As one might

FIG. 4. Benchmarking for the upslope waveguide, source at 63.4 m and re-

ceiver at 15.6 m: 125 Hz (top); 200 Hz (middle); 275 Hz (bottom). Solid

curve: tank data; dashed curve: TRACEO’s prediction (compare with Fig. 7 of

Ref. 6).

FIG. 5. Benchmarking for the flat to downslope waveguide, source at

74.2 m and receiver at 75.8 m: 125 Hz (top); 200 Hz (middle); 275 Hz (bot-

tom). Solid curve: tank data; dashed curve: TRACEO’s prediction (compare

with Figs. 2 and 3 of Ref. 7).
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expect ray results improve as frequency increases and

TRACEO produces accurate predictions in all cases (with

matches that at first glance appear even more accurate than

those of the flat waveguide). The match is surprisingly good

in many cases near the final ranges if one takes into account

the existing bottom gap beyond the end of the PVC slab. The

results can be compared directly with Fig. 7 of Ref. 6 and

indicate, one more time, that for the given configuration

there are no significant differences in the predictions pro-

duced by either TRACEO or ROTVARS.

C. Flat to downslope waveguide

Tank experiment data and model curve comparisons for

the flat to dowslope waveguide are shown in Fig. 5. The fig-

ures reveal some undershooting or overshooting of the

FIG. 6. Benchmarking for the upslope to flat waveguide, source at 73.5 m

and receiver at 78.7 m: 125 Hz (top); 200 Hz (middle); 275 Hz (bottom).

Solid curve: tank data; dashed curve: TRACEO’s prediction (compare with

Figs. 4 and 5 of Ref. 7).

FIG. 7. Benchmarking for the upslope to downslope waveguide, source at

72.1 m and receiver at 74.8 m: 125 Hz (top); 200 Hz (middle); 275 Hz (bot-

tom). Solid curve: tank data; dashed curve: TRACEO’s prediction (compare

with Fig. 6 of Ref. 7).
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solution near the end of the slab, although the behavior is not

consistent over frequency. Curiously the slight deviation of

TRACEO’s prediction from experimental data does not start at

the range where the slab ends, but slightly beyond that range.

Despite the slight mismatch, TRACEO properly reproduces the

phase variations of the experimental data. A partial compari-

son can be done with Figs. 2 and 3 from Ref. 7 (the data is

from the EPEE-2 experiment, but for different source and re-

ceiver depths), which indicates that TRACEO exhibits nearly

the same accuracy as ROTVARS.

D. Upslope to flat waveguide

Tank experiment data and model curve comparisons for

the upslope to flat waveguide are shown in Fig. 6. In this

case the general trend of the ray model is to slightly under-

shoot the experimental data near the final ranges, although

phase variations are again accurately reproduced by the nu-

merical solution. A partial comparison can be done with

Figs. 4 and 5 from Ref. 7 (the data are from the EPEE-2

experiment, but for different source and receiver depths),

which shows no significant differences in the accuracy of ei-

ther TRACEO or ROTVARS.

E. Upslope to downslope waveguide

Tank experiment and model curves for the upslope to

downslope waveguide are shown in Fig. 7. This case could

be considered to be the most difficult to simulate because of

the significant change in bottom slope and it reveals in fact a

set of less satisfactory matches to the experimental data. The

comparisons are somehow intriguing for two reasons: first,

one can notice that the mismatch is much more severe at the

“central” model frequency of 200 Hz; second, the mismatch

at 275 Hz is more severe near the middle of the waveguide

than near the end. Additional comparisons with the RAMS

model26 (not shown here) produced a similar set of results.

Curiously, Fig. 6 in Ref. 7 (which is related also to the

EPEE-2 experiment, but for different source and receiver

depths) exhibits a similar pattern.

V. CONCLUSIONS AND FUTURE WORK

The discussion presented in the previous sections demon-

strated the feasibility of using a ray approach for seismo-

acoustic studies related to acoustic propagation over isotropic

elastic bottoms. Systematic benchmarking of the TRACEO ray

model to experimental tank data, representative of propaga-

tion over elastic bottoms with sharp slope transitions exhibited

a high degree of accuracy, comparable to the one already

found with ROTVARS. As an experimental validation of the

TRACEO model the results are extremely encouraging for fur-

ther model applications, given the unique model features.

Such applications can be oriented, for instance, to seismo-

acoustic inversion of both compressional and shear bottom

properties, using either standard hydrophone or vector sensor

arrays, as long as the bottom does not exhibit a complex lay-

ered structure. Benchmarking results shown in Sec. IV indi-

cate that such applications do not require necessarily to deal

with high frequency propagation, since TRACEO exhibited a

high accuracy at relatively low frequencies. A preliminary

comparison of computational times between TRACEO and RAMS

(which is widely available) on a typical laptop produced aver-

age values of 0.9 s vs 1.8 s, respectively, for the configurations

of the EPEE-1 experiment, and of 1.8 s vs 5.2 s, respectively,

for the configurations of the EPEE-2 experiment. Thus this

particular trend shows TRACEO being faster than RAMS, although

model parameters in the two cases were not optimized to min-

imize computational time without compromising accuracy. At

high frequencies differences in computational times can be

expected to become more relevant. Future directions of

research will necessarily include detailed comparisons with

field data (where mismatch can be expected to become more

relevant), studies of backscattering issues (based on bench-

marking against analytic solutions, backscattering-capable

models, and/or available experimental data), accounting for

ray tracing in elastic layered systems and three-dimensional

field predictions where a ray approach looks like an attractive

alternative for efficient and fast field computations.
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APPENDIX A: RAY MODEL REFLECTION
COEFFICIENT FOR AN ELASTIC BOTTOM

The calculation of the reflection coefficient for the elas-

tic bottom is given by the following expression:21

Rðh1Þ ¼
Dðh1Þ cos h1 � 1

Dðh1Þ cos h1 þ 1
; (A1)

where

Dðh1Þ ¼ A1

	
A2ð1� A7Þ

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A2

6

q
þ A3A7

. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� A5=2

p 

;

A1 ¼
q2

q1

; A2 ¼
~cp2

cp1

; A3 ¼
~cs2

cp1

;

A4 ¼ A3 sin h1; A5 ¼ 2A2
4; A6 ¼ A2 sin h1;

A7 ¼ 2A5 � A2
5;

~cp2 ¼ cp2

1� i~acp

1þ ~a2
cp

; ~cs2 ¼ cs2

1� i~acs

1þ ~a2
cs

;

~acp ¼
acp

40p log e
; ~acs ¼

acs

40p log e
;

the units of attenuation should be given in dB/k and the angle

h1 is given relative to normal to the bottom (see Fig. 8). In

general the reflection coefficient is real when acp ¼ acs ¼ 0,

and the angle of incidence h1 is less than the critical angle hcr,

with hcr given by the expression
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hcr ¼ arcsin
cp1

cp2

� �
: (A2)

Attenuation can be expected to be negligible when h1 < hcr ,

and for small h1 the energy transferred to shear waves in the

elastic medium is only a small fraction of the total energy

transferred.

APPENDIX B: BARYCENTRIC PARABOLIC
INTERPOLATION

The barycentric parabolic interpolator can be described

as follows: let us consider a set of three points x1, x2, and x3

aligned along the X axis, and the corresponding function val-

ues f ðx1Þ, f ðx2Þ, and f ðx3Þ. At a given point x between x1 and

x3 the interpolant can be written as

f ðxÞ ¼ f ðx1Þ þ a2ðx� x1Þðx� x3Þ þ a3ðx� x1Þðx� x2Þ:
(B1)

It follows from this expression that

a2 ¼
f ðx2Þ� f ðx1Þ
ðx2� x1Þðx2� x3Þ

and a3 ¼
f ðx3Þ� f ðx1Þ
ðx3� x1Þðx3� x2Þ

:

The approximations for the derivatives become

df

dx
¼ a2ð2x� x1 � x3Þ þ a3ð2x� x1 � x2Þ

and

d2f

dx2
¼ 2ða2 þ a3Þ:
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FIG. 8. Ray reflection at an elastic media interface.
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velocity calculations using different acoustic models, and tests the performance of estimators for geoacoustic inversion
using acoustic pressure, particle velocity components and direct and approximated values of the vertical component only.
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1 INTRODUCTION

Vector Sensor Arrays (hereafter VSAs) are progressively becoming more and more attractive among
the underwater acoustics community, mainly due to the advantages of VSAs over arrays of standard
hydrophones. While the later measure only acoustic pressure, VSAs measure particle velocity as
well; such feature increases by a factor of four the amount of information that can be used for the
processing of acoustic data, leading to a substantial improvement of array performance. Since VSA
sensor technology is relatively recent, and thus not yet fully available, one can consider using closely
located pairs of standard hydrophones to estimate the vertical component of particle velocity; the
estimation uses the difference of acoustic pressure, measured at each pair. The present discussion
introduces a review of particle velocity calculations based on the theoretical background provided by
different acoustic models; additionally, the discussion tests the performance of geoacoustic estimation
using acoustic pressure, particle velocity components, and direct and approximated values of the
vertical component only. The conclusions are presented at the end of the discussion.

