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Dr. André Quinquis, Prof. Dr. Cédric Gervaise, was always on my
side, to discuss many, many ideas, and the work’s progress, every-
day. Thanks also to all the people at ENSIETA that gave me the
opportunity to spend a good time there. Returning to SiPLAB,
led by Prof. Dr. Sérgio Jesus, I won’t forget the active listening of
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Abstract

Blind deconvolution is studied in the underwater acoustic channel
context, by time-frequency (TF) processing. The acoustic propa-
gation environment is modelled by ray tracing and mathematically
described by a multipath propagation channel. Representation of
the received signal by means of a signal-dependent TF distribu-
tion (radially Gaussian kernel distribution) allowed to visualize the
resolved replicas of the emitted signal, while significantly attenua-
ting the inherent interferences of classic quadratic TF distributions.
The source signal instantaneous frequency estimation was the star-
ting point for both source and channel estimation. Source signa-
ture estimation was performed by either TF inversion, based on
the Wigner-Ville distribution of the received signal, or a subspace-
-based method. The channel estimate was obtained either via a
TF formulation of the conventional matched-filter, or via matched-
-filtering with the previously obtained source estimate. A shallow
water realistic scenario is considered, comprising a 135-m depth wa-
ter column and an acoustic source located at 90-m depth and 5.6-km
range from the receiver. For the corresponding noiseless simulated
data, the quality of the best estimates was 0.856 for the source
signal, and 0.9664 and 0.9996 for the amplitudes and time-delays
of the impulse response, respectively. Application of the proposed
deconvolution method to real data of the INTIMATE ’96 sea trial
conduced to source and channel estimates with the quality of 0.530
and 0.843, respectively. TF processing has proved to remove the
typical ill-conditioning of single sensor deterministic deconvolution
techniques.
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Resumo

Neste trabalho, é abordado o problema de desconvolução cega, no
contexto do canal acústico submarino, através de processamento
no domı́nio tempo-frequência (TF). O ambiente de propagação
acústica é modelado por traçamento de raios e matematicamente
descrito por um canal de propagação de múltiplos caminhos. A
representação do sinal recebido por uma distribuição TF depen-
dente do sinal (distribuição de núcleo radialmente Gaussiano) per-
mitiu a visualização das réplicas resolvidas do sinal emitido, si-
multaneamente atenuando de forma significativa as interferências
inerentes às distribuições TF quadráticas clássicas. A estimação da
frequência instantânea do sinal da fonte foi o ponto de partida para
as estimações da fonte e do canal. A estimação do sinal emitido
foi feita, quer através de inversão TF baseada na distribuição de
Wigner-Ville do sinal recebido, quer através dum método baseado
em sub-espaços. A estimativa do canal foi obtida, quer através
duma formulação TF do filtro adaptado (matched-filter) conven-
cional, quer através de filtragem adaptada com a estimativa da
fonte obtida previamente. Um cenário reaĺıstico de águas pouco
profundas é considerado, compreendendo uma coluna de água com
135 m de profundidade, e uma fonte acústica localizada a 90 m de
profundidade e a 5.6 km de distância do receptor. Para os corres-
pondentes dados simulados sem rúıdo, a qualidade das melhores
estimativas foi de 0.856 para o sinal da fonte, e de 0.9664 e 0.9996
para as amplitudes e tempos de atraso da resposta impulsiva, res-
pectivamente. A aplicação do método de desconvolução proposto
a dados reais da experiência acuśtica INTIMATE ’96 conduziu a
estimativas da fonte e do canal com a qualidade de 0.530 e 0.843,
respectivamente. O processamento TF provou poder eliminar o
mau condicionamento t́ıpico das técnicas de desconvolução deter-
mińıstica com um único sensor.
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7.12 Source estimate –real part of ŝBM (t)–, in the INTIMATE ’96 sea trial, with ϕ = 0. 86
7.13 Normalized correlation coefficient between the real parts of s(t) and ŝBM (t), for
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Chapter 1

Introduction

Two fundamental problems arising in many signal processing applications are channel and

source signature estimation. Both problems are often referred in the literature as deconvo-

lution. The need for deconvolution arises in a number of important practical areas such as

data transmission, reverberation cancellation, seismic signal processing, image restoration,

etc. High-speed data transmission over a communication channel (e.g., telephone channel)

relies on the use of adaptive equalization. In its traditional form, adaptive equalization

requires the transmission of a training sequence, the exact form of which is known at the

receiver. In seismic deconvolution, the usual procedure is to assume a layered Earth model,

and the requirement is to use the received signal to estimate the sequence of reflection coef-

ficients corresponding to the various layers of the model. The received signal is itself made

up of echoes produced at the different layers of the model in response to the excitation

which has ordinarily the form of a short-duration pulse. In this case, the deconvolution

problem is complicated by the fact that the exact waveform of the excitation responsible

for the generation of the received signal is usually unknown. A similar problem arises in

image restoration. In this application, blurring effects caused by photographic or electronic

imperfections are represented by an unknown system. An original image or scene of interest

constitutes the system input. The system output is a blurred version of the original image.

1



2 CHAPTER 1. INTRODUCTION

Given the blurred image, the requirement is to restore the original image.

Consider Fig. 1.1, which depicts a linear time-invariant (LTI) system (or channel, in

communications’ terminology) with input and output signals. The output signal r(t), which

Figure 1.1: LTI system with input and output signals.

in many cases is some received signal, is defined as the convolution of the input signal s(t) and

the impulse response (IR) h(t) of the system, where it is assumed that the system is causal

and its output is accessible. Deconvolution refers to the problem of determining the IR of

the system and/or the input signal[24]. Deconvolution may assume two forms, depending on

the complexity of the problem. In the first form, either the system is unknown, but its input

is accessible (this is the problem of system identification), or a reliable model of the system

is available, and the requirement is to estimate the unknown input signal –since convolution

is commutative, these two deconvolution problems are mathematically equivalent, within

the single-channel framework. In the second form, the system is unknown and its input is

inaccessible; in this latter situation, deconvolution is referred to as blind deconvolution. Al-

though the term deconvolution is used indifferently in the literature to refer to either channel

or input signal estimation, these two problems will be named herein by channel estimation

and source signature estimation, respectively, when dealing with underwater acoustic signals.

It is well known that the first form of deconvolution is an ill-posed problem, i.e., its solution

is non unique and the inversion is unstable with respect to numerical errors and/or noise.

For example, when the requirement is to estimate the input signal, difficulties are related

to the filtering characteristics of the IR, which can suppress some frequency components of
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the input signal spectrum, thus allowing for a multitude of possible values for the unknown

spectrum in the corresponding null or almost null frequency components of the IR. The

introduction of a priori information, for example through the use of a smoothness constraint

or enforcement of positive definiteness when appropriate, can stabilize the inversion, though

there is no general rule for choosing a suitable regularization parameter[42]. Moreover, when

the input signal is non-stationary (a very common case), and in the presence of noise, there

is usually a need for obtaining a reasonable number of random output signal statistical reali-

zations (snapshots), to estimate second-order statistical quantities of the input signal, noise

and the received signal[46]. Ideally, one would like to estimate the source signal when only

one snapshot of the received signal random process is available, whatever the stationary

character of the emitted or received signals. However, even within a theoretical framework,

it is expected that such an estimate is biased or suffers from a large variance. In blind

deconvolution, usually statistical information about the system transfer function or input is

available[24]. Basically, blind deconvolution involves the use of a nonlinear adaptive filtering

algorithm, designed to extract higher-order statistical information from the received signal.

The large variety of contexts where deconvolution finds application includes ocean acous-

tics, where a fundamental problem is the passive characterization of acoustic transients

in/and the ocean environment. For example, classification is a promising area, where the

objective is the determination of the nature of the transient sound source. Another increasing

interest consists of determining the physical properties of the propagation medium, mainly

water temperature and currents of oceanographic interest.

This work aims to give an approach to solve the problem of blind deconvolution in under-

water acoustics, i.e., obtain at once estimates of the emitted signal and the medium IR repre-
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sentative of its physical properties. The received signal will be modelled as a weighted sum

of time-delayed replicas of the emitted signal. The non-stationarity of the source signal gave

the motivation to explore time-frequency representations’ capabilities, to solve the problem.

In fact, their 2 degrees of freedom (associated to simultaneous time and frequency informa-

tion) allowed to treat both the input signal and the IR as an unknown, with assumptions

about their structure. Analysis of the received signal allowed to identify a time-frequency

representation of one or some replicas of the emitted signal. Inversion of this time-frequency

representation to the time domain gave the source signature estimate. An equivalent for-

mulation of the matched-filter in the time-frequency domain allowed the estimation of the

channel IR, for signals with no amplitude modulation component. For a more general class

of signals, the source signal estimate was incorporated in channel estimation.

In terms of applications, the IR (which synthesizes the physical parameters of interest)

estimate obtained by the proposed blind deconvolution time-frequency approach could then

be matched to a family of candidate IRs to posteriorly recover the physical parameters,

constituting an inversion process which could find some application in ocean acoustic tomo-

graphy. The treatment of the source position as an unknown parameter could be used in

source localization, following the method proposed in [56].

This report is structured as follows. Next chapter justifies and presents the data model.