2 PARTICLE VELOCITY ESTIMATION

Particle velocity v is related to acoustic pressure P in the frequency domain through the relationship
[1]

v = − i

ωρ
∇P , (1)

where ρ represents the watercolumn density, and ω stands for the frequency of the propagating wave.
The factors ρ and ω only affect the amplitude of particle velocity, while the imaginary unit implies
a phase shift of π/2 radians. Without such factors particle velocity can be viewed as the gradient of
acoustic pressure; therefore, the gradient of acoustic pressure will be identified as the particle velocity
in the discussion that follows.

2.1 NORMAL MODE APPROACH

The typical normal mode approach is based on the solution of the wave equation for a waveguide with
cylindrical symmetry, and further representation of acoustic pressure as the product of two functions;
the first function is range dependent, while the second function is depth dependent. The differen-
tial equation for the depth dependent function provides a set of orthogonal solutions, called normal
modes. The analytical expression for the normal mode expansion can then be written as [2]

P (r, z) = S(ω)
eiπ/4

ρ(zs)
√
8π

M∑

m=1

um(zs)
eikmr

√
kmr

um(z) (2)
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where S(ω) stands for the source spectrum, zs is the source depth and ρ stands for water density. It
follows from Eq.(2) that the horizontal derivative of acoustic pressure corresponds, approximately, to

u ≈ iS(ω)
eiπ/4

ρ(zs)
√
8π

M∑

m=1

um(zs)km
eikmr

√
kmr

um(z) (3)

while the vertical derivative corresponds (exactly) to:

w = S(ω)
eiπ/4

ρ(zs)
√
8π

M∑

m=1

um(zs)
eikmr

√
kmr

dum

dz
. (4)

Following [3] one can notice that both p and u are expanded on the basis of modes um(z), while w is
expanded on the basis of dum/dz. In a general sense one can write that

dum

dz
≈ iγmum(z) where γm =

√
ω2/c2 − k2m stands for the vertical wavenumber. (5)

Additionally, since γm increases with increasing mode number the net effect of the derivative is to
enhance the contribution of higher modes in the field of w, relative to the stronger weighting of low
order modes in the fields of p and u. Thus, Eq.(2) provides a clear framework to distinguish the
different enhancement of modes in the fields of u and w. Additional approaches for the calculation of
particle velocity from acoustic pressure will follow in the next sections. To this end and without loss of
generality it will be considered that S(ω) = 1 and ρ(z) = constant.

2.2 GAUSSIAN BEAM APPROACH

Within the Gaussian beam approach the influence of a given ray to the field of acoustic pressure can
be written as [4]

P (s, n) =
1

4π

√
c(s)

c(0)

cos θ(0)

q⊥(s)q(s)
× exp

[
−iω

(
τ(s) +

1

2

p(s)

q(s)
n2

)]
, (6)

where s and n stand for the ray arclength and the ray normal, respectively, c(s) stands for sound speed
along the ray trajectory, θ(0) is the launching angle, and p and q are beam parameters, obtained from
the solution of dynamic equations. The acoustic pressure at a given point is obtained summing the
influences of different rays passing near the hydrophone. The pressure gradient can be written in
terms of ray arclength and ray normal as

∇P =
∂P

∂n
en +

∂P

∂s
es , (7)

where es and en are unitary vectors, oriented along s and n, respectively. The two vectors are related
to the ray elevation θ through the relationships

es = [cos θ, sin θ] and en = [− sin θ, cos θ] (8)

(see Fig.2.2). In order to obtain analytical expressions for the derivatives along n and s let us rewrite
Eq.(6) as

P (s, n) = P0(s) exp

[
−iω

(
s

c(s)
+

1

2
γ(s)n2

)]
, (9)

where s/c(s) = τ(s) and γ(s) = p(s)/q(s). Therefore, the first derivative corresponds exactly to

∂P

∂n
= −iωγ(s)nP . (10)

The exact derivative along s produces a cumbersome expression due to the dependence of the dif-
ferent factors on s. Since the exponential factor has the largest impact on the derivative one can write
approximately that

∂P

∂s
= −i ω

c(s)
P . (11)
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Further, the velocity components (u,w) can be calculated projecting the gradient components ∂P/∂n
and ∂P/∂s onto the (r, z) axes as

u = (∇P · er) = −
∂P

∂n
sin θ +

∂P

∂s
cos θ (12)

and
w = (∇P · ez) =

∂P

∂n
cos θ +

∂P

∂s
sin θ (13)

where er and ez stand for the unitary vectors along r and z, respectively.

r

z

θ

θ

e se n

∂P

∂n
e n ∂P

∂s
e s

Figure 1: Ray polarization vectors es and en and pressure gradient components along the n and s
directions; θ stands for the ray elevation (i.e. the ray angle relative to the r axis).

2.3 PARABOLIC EQUATION APPROACH

The parabolic approach is based on the substitution of the wave equation with a parabolic equation
(hereafter PE), which contains a single derivative along range; following [5,6] one can write that

P (r, z) = P0
1√
r
Ψ(r, z) exp (ik0r) (14)

where
∂Ψ

∂r
= −ik0ĤΨ , (15)

k0 = ω/c0, c0 is a reference sound speed and Ĥ represents a total energy-like differential operator.
Given Ψ(0, z) a marching solution can be obtained by integrating Eq.(15) progressively along range
through a split-step technique. PE models can be divided into two categories depending on how Ĥ is
approximated, namely Padé approximations and spectral techniques. Padé approximations replace
Ĥ with rational polynomials, which reduce Eq.(15) to a set of tridiagonal linear equations, which are
solved at each range step. Spectral techniques rely on the properties of Fourier transforms to solve
Eq.(15) in the wavenumber domain, providing the following marching solution [5]

Ψ(r +Δr, z) = exp
(
−ik0ΔrÛ

)
× FFT

[
exp

(
−ik0ΔrT̂

)
× Ψ̂(r, k)

]
(16)

where Ψ̂(r, k) is the inverse Fourier transform of Ψ(r, z) and T̂ + Û = Ĥ. The spectral technique
allows to obtain closed-form analytical expressions for particle velocity; in particular (and without loss
of generality) the operators T̂ and Û for the standard parabolic equation correspond to

T̂ = − 1

2k20

∂2

∂z2
and Û = −1

2

(
n2 − 1

)
,
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where n = c/c0. The corresponding expressions for u and w become

u = u0 exp (ik0r)× (u1 + u2 − u3) , (17)

w = w0 exp (ik0r)× FFT
[
ikΨ̂(r, k)

]
, (18)

where
u1 = i

Ψ(r, z)

2k0r
, u2 =

1

2
(n2 + 1)Ψ(r, z)

and

u3 = FFT

[
1

2

(
k

k0

)2

Ψ̂(r, k)

]
.

2.4 INTERPOLATION (MODEL-INDEPENDENT) APPROACH

The previous approaches are all model-based in the sense that the calculation of u and w is based
on derivatives of an analytical expression for acoustic pressure; such expressions are specific to
the model considered. The approach used in the acoustic model TRACEO relies on a barycentric
parabolic interpolator, which is used to estimate both horizontal and vertical derivatives. The inter-
polator is constructed using a star-like stencil of five points; the center of the star coincides with
the position of the hydrophone, while the horizontal and vertical points are located at the left and
right sides of the hydrophone, and also above and below it. Acoustic pressure is calculated at the
five points of the stencil; the points aligned along the horizontal are used to calculate the horizontal
derivative at the star’s center; the vertical derivative at the same position is calculated using the points
aligned along the vertical. The spacing between an outer point and the star’s center corresponds to
λ/10; such choice is expected to avoid frequency aliasing. The interpolator itself can be described
as follows: let us consider a set of three points x1, x2 and x3, and the corresponding function values
f(x1), f(x2) and f(x3).

x1 x2 x3

x
�� �� ���� X

Figure 2: Barycentric parabolic interpolation.

At a given point x (see Fig.2) the interpolant can be written as

f(x) = f(x1) + a2 (x− x1) (x− x3) + a3 (x− x1) (x− x2) . (19)

It follows from this expression that

a2 =
f(x2)− f(x1)

(x2 − x1) (x2 − x3)
and a3 =

f(x3)− f(x1)

(x3 − x1) (x3 − x2)
.

The approximations to the derivatives become

df

dx
= a2 (2x− x1 − x3) + a3 (2x− x1 − x2)

and
d2f

dx2
= 2 (a2 + a3) .

The validity of the interpolation approach will be discussed in the following section.
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3 TRACEO’S DESCRIPTION AND PRELIMINARY VALIDATION

TRACEO is a Gaussian beam model, which is under current development at the SiPLAB of the Uni-
versity of Algarve.1 The model was developed in order to:

• Predict acoustic pressure and particle velocity in environments with elaborate upper and lower
boundaries, which can be characterized by range-dependent compressional and shear proper-
ties. Modeling particle velocity is important for vector sensor applications and can be used, in
particular, for geoacoustic inversion with high frequency data [7–9].

• Include one or more targets in the waveguide.

• Produce ray, eigenray, amplitude and travel time information. In particular, eigenrays are to be
calculated even if rays are reflected backwards on targets located beyond the current position
of the hydrophone.

A preliminary validation of TRACEO’s accuracy for particle velocity calculations is presented here
through the comparison between TRACEO’s predictions and the exact results of particle velocity
calculations for a Pekeris waveguide (shear included); the compressional and shear potentials of
such a waveguide are well know in the literature, [10] and the particle velocity components are easily
calculated from the analytic expressions for both potentials. The comparison is shown in Fig. 3 for the
set of parameters f = 200 Hz, zs = 69.1 m, zr = 137.1 m, D = 145 m, cp = 2290 m/s, cs = 1050 m/s, ρb
= 1.378 g/cm3, αp = 0.76 dB/λ and αs = 1.05 dB/λ; in both cases the analytic solution is indicated by
a solid curve, while TRACEO’s prediction is indicated by a dashed curve. The interpolation approach
is so accurate in the case of u that the two curves are difficult to distinguish (Fig. 3(a)). The approach
is less accurate for w, with TRACEO exhibiting some overshooting of the analytic solution (Fig. 3(b)),
but still reproducing the interference pattern in both phase and amplitude along range.
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Figure 3: Particle velocity calculations for the Pekeris waveguide: u (left); w (right). In both cases the
solid curve represents the analytic solution, while the dashed curve represents TRACEO’s prediction.

4 SIMULATIONS

The performance of geoacoustic estimation using acoustic pressure or particle velocity components
is discussed in this section through simulations of the Makai waveguide [8]. The discussion is divided
in three parts, namely:

• TRACEO predictions will adress the performance of geoacoustic estimation when the Bartlett
estimator is calculated using either p, u or w; the similarities and differences between the esti-
mators will be outlined.

1http://www.siplab.fct.ualg.pt.
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• TRACEO predictions for the best estimator will be validated through comparisons with the pre-
dictions provided by other models.

• TRACEO geoacoustic estimation using Δp will be compared with the estimation obtained with
model predictions of w.

4.1 ESTIMATION USING P , V AND W

The geoacoustic estimation performed with TRACEO considers an idealized Makai waveguide, in
which the true value of sediment compressional speed corresponds to 1570 m/s; during the exper-
iment it was used a VSA with 4 hydrophones between depths 79.6 to 79.9 m, and signals were
transmitted to a range of 1830 m. The Bartlett estimator was calculated at 13078 Hz in the interval
from 1500 m/s to 1800 m/s using either p, u or w; the three estimators are shown in Fig.4. The figure
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0.4

0.6

0.8

1

Sediment compressional speed

A
m
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itu

de

 

 
p
u
w

Figure 4: Bartlett estimators of compressional sound speed using acoustic pressure p, horizontal com-
ponent of particle velocity u and vertical component of particle velocity w, calculated with TRACEO.
The true value of compressional speed is indicated by the vertical dashed line.

reveals significant differences between the estimators using p or u, and the estimator using w; in fact,
the first two estimators practically coincide, and exhibit a weak variation over the interval of consid-
ered compressional speeds; on the other side the estimator using w is significantly narrower over the
same interval. Therefore, the results clearly indicate a clear advantage for geoacoustic estimation of
using w over the use of either p or u.

4.2 ESTIMATION USING W WITH DIFFERENT MODELS

To further validate the geoacoustic estimation based on w from the previous section a new set of
calculations was considered using three more acoustic models, namely KRAKEN (a normal mode
model [2]), Bellhop (a Gaussian beam ray tracing model [4]) and MMPE (a parabolic equation model
[6]). However, running KRAKEN and MMPE at 13078 Hz required such a fine discretization in depth
and range which implied extremely long calculations, besides occupying significant disk space. To
deal with both issues (and since the main purpose of the simulation is to validate geoacoustic esti-
mation using w) it was decided to calculate the Bartlett estimator at 500 Hz for an idealized array with
6 hydrophones, between depths 75 to 80 m. The corresponding curves are shown in Fig.5; although
the curves do not exhibit the same behaviour the general trend is very similar, with a narrow peak
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around the true value of compressional sound speed. Remarkably, there is an excellent agreement
between TRACEO and KRAKEN predictions. Such results confirm not only the advantage of relying
on w for geoacoustic estimation, but also the validity of the interpolation approach for the calculation
of particle velocity components.
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TRACEO
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Figure 5: Bartlett estimators of compressional sound speed using w, calculated with TRACEO, Bell-
hop, KRAKEN and MMPE. The true value of compressional speed is indicated by the vertical dashed
line.

4.3 ESTIMATION USING ΔP INSTEAD OF W

Following the results from the previous section the Makai waveguide was again considered as de-
scribed in section 4.1, but with an hypothetical array of five standard hydrophones, located between
depths 79.55 to 79.95 m. Acoustic pressure for such array was calculated again with TRACEO, and
the “true” data was calculated as consecutive differences of acoustic pressure (2nd hyd minus 1st
hyd, 3rd hyd minus 2nd. hyd, and so on); thus, the covariance matrix was calculated using such
true data. Further, when calculating the Bartlett estimator, TRACEO predicted the values of w for an
array of four hydrophones between depths 79.6 to 79.9 m. The results of geoacoustic estimation at
13078 Hz using both w and Δp are shown in Fig.6, which shows that the two curves coincide almost
perfectly. However, data for the second curve would require an array of standard hydrophones, while
the data for the first curve would require a VSA.

5 CONCLUSIONS AND FUTURE WORK

The discussion presented here is extremely encouraging for the development of VSAs with pairs of
standard hydrophones, which would measure not only acoustic pressure but also the vertical com-
ponent of particle velocity. The applications for geoacoustic estimation at high frequencies were
positively outlined, and ray tracing models (despite apparent shortcomings) were shown to perform
quite efficiently and accurately for estimation. There are, however, important issues that remain to
be considered such as, for instance, if the accuracy of estimation is going to hold over arbitrary dis-
tances. Additionally, the sensitivity of estimation to noise corruption and to the type of ocean bottom
(which implies significant differences in the values of compressional sound speed) will require detailed
discussion in the future.
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Figure 6: Bartlett estimators of compressional sound speed using w and Δp, calculated with TRACEO.
The true value of compressional speed is indicated by the vertical dashed line.
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Abstract: This paper aims at estimating the azimuth, range and depth of a cooperative
broadband acoustic source with a single vector sensor in a multipath underwater
environment, where the received signal is assumed to be a linear combination of echoes
of the source emitted waveform. A vector sensor is a device that measures the scalar
acoustic pressure field and the vectorial acoustic particle velocity field at a single location in
space. The amplitudes of the echoes in the vector sensor components allow one to determine
their azimuth and elevation. Assuming that the environmental conditions of the channel are
known, source range and depth are obtained from the estimates of elevation and relative time
delays of the different echoes using a ray-based backpropagation algorithm. The proposed
method is tested using simulated data and is further applied to experimental data from the
Makai’05 experiment, where 8–14 kHz chirp signals were acquired by a vector sensor array.
It is shown that for short ranges, the position of the source is estimated in agreement with the
geometry of the experiment. The method is low computational demanding, thus well-suited
to be used in mobile and light platforms, where space and power requirements are limited.