The mathematical problem formulation, followed by an overview of the state-of-the-art, is

presented in Chap. 3. Chap. 4 reviews the fundamental concepts of time-frequency distri-

butions. An illustrative example of the problem solution, for a linear frequency modulation

source, is given in Chap. 5. Deconvolution robustness to noise is shown in Chap. 6. Applica-

tion of the deconvolution approach to data from the INTIMATE ’96 sea trial is mentioned
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in Chap. 7, followed by the conclusions and perspectives, in Chap. 8.
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Chapter 2

Background in Underwater Acoustics:
Data Model

To get into the problem at hand, let’s consider an underwater scenario, in which a source is

positioned at range 0 and depth z0, and a vertical array of L acoustic sensors (hydrophones)

is positioned at range r0 and depths zl, l = 1, ..., L –Fig. 2.1. In a practical scenario, it is

Figure 2.1: Generic underwater acoustic scenario, modelled as a 3-layer waveguide.

assumed that the array is one of the components of a complex receiving system. At some

instant τ0, the source starts to emit an acoustic signal propagating in the media defined

7



8 CHAPTER 2. BACKGROUND IN UNDERWATER ACOUSTICS: DATA MODEL

by the ocean with its physical limits. Upon emission by the source, an acoustic field is

created, which is partially received by the hydrophone array, after propagation. For each

spatial location in the water column, the created field is dependent on the source signal

and the medium characteristics. The field can be represented by the acoustic pressure

p ≡ p(r0, z0, r, z, t− τ0), where (r0, z0) and (r, z) denote the source position (usually, r0 = 0)

and arbitrary spatial location (cylindrical) coordinates, respectively. In this context, the

acoustic pressure depends on three independent variables (range r, depth z and time t), and

satisfies the wave equation below, describing propagation of an unit impulse source to an

arbitrary location in the waveguide:

∇2p− 1

c2(z)

∂2

∂t2
p− 1

ρ(z)
∇ρ(z) · ∇p = −δ (r − r0) δ (z − z0) δ(t− τ0), (2.1)

subject to appropriate boundary and initial conditions[65, 46, 36]. In (2.1), c(z) and ρ(z)

designate the depth-dependent sound-speed profile and density, respectively. For the space

and time scales considered in this work, these quantities are modelled as time-invariant, and

the emitter can be approximated by a spatially stationary point source, i.e., the source is

assumed to not move until end of emission. Also, the emitted signal is assumed to have small

amplitude, and the ocean is modelled as a stratified medium –Fig. 2.1. Physically speaking,

and if the emitted signal is well approximated by a pulse, this one is subject to a distortion

which is principally the combined effect of multipath, absorption, frequency dispersion and

scattering. All these effects emerge mainly as a consequence of the boundary conditions

(water surface, water-sediment interface, geologic strata) and the variations in sound-speed

throughout depth.

Prediction of the acoustic field due to a source in the ocean, is not a trivial problem,

taking into account the wave equation (2.1). However, a good approximation to the problem
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Figure 2.2: Multi-channel system as a representation of the signals involved in underwater acoustic
propagation, where a propagated emitted signal is received by a set of L hydrophones, with additive
noise.

solution can be obtained, by considering the linear part of the acoustic field[65]. This allows

to regard the ocean as a filter, with a given IR h(t). The modelled invariance of the physical

parameters and boundary conditions, together with the model h(t), lead naturally to the

representation of the propagation scenario as an LTI multi-channel system, from a signal

processing point of view –Fig. 2.2. Following this model, the emitted signal s(t) is convolved

with L LTI single-channel systems hl(t), giving rise to L received signals rl(t) with additive

noise ξl(t), l = 1, ..., L.

There are different types of models (computer solutions to the wave equation) to describe

sound propagation in the sea[36], from which, ray tracing will be adopted in this work. The

ray tracing model originally emerged from optics, where it was used to understand the

propagation of light. In the underwater acoustics context, the model considers that sound

propagates through privileged trajectories (rays) which are perpendicular to level curves or

wavefronts –Fig. 2.3. Ray tracing considers that an infinitude of rays depart from the source,

each associated with a specified angle, the launching angle. The trajectories of the rays are

governed by Snell’s law:

cos [θ(z)]

c(z)
= constant, (2.2)
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Figure 2.3: Illustration of propagation ray tracing modelling: some synthetic ray trajectories. The
left-hand figure shows the sound speed profile considered for the generation of the rays.

where θ(z) represents the angle between the trajectory’s tangent and the horizontal, at depth

z[36]. For each pair of points in the waveguide that are connected by a certain number of

rays, these rays are called the eigenrays for that points. Eigenrays take a special meaning

when the two points are the locations of the source and an hydrophone, respectively. Sound-

speed variations with depth give rise to refraction of acoustic rays, which drives the energy

through the sound channel axis (depth of minimum sound-speed). Let’s consider a point sr

(in ray coordinates[36]) that is the location of an hydrophone. For this point, each eigenray

(departing from the source) will be characterized by an arrival time, written as

τ(sr) = τ0 +

∫ sr

0

dsr
′

c(sr ′)
, (2.3)

where τ0 is the emission instant, c(s′r) is the sound speed at the ray coordinate s′r, and the last

term is the travel-time, defined by an integral along the eigenray path. The other important

parameter (in this work) that characterizes each eigenray is the amplitude, determined by

the conservation of energy flux through the variable cross section of ray tubes (tubes formed

by pairs of adjacent rays)[65]. The received signal in each hydrophone is described as the

sum of each of the eigenrays’ pressure contributions, or arrivals. As each eigenray contains

the information of the emitted signal, it is acceptable to model the received signal as a sum

of various weighted and delayed source signal replicas. Correspondingly, the medium can be
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represented by a series of weighted impulses –Fig. 2.4. Hence, the main information given

Time

A
m
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itu
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Figure 2.4: Typical shallow water IR modulus.

by the ray tracing model concerns travel-times, amplitudes and directions of the wavefronts.

The model is derived under the assumption that the wavelengths are much less than the

water depth and much less than the distance between the source and the receiver1 (however,

at high frequencies, a detailed environmental knowledge is necessary for accurate predic-

tions). Another condition of validity is that the change of sound-speed is negligible over

several wavelengths, once sound is partially reflected at sharp changes of the sound-speed.

Hence, in an environment defined by some sound-speed profile, it is possible to determine

the propagation characteristics (number of paths, amplitudes, travel-times, etc.) by ray tra-

cing models. All the above considerations imply that, when a sound pulse travels through

the ocean, specially in shallow water, it reflects back and forth between the sea surface and

the ocean bottom. Typically, in shallow water, for different source and receiver depths, the

first arrivals are very close in time, while late arrivals are more separated and “clustered” in

quadruplets[60], as shown in Fig. 2.4. From ray-tracing predictions, it can be shown that

most of the initial arrivals correspond to refracted and bottom reflected eigenrays, while the

quadruplets correspond to surface and bottom reflected eigenrays.

The connection between ray tracing and this work consists in modelling the IR as a multi-

1For the cases considered in this work, the ratios between the water depth and maximum wavelength,
and between source-receiver distance and maximum wavelength, are of orders 10 and 103, respectively.
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ple time-delay attenuation channel, where the time-delays and attenuations are respectively

the eigenrays’ travel-times and amplitudes.

Ocean Acoustic Tomography

The knowledge of the underwater medium, while acoustic wave propagation medium, is fun-

damental. In fact, it interests oceanographers, for the physical study of the ocean, since

sound-speed, in water, is dependent on some intrinsic parameters like the temperature, sali-

nity, pressure and density; it concerns the geophysicists who analyze the geologic structure of

the underwater bottom, for seismic sounds (where the petroleum prospection is an important

application); it is primordial to sailor-men, for detection systems (sonars) and underwater

communication. There has been increasing interest in developing techniques to obtain such

a knowledge of the underwater medium, what conduces naturally to a brief explanation

of the tomography concept. Issued essentially from seismology and medicine, tomography

always involves some kind of medium mapping, with a measured quantity as input, which

is directly related to physical propagation through the mapped medium[49]. Examples of

tomography are the Earth’s interior mapping by the use of travel-times, or the body map-

ping, by means of X-ray propagation. Tomography is an inverse problem, since it demands

indirect estimation of certain properties.

In 1979, Munk and Wunsch extended the classical tomography concept to ocean mapping,

proposing what is called ocean acoustic tomography[48]. Ocean acoustic tomography takes

advantage of two relevant facts: first, travel-time and other measurable acoustic parameters,

like the direction of incoming rays, or the phase of narrowband signals, are functions of

temperature, sound-speed and other parameters of oceanographic interest, and can be inter-

preted to provide information about the ocean, using inverse methods; second, the ocean is
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nearly transparent to low-frequency sound, so that signals can be transmitted over distances

of many thousands of kilometers. Ocean tomography is usually classified in active or passive,

respectively when the source signal is known, or when that knowledge is not available.

Let us restrict to travel-time-based tomography[60]. In the active form, the emitted sig-

nal consists typically of a pulse, whose emission can be repeated (in the case of a controlled

source), giving rise to a set of snapshots in the received signal. The emitted signal has

generally a large bandwidth, to allow for the resolution of individual arrivals. Thus, it is

possible to estimate the IR, and comparison of this estimate with candidate synthetic IRs

constitutes an effective tomographic measure. In passive tomography, if the emitted signal is

a time-stationary long-duration signal, the received signal can be divided into several snap-

shots, allowing the estimation of statistical properties of both emitted and received signals.

Otherwise, if the emitted signal is non-stationary, it is erroneous to resort to an ergodic

hypothesis to obtain statistically reliable temporal averages on the received snapshots. It is

thus likely advantageous to treat the problem by means of signal representations that take

non-stationary properties into account.

Data Model

Following the ray tracing model described in pp. 9 and ff., the medium between the source

and each hydrophone is considered to behave as a multiple time-delay attenuation channel,

and all the IRs hl(t), l = 1, ..., L in Fig. 2.2 can be represented by the system:
h1(t) =

∑M1

m=1 a1mδ (t− τ1m)

h2(t) =
∑M2

m=1 a2mδ (t− τ2m)
...

hL(t) =
∑ML

m=1 aLmδ (t− τLm)

, (2.4)

where {alm, τlm; l = 1, ..., L; m = 1, ..., M} are respectively the attenuations and time-

delays, along the Ml acoustic paths[37]. The attenuations alm designate the modulus of the
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true amplitudes (whose sign indicates the polarity of the arrivals). This simplification is

justified because only the modulus is considered for many practical purposes[45]. The IRs

hl(t) can be grouped into the vector

h(t) = [h1(t), h2(t), ..., hL(t)]T . (2.5)

For a single hydrophone, L = 1 and (2.4) turns into the single-channel model (with

obviously dropped indices)

h(t) =
M∑
m=1

amδ (t− τm) . (2.6)

The amplitudes and time-delays of h(t) can be grouped into 2 vectors, respectively:

a = [a1, a2, ..., aM ]T ; τ = [τ1, τ2, ..., τM ]T . (2.7)

In the presence of additive noise, (2.6) implies that the received signal is a linear combination

of the source s(t), plus the noise ξ(t):

r(t) =
M∑
m=1

ams(t− τm) + ξ(t)

= x(t) + ξ(t). (2.8)

The noise is assumed temporally white, zero-mean and uncorrelated with the signal. Where-

ver appropriate, discrete or continuous time n or t, respectively, will be used. For simplicity,

some physical units will be omitted.



Chapter 3

Problem Formulation and
State-of-the-Art

3.1 Objectives

This work concerns the blind deconvolution problem, where the system and input signal in

Fig. 1.1 are here respectively representations of the acoustic propagation channel and source

emitted waveform. The system is considered LTI during the period comprising emission and

propagation. The emitted signal is a deterministic non-stationary signal, and the noise is a

white (stationary) random process.

Briefly, the received signal on one hydrophone, consisting of one data snapshot, will be

processed, in order to give the emitted signal estimate ŝ(t) and the IR estimate ĥ(t), as

illustrated by the scheme in Fig. 3.1. Two hypothesis will be presented to accomplish blind

deconvolution: the first, represented by the first branch in Fig. 3.1, will be used when the

emitted signal consists of an LFM sweep; the second (second branch in Fig. 3.1) respects

to a more general class of signals. In the former approach, a source estimator will produce

ŝ(t), and the first type of channel estimator will produce the channel estimate ĥ1(t). For the

more general class of emitted signals, the channel estimate ĥ2(t) will be conditioned on ŝ(t),

by the use of a second type of channel estimator.

15
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Figure 3.1: Channel and source signature estimation problem.

In a complete formulation of the channel estimation problem, the 3 deterministic parame-

ters M , a and τ are to be estimated, since they are necessary and sufficient to describe the

channel IR h(t). The estimates of the above true parameters are represented by M̂ , â and τ̂ ,

respectively. The combined effect of the temporal proximity between the IR’s adjacent Dirac

functions (mainly the first) and the emitted signal band will determine the discrimination

ability of the channel estimators. Hence, in general, the estimated number of (observed)

arrivals M̂ will be less than M , corresponding to the reduced dimension estimates

âred = [âJ , âJ+1, ..., âM ]T ; τ̂ red = [τ̂J , τ̂J+1, ..., τ̂M ]T , 1 ≤ J ≤M (3.1)

of the (reduced) true quantities

ared = [aJ , aJ+1, ..., aM ]T ; τ red = [τJ , τJ+1, ..., τM ]T , 1 ≤ J ≤M. (3.2)

Also, as the receiving system has no knowledge about the transmission instant τ0, the esti-

mate τ̂ red will be relative to the minimum time-delay estimate τ̂J .

3.2 State-of-the-Art

Various methods have been proposed regarding the subject of deconvolution, in view of its

large application. Here, the state-of-the-art will be divided in the topics of source signature
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estimation, channel estimation and finally the more difficult and interesting problem of blind

deconvolution, describing applications in underwater acoustics as well as other research areas.

3.2.1 Source Signature Estimation

In terms of source signature estimation, which falls into the first form of deconvolution men-

tioned in the Introduction, many works have been done [7, 8, 18, 46, 62, 64]. The LTI Wiener

deconvolution filter is a classical example of Fourier-domain regularized deconvolution[33]. It

provides the minimum mean-squared-error-optimal regularized LTI solution to the deconvo-

lution problem. A hybrid approach to deconvolution for image restoration in ill-conditioned

systems, has comprised Fourier-domain (Wiener-like) system inversion followed by wavelet-

domain noise suppression[51].

In underwater acoustics, the ill-poseness of the single-sensor deconvolution problem led to

the use of multiple sensors corresponding to different propagation channels, whose combined

information about the source signature limits the solution space of the ill-posed problem.

This is referred to as multi-channel deconvolution, and has been solved by maximum a pos-

teriori estimation, in [46]. In the multi-channel framework, another approach was presented,

in which source estimation was solved by simulated annealing[64]. However, this method

requires a significant computational cost, and careful must be taken in the choice of some

user-defined parameters, like the initial temperature.

3.2.2 Channel Estimation

In terms of channel estimation, when the source signal is known, emphasis is given in the

literature, to multiple time-delay attenuation channels, due to their abundance in the fields

of, e.g., sonar, radar and geophysics[1, 9, 17, 30, 41].
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A classical method for channel estimation, known as matched-filtering, is by correlating

the received waveform with the transmitted signal[9]. The peaks in the correlator output

give the estimates of the amplitudes and time-delays. It can be shown that if the true time-

delays differ by more than the duration of the signal autocorrelation function, and in the

presence of white Gaussian noise, the correlator is equivalent to the maximum likelihood

estimator[17]. Usually, the core of multiple time-delay attenuation channel estimation re-

mains at estimating the time-delays, since their estimates do not depend on the amplitudes,

whereas they depend on the source signal. These estimates are then used for amplitude

estimation. A frequency-domain approach was proposed by Kirsteins[41]. Since a delay in

the time domain is equivalent to multiplication by an exponential in the frequency domain,

the corresponding frequency domain problem is one of fitting weighted complex exponentials

to the spectrum of the received signal. Utilizing an iterative method, this approach provides

a way of estimating the time-delays. However, the algorithm does not work if the spectrum

of the source signal has small sample values or zeros in the regions of its support, causing se-

rious numerical ill-conditioning of the algorithm, or even impossibility of application. More

importantly, the delay estimates obtained via this method are biased and do not corres-

pond to the true parameter estimates. In addition, contiguous frequency samples have to be

considered, which might not be desirable, since it is difficult to obtain a good signal-to-noise-

ratio at every frequency sample, in practice. Vaccaro et al. developed another frequency

domain algorithm that finds least-squares-based unbiased estimates of the time-delays[68].

In [1], time-delay estimation is done by adaptive filtering, for a linear time-varying channel

driven by white noise.
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3.2.3 Blind Deconvolution

In terms of the non-linear problem of blind deconvolution, use of higher-order statistics and

random search methods have been made in many situations, as stated below. Use of higher-

-order statistics is motivated by the fact that convolution increases the similarity between

the probability density function of the output of a linear system, and a Gaussian function,

with respect to the one of the input[70]. This amounts to a decrease in kurtosis. Deconvolu-

tion intends to reverse this effect by producing a filter that drives the output of the system

towards higher kurtosis. This procedure can also be viewed as moving the output towards

lower entropy. In [50], some algorithms based on third-order cumulants have been studied

for the identification of (minimum or nonminimum phase) FIR systems, from only the noisy

output, which has been contaminated by additive zero-mean white (Gaussian) noise of un-

known variance. In communication systems involving the use of modulation for information

transmission, the received signal exhibits interesting cyclostationary properties. Gardner

has proposed a novel scheme for channel identification based on the second-order cyclic au-

tocorrelation function[22]. Gardner’s scheme involves the use of a training period during

which the unobserved channel input is transmitted at a slow rate. This mode of transmis-

sion has the beneficial effect of making the inter-symbol interference negligible, and therefore

offers the potential of an almost distortionless data transmission for training. Tong, Xu and

Kailath[66], and Ding and Li[16] have proposed extensions of Gardner’s scheme for chan-

nel identification. The approach taken in the latter two papers is different from Gardner’s

original approach in that it shows that, for certain channel models, channel identification is

attainable without the need for a pilot tone or training period. A common feature of blind

deconvolution algorithms is the presence of local minima. This problem may be overcome
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through the use of simulated annealing. In [31], such a technique is incorporated into a

higher-order cumulant-based procedure for the blind identification/equalization of a linear

moving average channel model. Unfortunately, the computational burden imposed by the use

of simulated annealing is too heavy. Blind deconvolution may be viewed as a self-organized

learning process, self-organized in the sense that the deconvolution is performed in the ab-

sence of a supervisor (i.e., training sequence). In this context, much can be gained from

neural networks, in particular, that part of the subject that deals with self-organization,

as shown in [23]. In [24], four classes of blind deconvolution/equalization procedures are

described, that differ from each other in the way in which the nonlinear adaptive filtering is

performed. The first class of blind deconvolution algorithms is the class of Bussgang algo-

rithms. They are so called because the statistics of the deconvolved signal are approximately

Bussgang. This class of blind deconvolution algorithms includes the famous Sato algorithm

and the Godard algorithm as special cases. The structure used for Bussgang algorithms

consists of a linear combiner with adjustable coefficients, followed by some form of a zero-

memory nonlinear device. Such a structure represents a natural extension of conventional

linear adaptive filters. The second class of blind deconvolution/equalization algorithms is

based on the idea that, in order to solve the problem, it is sufficient to equalize the variance

and any other nonzero higher-order statistic (cumulant) of a sample in the received signal to

that of a sample in the unobserved signal applied to the unknown system input. This idea is

used to formulate several deconvolution criteria, the maximization of which yields the desired

solution to the blind deconvolution problem. The criteria described herein are universal in

the sense that they do not impose any restrictions on the statistics of the input signal, so

long as it is non-Gaussian. Also, it appears that the criteria do not lead to spurious local
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minima. The third class of blind equalization algorithms is based on higher-order statistics

of the received signal. The parameters of particular interest are the higher-order cumulants

or their Fourier transforms known as polyspectra. The attractive feature of polyspectra is

that they have the inherent ability to identify a nonminimum-phase channel from the chan-

nel output and do it without a training sequence. The fourth class of blind equalization

algorithms concerns unknown communication channels, involving a joint data and channel

estimation. In principle, this joint estimation is accomplished by finding the least-squares

channel estimate between the received signal and every possible input signal that may have

been transmitted, and selecting that particular estimated pair of transmitted signal and

channel response, with the least-squares error. In essence, this is a maximum likelihood

decoding rule for solving the blind equalization problem, the natural tool for which is the

Viterbi algorithm. However, a major limitation of this approach is the explosive growth

in computational complexity with the number of data symbols transmitted. A number of

sub-optimal search procedures based on the use of a trellis are described in [24], for solving

the blind joint data and channel estimation problem, which would be justified when the

received signal-to-noise ratio is high.