Keywords: vector sensors; source localization; ray backpropagation
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1. Introduction

This paper proposes a single sensor based three-dimensional localization method that, by taking
advantage of the spatial filtering capabilities of a vector sensor, allows for a low computational
demanding implementation, suitable for light real-time systems. An acoustic vector sensor (VS) is a
device that measures the three orthogonal components of the particle velocity simultaneously with the
pressure field at a single position in space. Vector sensors have been long used for target localization
by the US Navy, due to their inherent spatial filtering capabilities [1]. In the early 1990s, in a paper
that received considerable attention, D’Spain et al. [2] presented results for single-element and full
array beamformed data acquired by an array of 16 vector sensors, the directional frequency analysis and
recording (DIFAR) array. During the last two decades, several authors have conducted research on the
signal processing theory of vector sensors (see, for instance, [3–5] and the references therein). Although
the majority of that work is related to direction of arrival estimation, in the last decade, vector sensors
have been proposed in other fields, like port and waterway security [6], underwater communications [7],
geoacoustic inversion [8–10] and geophysics [11].

Taking advantage of the intrinsic spatial filtering capability of a vector sensor (a typical VS presents
a figure of height directivity pattern and a directivity index of 4.8 dB [12]), the usage of a single vector
sensor for the direction of arrival estimation (azimuth and elevation) was considered by several
theoretical and simulation studies. Due to the collocation of the pressure and the orthogonal particle
velocity sensing elements in a single vector sensor device, the direction of arrival algorithms can be
frequency invariant, thus computationally simple direction of arrival (DOA) algorithms can be used for
a priori unknown and time-varying broadband signals in the presence of spatially distributed broadband
interferences [13]. Azimuth and elevation algorithms for tracking of a passive source using a single
vector sensor were proposed by Liu et al. [14] based in Kalman filters and Awad and Wong [15] based
in a recursive least-squares. The performance of both methods were compared in [15] considering a
simulation scenario.

Due to multipath, in shallow water environments, the waveform impinging on a receiver is a sum of
different echoes. Rahamim et al. [16] proposed various vector sensor array (VSA)-based direction
of arrival estimators for multipath environments and evaluated their performance using simulations.
Arunkumar and Anand [17] proposed a method for three-dimensional (3D) source localization of a
narrowband source using a vector sensor array. Their method is based in a normal mode representation
of a range-independent shallow ocean. It is shown that the azimuth of the source can be estimated
directly from the horizontal components measured at a vector sensor array, the range is obtained by
closed form, and the depth is estimated by a matched-field approach. Hurtado and Nehorai [18] analyzed
the performance of a passive direction of arrival and a range estimation method of a source in the air
above the ocean based on the interference between the direct and sea-surface reflected field impinging
on polarization-sensitive (electromagnetic) sensors.

Thanks to technological advances and small size, low noise underwater acoustic vector sensors with
improved dynamic range and bandwidth are becoming available [19]. Those compact sensors are
well-suited to be used in light systems, where space and computational resources are limited and energy
consumption is of concern, as, for example, in autonomous underwater vehicles (AUV) and similar
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mobile platforms. Hawkes and Nehorai [20] proposed a fast broadband intensity-based algorithm for
determining three-dimensional localization of a source using distributed vector sensors situated on a
reflecting boundary. The method considers that each vector sensor is impinged on by a direct echo,
which determines the elevation of the source, and by a reflected echo. The reflected echo does not affect
the azimuth estimate, as long as the environment is considered homogeneous, but it introduces errors in
elevation estimation. The authors proposed a method that filters out the reflected echo, thus achieving
a more accurate elevation estimate of the source. The performance of the method was shown for a
simulated environment, where the three-dimensional localization of the source was obtained from a set
of azimuth and elevation estimates obtained from distributed vector sensors.

The present paper shows that the azimuth, range and depth of a high frequency broadband cooperative
source, slowly moving (<0.3 m/s) in a shallow water environment, can be tracked in the presence of
multipath using a single vector sensor. The azimuth and elevation of the echoes impinging on the vector
sensor are estimated from the amplitude of the particle velocity components using a least squares-based
algorithm. Then, a ray backpropagation method [21] is applied to estimate source range and depth, where
ray trajectories are launched from the receiver at the elevation angles estimated from the various echoes.
Afterwards, the range and depth estimates are obtained by least squares minimization of an objective
function that combines the ray trajectories and the relative travel times estimated in the previous stage.
The range and depth estimation method can be implemented with a single forward ray tracing model
run. Additionally, when only the direct and the surface-reflected echoes are considered, source range
and depth can be estimated using the source image method. Although the method requires a priori
a complete record of the source signal, it is very simple to implement even in light platforms, thus
suitable for real-time localization and tracking of cooperative sources. The proposed method is tested
with simulated data and applied to a data set acquired during the Makai Experiment (Makai’05) held in
September 2005, off the coast of Kauai Island (Hawaii, HI, USA) using a Wilcoxon TV-001 vector sensor
device [22]. The orientation of the x- and y-axes of the vector sensor, initially unknown, is determined
from the ship self noise using an intensity method [23], based on the inner product between the sample
pressure and the various particle velocity components. The results obtained from a 8–14 kHz chirp signal
transmitted from a cooperative source are in agreement with the known geometry of the experiment,
showing that the 3D localization of the source is achieved for ranges until 500 m (the azimuth alone
was tracked along a 2 km transect [24]). The method presented herein is very fast when compared with
single hydrophone methods [25–28], which require a large number of time-consuming forward model
runs associated with complex optimization procedures.

This paper is organized as follows: Section 2 presents the theoretical framework considered in the
data processing and analysis. In Section 3, the proposed method is tested in a simulated scenario.
Section 4 shows and discusses the results obtained on a real data set, and Section 5 summarizes the
paper. Preliminary results of this work were presented in [29].
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2. Theoretical Framework

2.1. The Measurement Model

In the following, a vector sensor is considered that measures the pressure, p(t), and the three
orthogonal components of the particle velocity, vx(t), vy(t) and vz(t), along the x-, y- and z-axes,
respectively. The vector sensor is located at the origin of the Cartesian coordinate system, x–y being
the horizontal plane and x–z the vertical plane. The azimuth, Θ (−180◦ ≤ Θ ≤ 180◦), and elevation,
Φ (−90◦ ≤ Φ ≤ 90◦), are defined in a conventional manner.

Without loss of generality, it is assumed that the signal impinging on the vector sensor is in the
far-field and band-limited; thus, pressure, p(t), is related to particle velocity, v, by:

∂v

∂t
= − 1

ρ0
∇p (1)

where ρ0 is the medium density and∇ is the gradient operator.
Assuming a monochromatic signal of frequency, ω, one can write that:

v = − 1

jωρ0
∇p (2)

where j is the imaginary unit. In the far-field of a free-space environment with sound speed, c0, the
wavefront is planar; thus:

v =
1

ρ0c0
pu (3)

where u = [ux, uy, uz] is the unit vector pointing to the source (thus, in the opposite direction of the
wavefront propagation).

When a field due to a point source in the far-field is sampled by a vector sensor with small
dimension compared to the signal wavelength, then the wavefront can by considered planar. Thus, from
Equation (3), the measured pressure and particle velocity components are related by:




p(t)

vx(t)

vy(t)

vz(t)


 =




s(t)

αs(t)ux

αs(t)uy

αs(t)uz


 +




n(t)

nx(t)

ny(t)

nz(t)


 (4)

where s(t) is the source waveform, ux = cos(Φs) cos(Θs), uy = cos(Φs) sin(Θs), uz = sin(Φs), Φs is
the source elevation and Θs is the source azimuth. The proportionality factor, α, arises directly from
Equation (3), but in a more general setting, it can also account for any existing proportionality in the
output streams of a vector sensor device, due to the various electro-mechanical principles used to measure
pressure and particle velocity. In Equation (4), n(t) represents additive pressure noise, and nx(t), ny(t),
nz(t) its particle velocity counterparts. A common assumption is that signal and noise are uncorrelated
both in time and space. The cross-correlation between the four vector sensor components have been
studied by several authors [30,31]. It was demonstrated that in the presence of azimuthally isotropic
noise, the horizontal particle velocity and the pressure components are mutually uncorrelated. Moreover,
if the noise is spherically symmetric, the vertical particle velocity term is also uncorrelated with the other
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noise terms. Furthermore, the noise power at the pressure channel is equal to the sum of noise power at
the so-called pressure equivalent of particle velocity [31], which is obtained by the product of the particle
velocity by −ρ0c [23].