Focusing now the underwater acoustics context, an approach to solve the blind decon-

volution problem is to back propagate the received signal, i.e., to time reverse the received

time series and (back) propagate an array of time-reversed signals[32]. The back-propagated

signals should converge in principle at the true source location and produce a waveform

which should be a good replica of the original signal. This method could be implemented in

practice using the sound channel for (back) propagation, if the signal is not severely attenua-

ted by the two-way propagation; an alternative is to deduce analytically or numerically the
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back-propagated signal, using propagation codes. In [68], the algorithm for channel estima-

tion (with a known source) was extended to the case in which the source signal is not known

precisely, but is assumed to belong to a parametric class of signals, in that case, sinusoids of

unknown frequency, duration and starting time. An extension of the optimization method

for source signature estimation, in [64], by simulated annealing, is proposed in the same

paper, treating the channel transfer function also as an unknown parameter, what allows

for the simultaneous estimation of both source spectrum and transfer function. However,

careful must be taken in the choice of the tradeoff between source and channel estimates

accuracy. Motivated by the use of higher-order statistics, a work has been done, in which,

the transfer function is statistically characterized, and the output of deconvolution are both

the deterministic source signature and the statistical parameters of the IR. The IR is inter-

changed with the source signal, turning the source signature estimation problem into a linear

deterministic system identification problem, with random input. The estimation proceeds

by maximization of the deconvolved signal’s normalized cumulant[6].



Chapter 4

Time-Frequency Distributions

It is now clear, from Chap. 2, that the underlying physical scenario transforms the emitted

signal into a set of replicas arriving at the receiver, at multiple time instants. Obviously,

from a simple analysis of the received signal spectrum or time series, the extraction of

the emitted signal, and of the time-delays and amplitudes of the channel is not trivial.

This difficulty led to the investigation of other signal representations, namely time-frequency

distributions (TFDs), due to their two degrees of freedom. It will be seen in subsequent

sections, that such representations show simultaneously the arrival structure of the received

signal (time information), and the replicated and weighted source spectral content (frequency

information).

Consider some signal as an information support. The time and frequency energy densities

of the signal are not sufficient to describe the (usually) implicit physical situation, because

they do not fully describe what is happening. In particular, the frequency energy density is

inherently a statistic of the frequencies present in the signal, but not revealing the manner in

which the signal’s spectral behaviour evolves as a function of time. TFDs are bidimensional

(2D) functions of time t and frequency f , that contain effectively both the temporal and

spectral information of the signal being analyzed, indicating its joint time-frequency (TF)

23
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energy content. They provide a multitude of information such as frequency response, power,

instantaneous frequency, group delay, etc. The importance of TFDs is reinforced when the

signal to be analyzed is non-stationary, what entails naturally a definition of the stationarity

concept, in next section.

4.1 Stationarity

It is important to define here the concept of stationarity, to distinguish between the non-

-stationary signals and stationary random processes treated in this work, and to motivate

TF processing.

A random process Xx(t) is said to be stationary of order K, if the joint probability density

function of the sets [Xx(t1), Xx(t2), ..., Xx(tK)] and [Xx(t1 + u), Xx(t2 + u), ..., Xx(tK + u)]

is the same for all choices of t1, t2, ..., tK and u[7]. The random process that will be used in

simulated data has its elements composed of independent samples of an underlying genera-

ting random variable –the well known white noise. It follows that white noise is stationary

of all orders[7]. For deterministic signals (that can always be interpreted as non-stationary

stochastic processes), the classification into stationary implies that their definition parame-

ters –like the instantaneous amplitude (IA), frequency, auto-regressive parameters or respec-

tive order, temporal average, etc.– be time-invariant[58]. This can be synthesized in the

definition of a stationay deterministic signal as a sum of components with constant IAs and

frequencies. For both random processes and deterministic signals, non-stationarity is defined

by opposition to stationarity.
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4.2 Quadratic Time-Frequency Distributions

The basic objective of TF analysis is to devise a function –a TFD– that will describe the

energy density of a signal simultaneously in time and frequency, and that can be used and

manipulated in the same manner as any probability density function[14]. There are many

examples of such representations, some of which mentioned in Tab. 4.1. One of the most

Linear
Short-time Fourier transform

Wavelet transform (TF version)
Bilinear (quadratic)

Choi-Williams distribution
Cone-kernel distribution

Flandrin distribution
Generalized exponential distribution

Generalized Wigner distribution
Modal distribution

Rihaczek distribution
Scalogram

Spectrogram
Wigner-Ville distribution

Nonlinear and nonquadratic
Cohen nonnegative distribution

Table 4.1: Some examples of TFDs.

popular TFDs is the short-time Fourier transform. It is well-known that this distribution

has the noteworthy drawback that a good time resolution requires short-duration windows

whereas a good frequency resolution necessitates long-duration windows. Although linearity

of a TFD is a desirable property, the quadratic structure of a TFD is an intuitively reasonable

assumption when a TFD is to be interpreted as a TF energy distribution (or “instantaneous

power spectrum”[54]), since energy is a quadratic signal representation. An “energetic”

quadratic TFD (QTFD) Tx(t, f) seeks to combine the concepts of the instantaneous power

px,t(t) = |x(t)|2 and the spectral energy density px,f (f) = |X(f)|2. Ideally, this energetic
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interpretation is expressed by the marginal properties

∫
Tx(t, f)df = px,t(t) = |x(t)|2; (4.1a)∫
Tx(t, f)dt = px,f (f) = |X(f)|2, (4.1b)

which state that the one-dimensional (1D) energy densities px,t(t) and px,f (f) are “marginal

densities” of the TFD Tx(t, f)[72] (when not explicitly mentioned, all integrations are from

−∞ to ∞). As a consequence, the signal energy Ex =
∫
|x(t)|2 dt =

∫
|X(f)|2 df can be

derived by integrating Tx(t, f) over the entire TF plane. The variables t and f are treated as

if they were random variables, allowing the definition of concepts as average time, average

frequency, standard deviation, etc. Hence, the TFD can be loosely interpreted as a 2D

distribution of signal energy over the TF plane. However, it cannot be interpreted as a

pointwise TF energy density, since it may locally assume negative values, as is the case of

the Wigner-Ville distribution (see Sec. 4.2.1).

Apart from the “energetic” interpretation of QTFDs, there exists a dual interpretation

in terms of correlation functions[12]. A “correlative” TFD Tx(ν, τ) seeks to combine the

temporal correlation Γx,t(τ) and the spectral correlation Γx,f (ν) defined below, both of which

are again quadratic signal representations. Ideally, this is expressed by the “correlative

marginal properties”

Tx(0, τ) = Γx,t(τ) =

∫
x(t+ τ)x∗(t) dt; (4.2a)

Tx(ν, 0) = Γx,f (ν) =

∫
X(f + ν)X∗(f) df, (4.2b)

where the variables τ and ν are the time-lag and frequency-lag, respectively, and the super-

script ∗ denotes complex conjugation.

Depending on the number of well delineated regions in the TF plane, a signal can be
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classified as monocomponent or multicomponent, when the signal is represented by one or

multiple regions, respectively.

The Quadratic Superposition Principle

Any QTFD Tx(t, f) satisfies the quadratic superposition principle

x(t) = c1x1(t) + c2x2(t)⇒

⇒ Tx(t, f) = |c1|2 Tx1(t, f) + |c2|2 Tx2(t, f) + c1c
∗
2Tx1,x2(t, f) + c2c

∗
1Tx2,x1(t, f), (4.3)

where Tx(t, f) is the auto-TFD of the signal x(t), and Tx1,x2(t, f) is the cross-TFD of the two

signals x1(t) and x2(t), with Tx,x(t, f) = Tx(t, f)[27]. The cross-TFD Tx1,x2(t, f) is quadratic

(bilinear) in the signals x1(t) and x2(t). Generalizing the quadratic superposition principle

to an M -component signal x(t) =
∑M

m=1 cmxm(t), the following rules are obtained[19]:

• To each signal component cmxm(t), there corresponds a signal term |cm|2Txm(t, f);

• To each pair of signal components cmxm(t) and cnxn(t) (with m 6= n), there corres-

ponds a cross-component or interference term (IT) cmc
∗
nTxm,xn(t, f) + cnc

∗
mTxn,xm(t, f).

Thus, for an M -component signal x(t), Tx(t, f) will have M signal terms and M(M − 1)/2

ITs. The ITs may have higher amplitude than the signal terms, what causes some difficulty

in the visual analysis of the TFDs of multicomponent signals. Fig. 4.1 illustrates the WV

of the sum of two LFM sweeps with amplitudes 1 and 0.5, respectively, where it can be seen

the relative amplitudes of the signal terms and the ITs, for this particular case.