2.2. Intensity-Based Azimuth Estimation

Intensity-based source direction estimation was considered in the pioneering work of
D’Spain et al. [2]. Later on, Nehorai and Paldi [23] revisited the method and analyzed its statistical
performance in terms of the Cramér-Rao bound and mean square angular error. The method is based
on the cross-correlation between the pressure measurements and the various components of the particle
velocity, which allow one to estimate the factors, αux, αuy and αuz, and, subsequently, the direction of
the impinging wavefront. Taking into account that the signal and the noise are zero mean uncorrelated
processes and the pressure and the x component of the particle velocity in Equation (4), one can write
the cross-correlation at lag 0 between these two vector sensor components as:

E [vx(t)p(t)] = αuxE
[
s2(t)

]
+ E [nx(t)n(t)] (5)

where E [ ] is the expectation operator and E [s2(t)] represents the energy of the signal as seen by the
vector sensor. The term, E [nx(t)n(t)], represents the cross-correlation (at lag 0) between the pressure
and the x component of the particle velocity noise. For a number of cases, in the presence of isotropic
noise, this term can be assumed to be zero (see [30,31]) or, in practice, a small fraction of the signal power
term (high signal to noise ratios (SNR) situation). Thus, for high SNR, αux can be estimated directly
from the cross-correlation (at lag 0) between the pressure and the x component of particle velocity.
Similar analysis holds for the cross-correlation between the pressure and the y component of the particle
velocity.

Assuming that s(t) and the noise components are ergodic processes, a possible estimator for the
azimuthal direction of the source signal, Θs, is given by:

Θ̂s = arctan
〈vy(t)p(t)〉
〈vx(t)p(t)〉

≈ arctan
uy
ux

(6)

where 〈 〉 stands for time averaging, and the approximate expression was obtained using Equation (5).
The full 360◦ azimuth is resolved, taking into account the sign of the numerator and denominator of
Equation (6).

If the following assumptions hold: (1) the source is in the far field; (2) 3D propagation effects can
be neglected; (3) the frequency of the signal is high compared with the cutoff frequency of the acoustic
channel—therefore it acts as a waveguide—and (4) the receiver is far from the boundaries—the method
above can be used even in a multipath environment [20]. However, due to multipath, a similar approach
cannot be, in general, used to estimate elevation, since the energy generated by the source impinges on
the vector sensor in multiple arrivals (echoes) from different elevation angles; thus, the elevation seen by
the vector sensor is in some sense only a “mean” elevation [20].
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2.3. Amplitude-Delay-Angle Estimation in a Multipath Environment

In an underwater environment, it is a common assumption to consider that the multipath structure
received on a sensor well away from the channel boundaries is a sum of plane waves. Thus, the ocean
acts as a linear system, and neglecting the Doppler, the waveform sampled by the pressure sensor is:

p(t) =
M∑

m=1

ams(t− τm) + n(t) (7)

where M is the number of echoes, am and τm are, respectively, the strength (amplitude) and time delay
of the m-th echo and n(t) represents the additive noise. In the far-field, the pressure and the particle
velocity components are in phase [32]; therefore model Equation (7) can be extended to the particle
velocity field by:



vx(t)

vy(t)

vz(t)


 =




M∑
m=1

axms(t− τm)

M∑
m=1

ayms(t− τm)

M∑
m=1

azms(t− τm)




+



nx(t)

ny(t)

nz(t)


 (8)

where the coefficients, axm, a
y
m, a

z
m, are the attenuation along the m-th path for the three components

of the particle velocity. The noise sequences, nx(t), ny(t), nz(t), are additive zero mean, mutually
uncorrelated and uncorrelated with the signal, which is a fair assumption when the sensor self-noise
is the most relevant noise component. Making the further assumption that the signal, s(t), is known
and has a narrow autocorrelation, a least-squares or maximum likelihood approach for time delay and
amplitude estimation can be applied [26]. Given the estimates of axm, a

y
m, a

z
m, the elevation (and azimuth)

of the different echoes can be obtained by simple relations.
Considering a snapshot of N samples acquired at a sampling interval, ∆t, System Equation (8) can

be written as:
Y = S(τ)A + N (9)

where Y is a matrix of dimension, N × 3, whose columns, vx,vy,vz, represent the components of
the vector sensor (Y = [vx|vy|vz]), amplitude matrix, A, is of dimension, M × 3, A = [ax|ay|az],
ax, ay, az are the vectors of amplitudes of individual components and matrix S(τ) has dimensionN×M
(τ = [τ1, ...τm, ..., τM ]), where the m-th column is given by s(τm) = [s(−τm), ..., s((N − 1)∆t− τm)]T .
Matrix N of dimension (N × 3) represents the noise components (N = [nx|ny|nz]).

If the amplitude matrix, A, is deterministic, a least squares approach can be used to estimate the
amplitudes and time delays [26]. Assuming that the delays are known, the amplitudes are estimated by
minimizing the functional:

Â(τ) = arg{min
A
‖ Y − S(τ)A ‖2} (10)

whose solution is given by:
Â(τ) =

[
SH(τ)S(τ)

]−1
SH(τ)Y (11)

where the superscript H represents complex conjugate transpose. Since the time delays are generally
unknown, the amplitudes are estimated for each plausible time delay, giving rise to a delay-amplitude
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curve. When the autocorrelation function of the source signal is sharp and the relative time delays
are of smaller order than the observation time (N∆t), then the envelope of the absolute value of a
delay-amplitude curve is known as the arrival pattern. The amplitude-delay estimates of the echoes are
given by their M highest peaks (absolute value). When the noise is white and the different echoes suffer
uncorrelated perturbations, the amplitude-delay estimation procedure can be equivalently obtained by a
matched filter [26]; thus, independently for each vector sensor component. In the case of a stationary
environment and when several transmissions are available, the amplitude estimates can be obtained
by averaging.

Once the coefficients, âxm, â
y
m, â

z
m, of the m-th echo are estimated, then the corresponding azimuth,

θ̂m, and elevation, φ̂m, are given by:

θ̂m = arctan
âym
âxm

(12)

φ̂m = arctan
âzm√

(âxm)2 + (âym)2
. (13)

The elevation estimates, along with the relative echo arrival times, form the basis for the source
range-depth estimation algorithm.

2.4. Range-Depth Estimation by Backpropagation

The source range and depth backpropagation estimation procedure used in this work was introduced
by Voltz and Lu [21] for a vertical hydrophone array. Let us assume an ideal noise-free scenario, where
a source is transmitting a signal, and one is able to accurately determine the elevation and associated
arrival times of the signal echoes impinging on a receiver. By the reciprocity principle, a ray launched
from the receiver at a given angle has the same trajectory as an echo received at that elevation angle. One
says that such a ray is backpropagated. One should note that backpropagation, like other model-based
methods, requires a priori knowledge of the environment (e.g., sound speed profile, bathymetry and
bottom parameters) [33].