4.2.1 Wigner-Ville Distribution and Ambiguity Function

Motivated by a quantum correction calculus, Wigner introduced a joint distribution that

gave, as marginals, the quantum mechanical distributions of position and momentum[72].
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Figure 4.1: WV of the sum of two LFM sweeps with amplitudes 1 and .5, respectively.

The distribution of Wigner was introduced into signal analysis by Ville[69], and is nowa-

days known as the Wigner-Ville distribution (WV). The WV is a QTFD that overcomes

the drawback of low-resolution (unlike the well-known spectrogram). The cross-WV of 2

continuous-time signals x(t) and y(t) is a complex-valued function defined by1:

WVx,y(t, f)
4
=

∫ ∞
−∞

x
(
t+

τ

2

)
y∗
(
t− τ

2

)
e−j2πfτdτ. (4.4)

If x(t) ≡ y(t), then the WV of x(t) is a real-valued function, defined, for a given time, as

the Fourier transform with respect to τ , of the signal’s local auto-correlation function

Γx,t,τ (t, τ)
4
= x

(
t+

τ

2

)
x∗
(
t− τ

2

)
. (4.5)

The WV of x(t) is thus defined by

WVx(t, f) =

∫ ∞
−∞

x
(
t+

τ

2

)
x∗
(
t− τ

2

)
e−j2πfτdτ. (4.6)

The WV has naturally a definition, for discrete-time signals x(n) and y(n)[58]:

WVx,y(n, f) = 2
∑
k

e−j2πkfx(n+ k)y∗(n− k). (4.7)

This definition encompasses a periodicity of 1/2 with respect to the continuous variable f .

For this reason, the TF-represented signals in this work are the analytic counterparts of the
1It can be viewed as the Fourier transform of a different concept of cross-correlation defined not as an

inner product, but as a pointwise product.
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real physical signals (see App. B), thus avoiding aliasing effects and oversampling[58].

A dual distribution of the WV is the ambiguity function (AF), defined as

AFx,y(ν, τ)
4
=

∫
x
(
t+

τ

2

)
y∗
(
t− τ

2

)
e−j2πνtdt. (4.8)

The AF can be interpreted as a joint TF correlation function. Specifically, it satisfies the

“correlative marginal properties” (4.2). In addition, the maximum value of an auto-AF oc-

curs at the origin, and equals the signal’s energy, i.e., |AFx(ν, τ)| ≤ AFx(0, 0) =
∫
|x(t)|2 dt.

The WV and the AF are duals in the sense that they are a Fourier transform pair[69]:

AFx,y(ν, τ) =

∫∫
WVx,y(t, f)e−j2π(νt−τf)dt df. (4.9)

Property name Mathematical definition

I Instantaneous
∫
f WVx(t,f)df∫
WVx(t,f)df

= fi,x(t) = 1
2π

d
dt

arg [x(t)];

frequency

I Finite time support x(t) = 0, for t ∈/ [t1, t2]⇒ WVx(t, f) = 0, for t ∈/ [t1, t2]

I Convolution x̃(t) =
∫
h(t− t′)x(t′) dt′ ⇒

⇒ WVx̃(t, f) =
∫
WVh(t− t′, f)WVx(t

′, f)dt′

I Multiplication x̃(t) = h(t)x(t)⇒
⇒ WVx̃(t, f) =

∫
WVh(t, f − f ′)WVx(t, f

′)df ′

I Moyal’s formula (unitarity) 〈WVx1,y1|WVx2,y2〉 = 〈x1|x2〉 〈y1|y2〉∗

I Chirp convolution x̃(t) = x(t) ∗
√
|c|ej2π c

2
t2 ⇒ WVx̃(t, f) = WVx

(
t− f

c
, f
)

I Chirp multiplication x̃(t) = x(t)ej2π c
2
t2 ⇒ WVx̃(t, f) = WVx (t, f − ct)

Table 4.2: Some desirable mathematical properties of the WV.

Among all QTFDs with “energetic” interpretation, the WV can be regarded as theo-

retically optimal in that it features optimal TF resolution[69] and satisfies a maximum[58]

number of “desirable” mathematical properties[72], some of which are indicated in Tab. 4.2.
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For example, the WV preserves the time or frequency support of the signal. This is diffe-

rent from the spectrogram and scalogram, which generally introduce some broadening with

respect to time and frequency, often not allowing an effective resolution of the components.

This optimality of the WV is however accompained by substantial ITs.

Wigner-Ville’s Resolution for Finite-Duration Signals

An important issue regarding the WV analysis of finite signals is the resolution of the dis-

tribution. Whereas the WV presents in general good concentration along the instantaneous

frequency (IF), for infinite-duration signals[14], this concentration is relaxed, for finite sig-

nals, due to WV’s Fourier-based definition. Consider a signal x(t) with finite time support

T = t2 − t1 (often imposed by the time observation window), which is zero, for t ∈/ [t1, t2].

It is easily seen that the signal’s local auto-correlation function (4.5), as a function of τ , is

a finite-length signal, whose duration, parameterized by t, varies between 0 and 2T . For

practical purposes referred in Chap. 5, it can be considered that most of signal’s energy

is concentrated along the IF (this encompasses a large variety of signals[14]), in a support

dictated by T . It is well known that the Fourier transform of an unitary 2T -length window

is a cardinal sinusoid (sinc), with a main lobe width of 1/T . Based on the maximum length

of the local auto-correlation function, one can consider that WVx(t, f) will be concentrated

along [t, fi(t)], and the domain [fi,x(t)−1/(2T ), fi,x(t) + 1/(2T )], t ∈ [t1, t2] (according also

to temporal support’s conservation in Tab. 4.2) will contain most of the energy of x(t).

Interference Geometry

As said above, improved TF concentration and an extensive list of desirable mathematical

properties are attractive features of the WV. On the other hand, certain characteristics

of the WV’s ITs often cause problems in practical applications. Whereas the ITs of the
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spectrogram or the scalogram will be zero if the corresponding signal terms do not overlap,

the ITs of the WV will be nonzero regardless of the TF distance between any two signal

terms, as follows.

Two signal components occuring around TF points (t1, f1) and (t2, f2) give rise to two

signal terms and one IT in both the WV and the AF. For the following discussion, let’s define

the center point (t12, f12) and the lags τ12, ν12, as t12 = (t1 + t2)/2, f12 = (f1 + f2)/2; τ12 =

t1 − t2, ν12 = f1 − f2. In the WV, the signal terms are located around (t1, f1) and (t2, f2),

respectively. The IT is located around the center point (t12, f12). It oscillates with respect

to time with oscillation period 1/|ν12|, and with respect to frequency with oscillation period

1/|τ12|. Correspondingly, in the AF, the signal terms are located around the origin of the

(ν, τ)-plane. The IT consists of two subterms located around the lag points (ν12, τ12) and

(−ν12, τ12), respectively. In general, ITs occur also in the case of monocomponent signals.

The signal’s energy is concentrated along the curved instantaneous frequency; this also

defines the WV’s signal term. Oscillatory ITs are seen to exist midway between any two

points on the signal term.

The ITs of the WV can be identified by their oscillatory nature, while the ITs of the

AF are characterized by their locations away from the origin of the (ν, τ)-plane[35]. From

a practical viewpoint, ITs are troublesome, since they may overlap with auto-terms (signal

terms), and thus make it difficult to visually interpret a WV or AF plot. Nevertheless,

ITs are necessary for a TFD’s unitarity[29] or, equivalently, for Moyal’s formula[47] to hold.

Moyal’s formula is critical for the TF formulation of optimum detection and estimation

methods[20, 39], what will be important for channel estimation in the present work (see

Sec. 5.3.2), and for a closed-form solution to the signal synthesis problem[5, 29], what was
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explored for source signature estimation (cf. Sec. 5.2.2).

4.2.2 The Cohen Class

For a given time, the WV weighs equally all times of the past and future. Similarly, for a

given frequency, it weighs equally all frequencies below and above that frequency. There are

three reasons for modifying this basic property of the WV. First, in practice, it may not

be possible to integrate from minus to plus infinity, and so one should study the effects of

limitting the range. Second, in calculating the distribution for a time t, one may want to

emphasize the properties near the time of interest compared to the far past and future times.

Third, practical application of the WV is often restricted by the occurence of ITs, and it is

natural to seek modified versions of the WV that attenuate to some extent these ITs. As will

be seen, this last issue corresponds to looking for a TFD that presents good auto-component

concentration and interference attenuation, in other words, that it be concentrated and

approximately linear.

Taking into account the definition (4.6), to emphasize the signal around time t, the

local auto-correlation function (4.5) can be multiplied by a function (window) whose peak

is located around τ = 0, prior to the integration in (4.6), defining a distribution named

pseudo-WV[14]. The WV is highly nonlocal, and the effect of windowing is to increase

locality. One of the consequences of this is that the pseudo-WV supresses, to some extent,

the cross-terms for multicomponent signals. In counterpart, the marginals and instantaneous

frequency properties no longer hold. Similarly, the signal spectrum around frequency f can

also be emphasized, and the conjugation of these two modifications of the WV gave origin

to the smoothed pseudo-WV. The smoothed pseudo-WV is defined by a separable smoothing

kernel φ(t, f) = g(t)H(f), in which g(t) and H(f) are two windows whose effective lengths
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independently determine the time and frequency smoothing spreads, respectively[27]:

SPWV g,H
x (t, f) =

∫∫
g(t− t′)H(f − f ′)WVx(t

′, f ′)dt′ df ′. (4.10)

This distribution extends the spectrogram in that it allows an independent control of the

time and frequency resolutions. An even more general modification of the WV, the local WV,

has been proposed in [53], making use of a local kernel, i.e., depending on the considered

TF point. This approach associates to each pair (t, f) a specific pair of functions g(u, t, f)

and H(v, t, f).

The above ideas were progressively developed and applied mainly to suppress ITs of the

WV, giving rise to a generalized family of TFDs –the Cohen class (denoted CE)–, introduced

by Cohen, in 1966. This class along with the affine class, contain all possible QTFDs[27].

Any function Cx (t, f ; Φ) of CE is defined as

Cx (t, f ; Φ) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

x
(
u+

τ

2

)
x∗
(
u− τ

2

)
Φ(ν, τ) e−j2π(νt+τf−νu)du dτ dν,

(4.11)

where x(t) is the signal being analyzed, and Φ(ν, τ) is a 2D function called the kernel of

the distribution, that completely characterizes the particular TFD, giving rise to widely

different types of distributions[14]. Examples of TFDs of CE are the WV presented in the

above subsection, spectrogram (squared-magnitude of the short-time Fourier transform),

Choi-Williams distribution[10] and cone-kernel distribution[75]. The TFDs of CE satisfy the

basic property of TF shift-invariance: if a signal x(t) is shifted in time and/or in frequency,

then its TFD will be shifted by the same time-delay and/or modulation frequency:

x̃(t) = x(t− t0)ej2πf0t ⇒ Cx̃(t, f) = Cx(t− t0, f − f0). (4.12)

Every member of CE may be interpreted as a 2D filtered WV. In fact, it can be shown that
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a TFD Tx,y(t, f) is a member of CE if and only if it can be derived from the cross-WV of

the signals x(t) and y(t) via a TF (2D) convolution[11]:

Tx,y(t, f) ∈ CE ⇔ Tx,y(t, f) =

∫∫
φ (t− t′, f − f ′)WVx,y (t′, f ′) dt′ df ′, (4.13)

where φ(t, f) is an arbitrary function. Clearly, the above convolution transforms into a simple

multiplication in the Fourier transform domain. Each member Cx(t, f) of CE is associated

with an unique signal-independent kernel function φ(t, f) (or 2D filter).

To every shift-invariant TFD Cx(t, f) ∈ CE, corresponds a “dual correlative TFD”

Cx,dual(ν, τ) as the 2D FT[19]

Cx,dual(ν, τ)
4
=

∫∫
Cx(t, f)e−j2π(νt−τf)dt df. (4.14)

The class of dual correlative TFDs, denoted CC , consists of all TFDs satisfying the “corre-

lative shift-invariance”[26]

x̃(t) = x(t− t0)ej2πf0t ⇒ Cx̃,dual(ν, τ) = Cx,dual(ν, τ)ej2π(f0τ−t0ν), (4.15)

which is the dual expression of (4.12), and motivated by the shift properties

Γx̃,t(τ) = Γx,t(τ)ej2πf0τ , Γx̃,f (ν) = Γx,f (ν)e−j2πt0ν (4.16)

of the 1D correlations Γx,t(τ) and Γx,f (ν). Most importantly, any TFD Cx,dual(ν, τ) which is

a member of the correlative class can be derived from the AF of the signal x(t), by means

of a multiplication[19]:

Cx,dual(ν, τ) ∈ CC ⇔ Cx,dual(ν, τ) = Φ(ν, τ)AFx(ν, τ). (4.17)

The kernel Φ(ν, τ) of Cx,dual(ν, τ) in the above equation and the kernel φ(t, f) of Cx(t, f) in

(4.13) are a Fourier transform pair, just as Cx,dual(ν, τ) and Cx(t, f). A prominent example
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of a pair of dual TFDs is given by the WV and the AF, related by the Fourier transform

(4.14) [cf. (4.9), for the cross-distributions]. Finally, inverting (4.14) and taking (4.17) into

account, a distribution Cx(t, f) from CE can be interpreted as the 2D Fourier transform of

a weighted version of the AF of the signal[4]:

Cx(t, f) =
1

2π

∫ ∞
−∞

∫ ∞
−∞

Φ(ν, τ)AFx (ν, τ) e−j2π(νt+τf)dν dτ. (4.18)

Because WV’s ITs are oscillatory, they may be attenuated by means of a smoothing

operation (i.e., 2D low-pass filtering)[19]. The Cohen class above defined provides a conve-

nient framework for WV smoothing. TFDs of Cohen class are thus often called smoothed

WVs, and the kernel φ(t, f) is called a smoothing function. Unfortunately, this attenuation

of ITs comes at the cost of a loss of TF concentration, since a smoothing generally causes

a broadening of the WV’s signal terms[28]. In the dual correlative domain, this broadening

transforms to a truncation of the AF’s signal terms caused by the weighting operation (4.17).

Another disadvantage of smoothing is the potential loss of desirable mathematical proper-

ties. One can conclude that there exists a fundamental tradeoff between good interference

attenuation, and good TF concentration and desirable mathematical properties. A broad

WV-domain smoothing function φ(t, f) [corresponding to a narrow lowpass-type AF-domain

weighting function Φ(ν, τ)] yields good interference attenuation but poor TF concentration,

and conversely.

4.3 Signal-Dependent Time-Frequency Distributions

Fixed kernel TFDs seen in previous section have a fundamental limitation: they offer good

performance (they achieve a high degree of both cross-component supression and auto-

component concentration, providing an accurate representation of the TF content of the



36 CHAPTER 4. TIME-FREQUENCY DISTRIBUTIONS

signal) only for certain configurations of AF’s auto- and cross-components, thus only for a

limited class of signals. This is because the locations of the auto- and cross-components

depend on the signal to be analyzed. The lack of a single distribution that is “best” for a

broad class of signals has resulted in a proliferation of TFDs, each corresponding to a diffe-

rent fixed mapping from signals to the TF plane. A significant performance gain may often

be obtained, by adapting the smoothing characteristics of a smoothed WV to the signal to be

analyzed, i.e., designing a kernel function which varies with the signal[2]. A signal-dependent

kernel can provide a good TFD, by adjusting its shape to pass auto-components and supress

cross-components, regardless of their shape and orientation. Of course, the resulting signal-

dependent (or -adaptive) TFD is then no longer quadratic. The following two subsections

are devoted to the description of two signal-dependent TFDs with direct application in the

present work: the chirp-adapted distribution and the radially Gaussian kernel distribution.

4.3.1 Chirp-Adapted Distribution

In view of the limitations caused by the ITs in the WV of multicomponent chirp signals, Ma

et al.[43] developed a TFD specially adapted to this type of signals (directly applicable to

the signals involved in this work): the chirp-adapted distribution (CA), whose description is

summarized in this subsection.

Let xc(t) be an infinite-duration linear frequency modulation (LFM or chirp) signal,

defined by:

xc(t) = a e
j2π
(
α t

2

2
+f0t

)
, a ∈ IR, (4.19)

where α is the frequency modulation rate, and f0 is the IF at t = 0. It is readily verified
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that the IF of xc(t) is the linear function

fi,xc(t) = αt + f0. (4.20)

According to (4.6), the WV of xc(t) is given by

WVxc(t, f) = a2δ [f − (αt + f0)] . (4.21)

This shows that the WV of xc(t) is infinitely concentrated along its IF. One can verify that

the signal’s AF is composed by only one signal term: a 2D Dirac function that crosses the

origin. When the signal to be analyzed consists of a weighted sum of (finite or infinite) LFM

signals instead, the corresponding AF possesses a signal term composed, this time, roughly

by a sum of cisoids (respectively, finitely or infinitely concentrated) across the origin, and a

certain number of cross-terms away from the origin. Due to these properties of the AF of

multicomponent chirp signals, the kernel function of the CA is defined as:

Φ (ν, τ) = rect

(
ν − ατ
w

)
, (4.22)

where rect
( ·
w

)
is the unitary window function of length w, centered at the origin. The kernel,

hence, has a rectangular support along the direction ν = ατ . The resulting CA with the

associated kernel function is

CAx(t, f) =

∫ ∞
−∞

∫ ∞
−∞

w sinc [w(t− u)] ej2πατ(t−u)x
(
u+

τ

2

)
x∗
(
u− τ

2

)
e−j2πfτdu dτ,

(4.23)

where x(t) is the multi-component chirp signal to be analyzed. The kernel function (4.22)

satisfies the condition Φ(ν, τ) = Φ∗(−ν,−τ), what implies that (4.23) be a real distribution.

This representation is a smoothed signal-dependent version of the WV, whose smoothing

function is composed of 2 (non-multiplicative) parts: a low-pass filter h(t) = w sinc(wt) and
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a frequency modulation δ(f − ατ ). As mentioned in Sec. 4.2.2, for any type of smoothing,

the low-pass filtering implies a loss of concentration of the signal terms.

As seen in (4.23), the CA is completely defined by two parameters: the frequency mo-

dulation rate α and the kernel width w. Due to the above mentioned AF properties of

multicomponent chirp signals, the smoothing parameters necessary to the calculation of the

CA can be optimally estimated regarding the criteria of interference attenuation. These

parameters will control the performance of the distribution, and are determined by the fol-

lowing equations, in the ambiguity domain:

U(α, w) =

∫∫
rect

(
ν − ατ
w

)
|AFx (ν, τ)| dν dτ ; (4.24)

αopt = α̂ = arg max
α

U (α, w0) ; (4.25a)

wopt = arg min
w

∂

∂w
U (αopt, w) . (4.25b)

(4.24) calculates the volume of the signal’s ambiguity function under the kernel functions

with different α and w. In order to estimate the two parameters from this volume, at first,

parameter w is fixed at w0. The optimal value for α will correspond to the global maximum

of U (α, w0) –(4.25a). It is expected that U (α, w0) be very sensible to variations of α, due

to the directional structure of AFx(ν, τ). After the estimation of α, w is unfixed, and the

first minimum of the first derivative of U (αopt, w) with respect to w, gives the optimal value

for w –(4.25b). This is because U(αopt, w) is a monotonic increasing function of w, including

first the volume due to the auto-terms, and then the volume due to ITs which (hopefully)

are distinct in the AF.
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4.3.2 Radially Gaussian Kernel Distribution

This section summarizes one of the most successful approaches to signal-dependent kernel

design, presented by Baraniuk and Jones[3, 4] who have shown that the optimal kernel for

interference reduction depends on the analyzed signal, and also formulated the kernel design

problem as a constrained optimization problem.