Source localization is possible by tracing the trajectories of, at least, two echoes impinging on the
receiver from different elevation angles and searching for range-depth points, where trajectories intersect
each other. Several intersection points can occur along the trajectories; however, the source position can
be uniquely determined by using the knowledge of relative time delays between echoes. This can be
done by time aligning the different rays, i.e., delaying rays by the estimated relative delays. Since the
ray trajectories depend on the sound speed profile and bathymetry, the method is sensitive to uncertainties
in those parameters. In practice, estimates of the elevation and travel time are also affected by noise. The
estimate, r̂, of the source range, r, and ẑ of the depth, z, can be obtained by joint minimization of the
mean square error:

r̂ = arg{min
r,τa

M∑

m=1

[rm(τa)− r]2} (14)

ẑ = arg{min
z,τa

M∑

m=1

[zm(τa)− z]2} (15)
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where τa is the aligned time, rm(τa) and zm(τa) are, respectively, the range and depth of the m-th
(m = 1 · · ·M ) backpropagated ray trajectories at time, τa. The well-known solution for this optimization
problem is the average range and depth given by:

r̂(τa) =
1

M

M∑

m=1

rm(τa) (16)

ẑ(τa) =
1

M

M∑

m=1

zm(τa) (17)

at a time, τa, where the range variance, σ2
r(τa), and the depth variance, σ2

z(τa), are obtained when:

σ2
r(τa) =

1

M

M∑

m=1

[rm(τa)− r̂(τa)]2 (18)

σ2
z(τa) =

1

M

M∑

m=1

[zm(τa)− ẑ(τa)]
2 (19)

jointly attain the minimum. Thus, a possible objective function to be minimized is the sum of
variances, i.e.:

σ2(τa) = σ2
r(τa) + σ2

z(τa) (20)

or, equivalently, its square root, σ (aka standard deviation).
This method is numerically very efficient, since it only requires the computation of the trajectory and

respective travel time of few rays and a one-dimensional search.

2.5. Range-Depth Estimation by the Image Method

Assuming that the sound speed profile is (approximately) isovelocity and that the geometry of the
experiment allows for a direct and a surface-reflected echo between the source and the receiver, the
source range and depth can be estimated by simple geometric relations based on the source image method
(Figure 1). α being the elevation of the direct echo and β the elevation of the surface-reflected echo as
seen by the receiver, the source range, r, and depth, d, are related by the following equations:

r tanα + d = h

r tan β − d = h
(21)

where h is the receiver depth. The solution of Equation (21) for r and d is straightforward. Although
limited to a particular geometry, the source image method allows one to determine the range and
depth of a source without the need for a ray tracing code, which can be advantageous to implement
in light systems.
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Figure 1. Geometry of the source image method.

3. Numerical Examples

For testing the methods presented in the previous section and anticipating their performance on
real data, the environmental and geometry scenario used for simulation is based on that of the
Makai Experiment [34]. The simulation scenario is shown in Figure 2, where a vector sensor is
suspended from a research vessel at 40 m depth. The sound source was suspended at 10 m depth and
moved along a straight line between 100 m and 1,000 m range from the receiver, transmitting a linear
frequency-modulated (LFM) chirp with a duration of 50 ms and a frequency band of 8–14 kHz. The
bathymetry is range-dependent with water depth 104 m at the receiver and 203 m at the source when
at 1,000 m range. The sound speed profile at the vector sensor location is represented in Figure 2,
showing a thick mixed layer with a thermocline starting at 60 m depth. The bottom was modeled as a
half-space characterized by the values estimated in [10]: a bottom compressional speed of 1,575 m/s,
a density of 1.5 g/cm3 and a compressional attenuation of 0.6 dB/λ. In these simulations, it will be
assumed that the azimuth is known; thus, only horizontal and vertical particle velocity components
are considered. The channel pressure and particle velocity field frequency response were modeled by
the cTraceo ray tracing model [35]. The time domain received waveforms were computed by Fourier
synthesis. Figure 3 shows the eigenrays (paths of the echoes that impinge on the receiver) when the
source is at a range of 900 m (Figure 3(a)) and the arrival patterns for the pressure, horizontal and vertical
particle velocity (Figure 3(b–d), respectively). The arrival patterns for the pressure are normalized by the
overall maximum, whereas the arrival patterns for the particle velocity components are normalized by
the joint overall maximum. Note that the scale used for the particle velocity arrival patterns are different.
In the eigenrays plot, one can notice a direct echo and a surface reflected echo, which correspond to
the earliest peaks in the arrival patterns plots. These echoes have low angles relative to the horizontal
plane containing the source, which decrease with an increasing source-receiver range. This behavior is
observed in the particle velocity components, especially in the vertical component, where the amplitude
of the peaks in the first cluster decreases as the source gets further way from the receiver. The latter
echoes are bottom reflected. These echoes are also clustered in groups of two echoes depending on
the number of surface reflections. Bottom reflected echoes have wider angles and lower amplitudes
(especially pressure), mainly due to the attenuation in the bottom. Note that in the vertical particle
velocity arrival patterns, the latter peaks have relatively higher amplitudes, since for wider angles, the
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module of sin(Φ) tends to unity. The amplitudes of the different echoes as seen by the vector sensor
components illustrate, in the time domain, the spatial filtering capabilities of a single vector sensor.

Figure 2. Makai’05 scenario used for the simulation: the source deployed at 10 m depth
moves between a 100 and 1,000 m range from the vector sensor deployed at 40 m. The
sound speed profile shows a large mixed layer, characteristic of Hawaii, USA. The bottom
parameters are those estimated in [10].

Figure 3. Makai’05 simulation scenario of Figure 2: eigenrays for a source at 900 m (a);
and arrival patterns for various source ranges—pressure (b); horizontal particle velocity (c);
and vertical particle velocity (d).

(a) (b)

(c) (d)
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A number of 100 realizations were generated according to model Equation (8), but limited to a
horizontal and a vertical vector sensor component and source ranges from 100 to 900 m. The additive
noise was independent for each component and obeyed a Gaussian distribution. Two different signal to
noise ratios (SNR), 5 and 20 dB, at the receiver were generated. Since, in the considered geometry, the
received energy in the horizontal component is higher than in the vertical component, as can be seen from
the arrival structure shown in Figure 3, the SNR is related to the horizontal component, thus representing
the worst case scenario. The elevation angles of the four earlier echoes impinging on the vector sensor
were estimated independently for the different realizations. Then, the mean and the standard deviation
were computed for each echo from the realization ensemble. In order to reduce time and amplitude
discretization-related errors, the sampling frequency of the received waveforms (48 kHz) was increased
(interpolated) by a factor of 10. The results are summarized in Table 1, where the lines labeled true show
the values predicted by the forward ray tracing model.

The values in brackets represent the standard deviation. The star mark appears when a sign error
occurs at least once in the ensemble of realizations for the given echo. It can be seen that the absolute
errors are always smaller then 1.2 degrees, and as expected, the standard deviation increases with
decreasing SNR. Generally, the SNR at the receiver for distant signals decreases, which, in turn, also
contributes to a higher variance of the estimates. Unsurprisingly, the sign error of the estimates increases
significantly with decreasing SNR. The autocorrelation function of an LFM chirp is an oscillatory
function; thus, due to the noise, the location of the absolute maximum that determines the sign of the
elevation estimates can be shifted by an oscillation period, therefore resulting in a sign error. This
situation is illustrated in Figure 4, showing the amplitude-delay curve (horizontal and vertical particle
velocity) in the neighborhood of the first echo for two realizations at a source range of 300 m. One can
observe that the sign of the peak of the vertical particle velocity changed among realizations. This sign
ambiguity of the elevation estimates could be, in principle, minimized using a second vector sensor.

Figure 4. Zoom of the amplitude-delay curve in the neighborhood of the first echo for two
signal realizations (5 dB SNR) at a source distance of 300 m showing the expected behavior
(a) and a sign error (b). The horizontal particle velocity (Vr) is represented by the solid line
and the vertical particle velocity (Vz) by the dashed line. The arrows indicate the peaks.

(a) (b)
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Table 1. Estimated angles of the four earliest echoes impinging on the vector sensor at
different source distances as given by the forward model (true) and estimated considering
an signal to noise ratios (SNR) of 20 and 5 dB. The values in curved brackets represent
the standard deviations. The star mark indicates that at least one sign error occurred in the
ensemble of estimates for the given echo.