The optimal kernel consists of a radially-Gaussian weighting function Φopt(ν, τ), where

the Gaussian spread in each radial direction in the (ν, τ)-plane is optimally adapted to the

signal. Hence, given a signal, it is automatically designed a kernel that is optimal with

respect to a set of performance criteria that attempt to capture, mathematically, the kernel

properties that lead to a high degree of ITs reduction and auto-component concentration.

Optimal Kernel Design

The signal-dependent kernel design procedure is an optimization problem whose formulation

requires a class of 2D kernel functions from which the optimal kernel is chosen, and a

performance index that measures the quality of the TFD with respect to criteria deemed

important by the designer. The class of kernels is specified by a set of constraints, and the

performance measure is chosen to yield a tractable optimization problem that can be solved

efficiently. It is the kernel maximizing the value of the performance measure that is selected

as the optimal kernel for the signal.

Radially Gaussian Kernels

It is desirable that the kernel possess the following properties: it should be lowpass to

suppress cross-components and noise in the TFD, it should be smooth to reduce ringing

artifacts, and it should take a functional form for which an optimization problem can be
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easily solved. A functional form that satisfies all of the above requirements is a radially

Gaussian kernel. A radially Gaussian kernel is a 2D function that is Gaussian along any

radial profile:

Φ(ν, τ) = e−(ν2+τ2)/[2σ2(ψ)], (4.26)

where the angle ψ is measured between the radial line through the point (ν, τ) and the ν

axis,

ψ = arctan
τ

ν
, (4.27)

and the function σ(ψ), called the spread function, controls the ‘spread’ of the Gaussian at

angle ψ. If σ(ψ) is smooth, then Φ(ν, τ) is also smooth. A radially Gaussian kernel is a

generalization of a 2D lowpass Gaussian kernel. It is natural to express radially Gaussian

kernels in polar coordinates, using r =
√
ν2 + τ 2 as the radius variable:

Φ(r, ψ) = e−r
2/[2σ2(ψ)]. (4.28)

Continuous-Time Optimization Formulation

Since the shape of a radially Gaussian kernel is completely parameterized by the 1D function

σ(ψ), finding the optimal radially Gaussian kernel for a signal is equivalent to finding the

optimal spread function σopt(ψ) for the signal. Therefore, given a signal, the optimal kernel

Φopt (r, ψ) is defined as the radially Gaussian function whose spread function σopt(ψ) solves

the following optimization problem:

max
ψ

∫ 2π

0

∫ ∞
0

|Φ (r, ψ)AF (r, ψ)|2 r dr dψ, (4.29)

subject to

Φ(r, ψ) = e−r
2/[2σ2(ψ)], (4.30a)
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1

2π

∫ 2π

0

∫ ∞
0

|Φ(r, ψ)|2 r dr dψ ≤ β, β ≥ 0, (4.30b)

where AF (r, ψ) is the AF of the signal, in polar coordinates. The constraint (4.30b) limits

the volume of the optimal kernel. The special structure of radially Gaussian kernels permits

a simplification of (4.30b) to the equivalent volume constraint

1

2π

∫ π

0

σ2(ψ)dψ ≤ β. (4.31)

Also, since the AF is symmetric about the origin, that is,

|AF (r, ψ)|2 = |AF (r, ψ + π)|2 , (4.32)

σopt(ψ) is completely determined on the interval 0 ≤ ψ < π. The constraint (4.31) forces

the optimal kernel to be a lowpass filter of fixed volume β. The shape of the passband of

the optimal radially Gaussian kernel is determined by maximizing the performance measure

(4.29). Clearly, in order to maximize the performance measure, Φ (r, ψ) should be large where

AF (r, ψ) is large, regardless of whether the peaks correspond to auto- or cross-components.

However, assuming that the auto- and cross-components are somewhat separated in the

ambiguity plane, the radially Gaussian constraint (4.30a) imposes a penalty on kernels whose

passbands extend over cross-components. Kernels having large spread in the direction of

cross-components must waste precious kernel volume over the regions between the auto- and

cross-components, where |AF (r, ψ)|2 and thus also the |Φ(r, ψ)AF (r, ψ)|2 contribution to

the performance measure is small.

Kernel Volume Selection

By controlling the volume under the optimal kernel, the parameter β controls the tradeoff

between cross-component supression and smearing of the auto-components. The exact value

of β is application-dependent, though two bounds for β are suggested in [4], as follows.
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A reasonable lower bound for β is the volume of a spectrogram kernel, since there appear

to be few benefits gained from more smoothing[38]. Since the spectrogram kernel is the

AF of the analysis window, and assuming that the window has unit energy, the kernel has

unitary volume, and a lower bound for β is therefore

β ≥ 1. (4.33)

An heuristic upper bound for β can be determined by computing the amount of smearing in

the TFD for a simple Gaussian mono-component signal

x(t) =
1

4
√
π

e−t
2/2. (4.34)

The proposed upper bound for β is

β ≤ 5. (4.35)

Optimal Kernel Solution

The reader is referred to [4] for a complete description of the constrained optimization

problem (4.29)–(4.31) solution. A discretized version of the problem is solved by a modified

constrained form of the well-known step-project ascent algorithm. The modification of this

iterative algorithm for solving unconstrained optimization problems, consists in rescaling the

vector corresponding to the spread function σ(ψ), every iteration, thus taking into account

the constraint (4.31).



Chapter 5

Problem Solving in Simulated Data

This chapter explains the TF-based approach to blind deconvolution studied in this work,

which obeys to the schemes in Figs. 5.1 and 5.2, explained as follows. Departing from

Signal-dependent TFD

Source instantaneous frequency estimation

WV coherent integrationTF signal synthesis

Source estimate Channel estimate

Received signal

Figure 5.1: Complete estimation procedure in the TF approach to blind deconvolution of LFM
signals.

the received signal rr(t) [the real part of the corresponding analytic signal r(t)], and for an

emitted LFM signal, the first step is to calculate a signal-dependent TFD of the received

signal. Then, the source signal IF is estimated. The IF estimate allows the definition of

a TF function, whose inversion gives the source signal estimate. Simultaneously, the IF

43
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Matched-filtering

Source estimate

Channel estimate

Figure 5.2: Channel estimation based on the source estimate referred in Fig. 5.1, for signals with
both FM and AM components.

estimate defines an integration domain for the WV of the received signal, which allows

the application of a TF formulation of the matched-filter. This leads to the channel IR

estimate. Alternatively, as schematized in Fig. 5.2, the channel estimate can be obtained

by matched-filtering with the previously obtained source signal estimate. The presentation

of the deconvolution approach is supported by application to synthetic data.

The simulated data set corresponds to a canonical two-layered shallow water waveguide

whose environment is very similar to the real data acquisition scenario of the INTIMATE ’96

sea trial[15]. The acoustic source is positioned at 90-m depth, and one hydrophone, at 5.6-km

range and 115-m depth, receives a distorted version of the emitted signal, as illustrated in Fig.

5.3. The 135-m water column is superimposed to a perfectly rigid bottom. The considered

�������������������������
�������������������������
�������������������������
�������������������������

90 m

135 m

Source

5.6 km

115 mReceiver

Perfectly rigid bottom

Water

Figure 5.3: Canonical scenario used in simulations.

sound speed profile is shown in Fig. 5.4. Application of the ray/beam propagation model

BELLHOP[55], taking as input the environment in Fig. 5.3, allowed to obtain the reference



45

1506 1508 1510 1512 1514 1516 1518 1520 1522

0

20

40

60

80

100

120

140

Sound speed (m/s)

D
ep

th
 (

m
)

c(z)

Figure 5.4: Sound speed profile of the propagation scenario in Fig. 5.3.

channel IR h(t) and the (real) received signal rr(t). Launching angles were taken from the

interval [−30, +30]◦, discretized in 7.50 × 10−3 ◦ intervals. In what follows, analysis will

concern the [3.4, 5.45]-s interval of rr(t), and time will be relative to the absolute time

3.4 s. A total number of M = 45 arrivals have been predicted by the model, spanning the

time interval [0.31, 0.86] s, synthesized in the true IR h(t) in Fig. 5.5. According to the
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Figure 5.5: Reference IR h(t) of the canonical simulated scenario. The dashed line separates
unresolved from resolved impulses, explained later.

ray tracing model, the channel’s IR h(t) consists of a series of weighted and delayed Dirac

functions, and is expressed as

h(t) =
45∑
m=1

amδ(t− τm), (5.1)

where the amplitudes am and time-delays τm are the channel parameters to estimate, grouped
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into the vectors a and τ , respectively. The last 37 amplitudes and time-delays of h(t) are

mentioned in Tabs. 5.1 and 5.2, respectively. Time differences between all adjacent time-

delays are depicted in Fig. 5.6, with the pair indexes sorted by increasing time. The dashed

line indicates what can be crudely considered as the resolution of the matched-filter, as will

be discussed in Sec. 5.3.1. The minimum time difference is 0.176 ms, verified between 5th and
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Figure 5.6: Time differences between all adjacent time-delays. Data correspond to the synthetic
scenario. The dashed line gives an idea of the resolution of the MF.