Source Depth 10 m Echo Number
Range [m] SNR [dB] 1 [◦] 2 [◦] 3 [◦] 4 [◦]

100
True 16.3 26.1 −60 −63 model
20 17.3 (0.1) 27.3 (0.1) −59.4 (0.5) −62.5 (0.7) estimate
5 17.3 (0.4) 27.4 (0.4) −59.4 (3.4) * −62.1 (3.7) * estimate

300
True 5.6 9.3 −30.8 −33.8 model
20 5.9 (0.1) 9.9 (0.1) −31.8 (0.4) −34.4 (0.3) estimate
5 5.9 (0.4) * 10.1 (0.5) −31.9 (2.3) * −34.5 (2.0) * estimate

500
True 3.3 5.5 −20.7 −22.8 model
20 3.7 (0.1) 5.8 (0.1) −21.8 (0.3) −23.8 (0.3) estimate
5 3.7 (0.5) * 5.8 (0.5) −21.9 (1.5) * −24.0 (2.1) * estimate

700
True 2.3 3.9 −15.9 −17.6 model
20 2.5 (0.1) 4.1 (0.1) −16.8 (0.2) −18.8 (0.4) estimate
5 2.7 (0.6) * 4.1 (0.4) * −16.8 (1.3) * −18.7 (2.0) * estimate

900
True 1.8 2.9 −13.2 −14.5 model
20 1.9 (0.1) 3.1 (0.1) −14.1(0.2) −15.2 (0.2) estimate
5 2.1 (0.5) * 3.2 (0.5) * −14.1 (1.0) * −15.3 (1.0) * estimate

Next, using the elevation angle estimates for the 5 dB SNR presented in Table 1 and respective arrival
times (not shown), the source range and depth were estimated applying the ray backpropagation and
source-image method. For the ray backpropagation method, the estimates were obtained considering
three different sets of echoes (the results are summarized in Table 2): all four echoes, the direct and the
surface reflected echoes only (column labeled echoes 1&2 ) and the bottom reflected echoes only (column
labeled echoes 3& 4). For the image method only, the direct and surface-reflected echoes are considered.
Figure 5 illustrates the backpropagation method when the source is at a 900 m range. Figure 5(a) presents
the backpropagated rays, where one can notice that the rays do not intercept at a single point, due to
angle and travel time estimation errors. The objective function dependence in the range is plotted for
four echoes in Figure 5(b) and for two echoes in Figure 5(c). For each case, the estimated source range is
given by the minimum of the objective function and corresponding depth (respectively, lower and upper
plots of Figure 5(b,c)). Whereas the objective function for four backpropagated rays has a single sharp
minimum (Figure 5(b)) when only two rays are backpropagated, the shape of the objective function is
smooth, giving rise to an increased ambiguity (Figure 5(c)), especially in ranges close to the receiver,
because of the very short relative time delay between echoes and the close shooting angles.

Generally, range and depth estimation errors increase with source range, since small angle
perturbations from the nominal value give rise to larger range depth perturbations. However, the errors
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are less than 2 m in depth and 75 m in range at the maximum range of 900 m, the worst case considered.
The results obtained from the latter echoes, which are bottom reflected, present higher estimation errors
than those obtained from direct and surface reflected echoes. Bottom reflection is frequency dependent,
which is accounted for by the forward propagation model used to synthesize the received signal; however,
the backpropagation uses only the echo path and travel time computed at a given frequency (in general,
the middle frequency of the signal band). Moreover, bottom reflected echoes are more attenuated
(depending on the bottom structure and the angle of incidence); thus, they are more affected by noise.
One can also notice that the source image method gives reasonable estimates in the considered scenario,
even at longer ranges, because the sound speed profile is almost isovelocity in the source-receiver layer.

Figure 5. Source localization results for the scenario of Figure 2 using the backpropagation
method for source range and depth, 900 m and 10 m, respectively and SNR = 5 dB: true
source and receiver position (represented by the star) and backpropagated rays (a), ambiguity
curves (σ) and source-localization plot considering four rays (b) and two rays (c). The arrows
in plots (b) and (c) indicate the estimated source position (upper plots) and the corresponding
minimum of the ambiguity curve (lower plots).

(a) (b)

(c)
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Table 2. Estimates of range and depth of a simulated source at 10 m depth, between a 100
and 900 m range from the receiver. The backpropagation method was applied to the four
echoes, the earlier two echoes (1& 2) and the last two echoes (1& 2). The source image
method was applied to the earlier two echoes. The range and depth estimates were obtained
using estimates of the elevation angles from simulated data with 5 dB SNR.

Simulated Ray Backpropagation Image Method
Depth 10 m 4 Echoes Echoes 1&2 Echoes 3 &4 Echoes 1&2

Range Range Depth Range Depth Range Depth Range Depth
[m] [m] [m] [m] [m] [m] [m] [m] [m]

100 102.5 10.0 99.4 10.2 104.3 9.7 95.7 9.9
300 299.3 10.2 300.1 11.3 290.3 8.9 282.1 10.5
500 499.4 9.8 500.9 9.5 469.1 9.4 477.6 8.8
700 649.1 9.6 668.1 8.2 640.2 8.3 649.5 10.9
900 829.2 8.6 804.5 8.4 830.1 8.4 857.7 8.3

4. Experimental Data Results

4.1. Experimental Setup

The data set analyzed here was acquired during the Makai Experiment (Makai’05), which took place
off the west coast of Kauai I. in September 2005. The Makai’05 experiment was devoted to high
frequency acoustics, and details of the experimental setup are described in [34]. This paper is concerned
with the data acquired during the field calibration event, whose geometry is identical to that used in
the numerical example (Figure 2). The vector sensor acquisition system used in the experiment was
composed by four Wilcoxon TV-001 vector sensors [1,6,22], configured in a vertical array with 10 cm
element spacing. The system was suspended off the stern of the research vessel, Kilo Moana, with a
150 kg weight at the bottom, to ensure that the array stayed as close to the vertical as possible. The
z-axis was vertically oriented downwards, with the deeper sensor at 40 m. In the present data analysis,
only the vector sensor at 40 m is considered. In the field calibration event, a Lubell 916C sound source
deployed at 10 m depth from a small rubber boat was towed during a period of one hour from a 2.5 km
distant point towards the research vessel that was holding a fixed position. Figure 6 shows the rubber
boat GPS fixes and the research vessel (R/V) Kilo Moana location superimposed on the bathymetry of
the area. The rubber boat track starts at a deeper location, moving along the continental steep slope
towards a smooth and uniform area with a water depth of approximately 104 m. The source signals
used for localization in this work were transmitted at various locations between approximately 600 m
northwest and 100 m southeast of the R/V Kilo Moana, respectively, GPS fixes 4 and 6 in Figure 6.
Ground truth measurements were carried out in this area during previous experiments and showed that
most of the bottom in the area is covered with coral sands over a basalt hard bottom. The acoustic
parameters of the sediment were estimated by Santos et al. [10], for the bottom compressional speed,
attenuation and density—values already used in Section 3 of this paper. The Lubell 916C sound source
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transmitted 50 ms long LFM chirps spanning the 8–14 kHz band, transmitted in blocks of 30 chirps from
various ranges along the track. The signals were acquired at a sampling frequency of 48 kHz. Due to
a technical problem, the time stamp in the data is not synchronized with GPS; therefore, the precise
position of the source for the various blocks of acquired data is not available. Figure 7 shows the time
series (Figure 7(a)) and spectrograms (Figure 7(b)) of the received waveforms, when the source was at
approximately 350 m range, where a strong multipath effect can be seen. The response of the vertical
component should also be noted, which emphasizes the latter arrivals when compared with pressure or
horizontal components: the relative amplitude of the latter arrival appearing approximately at 0.1 s is in
the vertical component, higher than in the other components. This differentiating spatial response of the
vertical component was explored in [10,36] to enhance the resolution of bottom parameter estimates.
Technical problems with the gain of the pre-amplifiers explain why the amplitude of signals received
from larger distances and those that suffer bottom reflections, which are more attenuated, is very low. In
the next section, only the transmissions at a source-receiver range smaller than 500 m and the direct and
surface reflected arrivals are considered.

Figure 6. Bathymetry of the Makai’05 experimental area for the field calibration event with
the superimposed research vessel R/V Kilo Moana location (pentagon) and GPS fixes of the
source rubber boat (square). The values in brackets represent the distance to the R/V Kilo
Moana.

4.2. Azimuth, Elevation and Travel Time Estimates

The received signal was filtered for a ship noise band (90–350 Hz) and an acoustic source band
(8–14 kHz) by linear phase bandpass filtering. The ship noise was used to determine the orientation
of the x-axis relative to the ship. For this purpose, the azimuth of the ship noise was estimated using the
intensity-based method. The estimates were obtained by applying Equation (6) to ship noise received
simultaneously with LFM chirps. The azimuth estimates are presented in a reference frame, where the
x-axis is aligned west-east and the y-axis is aligned south-north. The elevation angles are considered
positive towards the surface. The azimuth estimates obtained from the ship noise are very stable along
the whole experiment [24,37].
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Figure 7. Waveforms received from a 350 m distant source for the various vector sensor
components (a) and respective spectrograms (b).

(a) (b)

As a first step to localize the source, the arrival times and amplitudes of the various echoes
impinging on the vector sensor from each transmitted chirp were estimated from the arrival patterns
using Equation (11). Since the transfer function of the transmission chain was unknown, a simulated
undistorted LFM chirp was used in the amplitude arrival time estimation procedure. In order to
increase the travel time and amplitude resolution, the acquired signal was up sampled by a factor of
10, becoming the virtual sampling frequency of 480 kHz. Figure 8 shows the delay-amplitude curve
in the neighborhood of the first echo for the three vector sensor components at two different source
ranges, illustrating that the travel time of an echo varies significantly among vector sensor components.
While in Figure 8(a), the various components are nearly in phase, in Figure 8(b), a significant deviation
occurs. Data inspection revealed that the perturbations varied among distances and among echoes, but
were stable for the same echo number among transmissions at a given distance. Thus, for azimuth and
elevation estimates, using Equations (12) and (13), respectively, the different components were treated
independently. The amplitude of a given component was considered, where its absolute maximum
occurs, whereas the associated travel time to be used in the backpropagation algorithm was that of
the z-component. For the reasons explained above, only the direct and surface-reflected echoes were
used for source range-depth estimation. For each distance, six chirps in the signal block were processed;
azimuth and elevation were estimated. For the azimuth estimation only, the direct echo was considered.
Table 3 presents the mean values and the standard deviations of those estimates, and for the sake of
clarity, the range estimates are discussed in next section. As discussed in the numerical examples, the
sign of the estimates suffer from a large ambiguity; thus, the sign of the elevation angle of the chirp
echoes was assigned using the previous knowledge of the geometry. However, the sign of the azimuth
of the ship noise was determined directly from the data. The orientation of the vector sensor relative
to the R/V Kilo Moana given by the azimuth estimates from the ship noise was stable along time. This
behavior was also observed for the other Makai’05 events for a full vector sensor array [37] and a single
vector sensor [24]. One should note that the standard deviations of the elevation angles are lower for
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direct than for surface reflected echoes, which have a smaller amplitude and are subject to perturbations
induced by the ocean surface. The high standard deviation of azimuth estimates at position min 54 and
min 57 can be explained by the shorter range. A horizontal displacement at a shorter range gives rise to
a higher azimuth perturbation when compared with similar displacement at a longer range.

Figure 8. Zoom of the amplitude-delay curve in the neighborhood of the first echo for
the x-component (solid line), y-component (dotted line) and z-component (dashed line) at
approximate source-receiver distances of 250 m (a) and 350 (b).

(a) (b)

Table 3. Mean azimuth and elevation estimates obtained at various instants of the Makai’05
field calibration event for the ship noise (azimuth only) and for the broadband sound source
at 10 m depth and a range between 100 and 400 m (estimated from acoustic data, Figure 10).
The values in brackets represent the estimated standard deviation.

Time [min] Source Range [m]
Azimuth [◦] Elevation [◦]

Ship Noise Source Dir.Echo Surf.Ref.Echo
90–350 Hz 8–14 kHz

35 386.3 132.4 136.1 (0.2) 4.1 (0.1) 7.5 (0.1)
48 357.5 132.2 137.3 (0.8) 4.9 (0.1) 7.5 (0.7)
50 279.8 134.4 140.9 (0.4) 5.5 (0.3) 9.8 (1.3)
54 100.8 133.1 135.1 (2.3) 16.7 (0.2) 25.7 (2.0)
57 114.2 131.7 −10.2 (1.0) 14.0 (0.4) 23.8 (1.0)
60 145.4 132.2 −12.6 (0.6) 12.4 (0.2) 17.8 (1.1)

4.3. Range-Depth Estimates

The range and depth of the source were estimated with the ray backpropagation method using the
elevation angles of the direct and surface reflected echoes and respective relative arrival times. In order
to obtain an estimate of the standard deviation of the estimates, the objective function is an average of
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the objective functions computed for each single realization of the transmitted chirp signal. Figure 9(a)
shows the direct and surface reflected backpropagated rays with elevation angles estimated from six
chirps transmitted at min 57, where the source was at a range of 114 m. The overall objective function
(ambiguity curve) dependence in the range computed from these rays (and travel time estimates) is
shown in the lower plot of Figure 9(b), whereas the estimated source range is given by the minimum of
the objective function and the corresponding depth in the upper plot. The range and depth estimates at
various source distances obtained by backpropagation are presented in Table 4. Column σ represents the
minimum of the square root of the objective function, where the smaller values (smaller variance), are
attained at closer ranges. Model-based source localization methods are, in general, not considered for
real-time implementations, because of the time needed to compute the optimization procedure, which
requires a large number of forward model runs, but a non-optimized Matlab implementation of the
ray backpropagation method took less than 4 s in a current laptop. It is expected that further code
optimization would allow for real-time application.

Figure 9. Makai’05 source range-depth estimation at min 57 of the field calibration event
considering six sets of backpropagated rays (12 rays) (a). The ambiguity curve (b) has the
minimum (indicated by the arrow) at the 114 m range, lower plot, corresponding to 11.5 m
depth in the upper plot.

(a) (b)

For comparison purposes the results obtained using the source image method are also shown in
Table 4. At longer distances, the difference between the estimates obtained by both methods increases,
due to the cumulative effect of considering a constant sound speed with the image method. One should
remark that the source depth estimates are in close agreement with the nominal depth of the source of
10 m. Figure 10 shows a polar plot with the location of the source using the source range and azimuth
estimates, which are represented by stars. The squares represent the positioning of the source relative to
the R/V Kilo Moana (at the origin) estimated from the ship’s GPS and a handheld GPS device on the
source’s boat. Unfortunately, the handheld GPS device had no recording capabilities; thus, the source
path between GPS fixes is uncertain. Since the range estimates by GPS and by acoustics are affected
by some offset, because of the different location of the vector sensor and GPS on board the R/V Kilo
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Moana, and there is no time stamp in the acoustic data, this did not allow for synchronization between
acoustic and GPS data. The source track derived from acoustic data are in relatively close agreement
with GPS fixes.

Table 4. Source range and depth estimates at various instants of the Makai’05 field
calibration event using the ray backpropagation method and the image method. The column
marked, σ, represents the minimum of the square root value of the objective function used
with the backpropagation method. The true source depth is 10 m. The estimated range values
compare with the GPS fixes in Figure 10.

Time [min]
Ray Backpropagation Image Method

Range [m] Depth [m] σ [m] Range [m] Depth [m]

35 386.3 10.54 6.7 391.1 11.7
48 357.5 10.55 9.4 367.1 8.3
50 279.8 11.1 1.8 298.8 11.0
54 100.8 10.1 1.5 101.9 9.2
57 114.2 11.5 1.0 115.0 11.0
60 145.4 7.9 1.2 146.7 7.3

Figure 10. Estimated source location (cross marks) relative to the R/V Kilo Moana (located
at the origin) of the Makai’05 field calibration event. The square marks indicate GPS fixes
obtained with a handheld GPS on board the source rubber boat. The values in brackets
represent the time (in min) of Tables 3 and 4.
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5. Conclusions

This paper illustrates the spatial filtering capabilities of a vector sensor applied to source localization
of a known broadband signal in a multipath environment. It was shown that the estimation of the angle
of arrival (elevation) of a single echo was possible. Given the estimates of the amplitudes of the echoes
in the vx,vy and vz vector sensor components, a method to estimate the source azimuth and the elevation
was presented. The elevation angles of the direct and surface reflected echoes were used to estimate
source range and depth localization by a ray backpropagation algorithm. The method was discussed
in the context of simulated data and for a real data set acquired during the Makai Experiment. It was
shown that for ranges below 500 m, it was possible to estimate the source range and depth in agreement
with the known geometry of the experiment. To the best of our knowledge, this is the first work in open
literature that reports 3D localization results with a single vector sensor in a shallow water environment.
In comparison with other model-based methods discussed in the literature for source localization using
a single device (hydrophone), the present method explores the spatial filtering capabilities of a single
vector sensor to significantly reduce the number of forward model runs; thus, it can be potentially
implemented in low end or light real-time systems.
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