6th arrivals. For reasons that will become evident in Sec. 5.3, the IR is split into 2 packets

of arrivals (cf. Fig. 5.5): one packet contains the first 8 arrivals, designated as unresolved

arrivals; the other contains the remaining 37 arrivals, designated as resolved arrivals.

Source signal consists of a T = 0.0625-s duration LFM pulse, spanning the [300, 800]-Hz

IF range (Fig. 5.7), whose analytic version is given by

s(t) = ej2π(4000t2+300t)rect

(
t− 0.03125

0.0625

)
. (5.2)

The IF of s(t) is obviously the linear function

fi(t) = (8000t+ 300)rect

(
t− 0.03125

0.0625

)
, (5.3)

representing a modulation rate of α = 8000 Hz/s –Fig. 5.8. The WV of the source signal,

WVs(t, f), is shown in Fig. 5.9, and given by

WVs(t, f) = 4t sinc {4πt (αt + f0 − f)} rect
(
t−T /4
T /2

)
+

+ (T − t) sinc {4π(T − t) (αt + f0 − f)} rect
(
t−T /2
T /2

)
.

(5.4)
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Figure 5.7: Source emitted LFM signal –real part of s(t)–, of duration 0.0625 s, and sweeping the
[300, 800]-Hz IF range, used in simulations.
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Figure 5.8: IF fi(t) of the LFM source signal considered in the simulation.

Figure 5.9: WV of the LFM source signal, WVs(t, f), respecting to synthetic data.

The analytic received signal r(t) associated with rr(t) is simply the convolution of s(t)

with h(t) (due to the filtering property of analytic signals[44]), thus obviously defined by

r(t) =
45∑
m=1

amej2π[4000(t−τm)2+300(t−τm)]rect

(
t− τm − 0.03125

0.0625

)
, (5.5)

whose real part rr(t) is represented in Fig. 5.10. Data is sampled at fs = 1700 Hz, and

importance has been given to a band of interest B = [300, 800] Hz, coincident with the

LFM’s IF range, for simplicity. Obviously, the multi-component received signal spans a time
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Figure 5.10: Received signal rr(t) used in simulations, for an LFM source signal.

interval equal to source signal duration plus the channel time dispersion, (0.0625 + 0.5450)

s = 0.6075 s, being associated to 45 individual IF lines, as seen in Fig. 5.11 [refer to h(t) in

Fig. 5.5]. The WV of r(t) is given by
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Figure 5.11: IFs of the received signal’s components (weighted replicas of the emitted signal), in
simulated data.

WVr(t, f) =
45∑
m=1

WVsm(t, f) + 2
44∑
m=1

45∑
n=m+1

Re [WVsm,sn(t, f)] , (5.6)

where WVsm(t, f) and WVsm,sn(t, f) designate the auto-WV and cross-WV of each source

replica, and source replicas pair, respectively. The simple-sum and double-sum terms corres-

pond hence to the 45 signal terms and 1980 cross-terms, respectively, giving rise to a some-

what complicated illustration of the received signal’s structure, as shown in Fig. 5.12(a).

Next three sections will describe the estimation of the three quantities IF fi(t), source

signal s(t) and channel IR h(t), respectively. It will be seen that the proposed approach
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Figure 5.12: WV of the received synthetic signal, WVr(t, f) (a), and contour plot of the corres-
ponding ambiguity function AFr(ν, τ) (b). The diagonal lines in the up-side of (a) indicate each
replica’s IF direction.

doesn’t suffer from the typical ill-conditioning of single-sensor deterministic deconvolution

methods.

5.1 Instantaneous Frequency Estimation

The information of the synthesized emitted signal, which obeys to the form

s(t) = ejϕi(t) (5.7)

[where ϕi(t) is the instantaneous phase], is contained in fi(t), apart from a phase term, since

the signal’s amplitude modulation (AM) component is constant [ai(t) = 1, in (B.5)]. For

a large variety of signals of the class represented by (5.7), almost the whole signal energy

concentrates around the line defined by the points [t, fi(t)], in the TF space[14]. Upon this

characteristic, the line [t, fi(t)] can be used in blind deconvolution, in the following manner:

• it provides a TF support that conduces, by inversion, to the source signature estimate;

• it defines an integration domain for WVr(t, f), which leads to the channel IR estimate.
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As the true IF fi(t) is not available, one must first obtain an estimate f̂i(t) to be used in the

above steps. It is expected that a good estimate of fi(t) will yield an also good estimate of

s(t) and h(t).

To estimate fi(t), one measure of the received signal’s IF, using (B.6), would not be a

good procedure to adopt, since the multi-component structure would imply an erroneous

measure which, at each time t, would take into account all the present components. Some

methods have been proposed for IF estimation, in the past. For example, in [61], a combined

Kalman filtering – high-resolution approach is used to track frequency in a multi-component

signal. The performance of this method is dependent on the knowledge of the model and

measure errors, often not available. Other approaches have been made by application of

random signal theory to the WV[13, 25, 34]. Use of the polynomial WV, a class of TFDs

which include and extend the WV to higher polynomial orders, has also been made, where

maximization with respect to frequency gave the IF estimate, for monocomponent signals[59].

Of course, for multi-component signals, this method wouldn’t give yet a meaningful estimate

of fi(t).

In this work, the estimation of fi(t) will take advantage of signal-dependent distributions,

as stated below. Let’s designate by I(t, f) an ideal linear signal-dependent TFD, infinitely

concentrated around the IF line, for finite or infinite duration signals with only an FM

component. The ideal distribution of the emitted LFM sweep would be1

Is(t, f) = δ [f − (f0 + αt)] rect

(
t− T /2
T

)
, (5.8)

and, for the received signal,

Ir(t, f) =
45∑
m=1

a2
mδ {f − [f0 + α (t− τm)]} rect

(
t− τm − T /2

T

)
. (5.9)

1The expressions for this ideal distribution are inspired in the WV of an infinite duration LFM signal.



5.1. INSTANTANEOUS FREQUENCY ESTIMATION 51

It would be trivial to identify weighted versions of the source distribution Is(t, f) in Ir(t, f),

replicated so many times as the number of physical eigenrays. As the first arrivals would be

represented in Ir(t, f) by large amplitudes along the IF of the source signal, maximization of

Ir(t, f) with respect to t, within the band of interest B, would “pick” the strongest arrival,

giving an unbiased estimate of fi(t). Of course, within the available possible non-linear

TFDs2, analysis is constrained by the particular characteristics of the kernel, and by finite

data lengths. Nonetheless, it seems reasonable to apply the maximization with respect to

t, to a signal-dependent distribution of the received signal, SDr(t, f), what will give a good

estimate of fi(t), if SDr(t, f) is a reasonable approximation of Ir(t, f). Hence, IF estimation

was done by maximization of SDr(t, f) 3 :

[
t, f̂i(t)

]
4
= {(t, f) : t = arg max

t
SDr (t, f) , f ∈ B} (5.10)

As stated below, IF estimation was done by use of the signal-dependent distributions CA and

RGK, presented in Secs. 4.3.1 and 4.3.2, respectively. Before proceeding to the description

of the results, it is important to analyze the characteristics of the estimator of the IF. A

signal-dependent distribution is difficult to analyze, due to the variability of the kernel with

the signal. However, one can perform a simple analysis on the WVs(t, f), since SDr(t, f) is a

reasonable approximation of a sum of replicas of WVs(t, f). According to (5.4), maximization

of WVs(t, f) with respect to time amounts to the resolution of the non-linear equations

4π (αt + f0 − f) (2αt + f0 − f) cos [4πt (αt + f0 − f)]−

−α sin [4πt (αt + f0 − f)] = 0, t ∈ [0, 0 + T/2] (5.11a)

4π {α [−2t+ T ] + f − f0} [αt + f0 − f ] cos [4π (T − t) (αt + f0 − f)]−
2Linear distributions are not mentioned, because they do not present good TF resolution at every

frequency[27].
3The IF estimate thus obtained is not rigorously a function of t, due to its definition as the ‘inverse’ of a

non-injective function.
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Figure 5.13: IF estimate obtained by global maximization of WVs(t, f), with respect to time. The
dashed line indicates the true IF.

−α sin 4π (T − t) [αt + f0 − f ] = 0, t ∈ [T/2, T ] (5.11b)

These non-linear equations are not trivially solved, and possess an infinite number of so-

lutions. However, the solutions that correspond to the global maxima of WVs(t, f) are

represented in Fig. 5.13, as the solutions that conduce to the IF estimate, for the consid-

ered synthetic data. It is seen that this IF estimate is systematically biased. However, it is

expected that this bias can be attenuated, when maximizing SDr(t, f), due to the inherent

broadening introduced in the signal components.

Beginning with the CA of r(t) –which is a multi-LFM signal–, and for the sake of illus-

tration, the modulation rate α of the emitted LFM signal was supposed to be known; in

what concerns kernel’s w parameter in (4.22), the unavailability of the information about

the time difference between the travel times led to a natural choice of w ≈ 0, justified by

the expected time proximity between the arrivals (characteristic of shallow water environ-

ments), as evidenced by the real differences, in Fig. 5.6. Otherwise, if it is known that

the emitted signal is an LFM sweep parameterized by α, the procedure (4.25) can be used,

for optimal kernel design, with the determination of α̂ and wopt. The obtained received

signal’s CA CAr(t, f) is depicted in Fig. 5.14. In this reduced-interference TFD, the first

8 arrivals are grouped in a support of large energy. The remaining 37 arrivals, “clustered”
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Figure 5.14: Chirp-adapted distribution of the received signal, CAr(t, f). For illustration purposes,
the emitted LFM signal true frequency modulation rate α has been used in the calculation of the
distribution. The temporal support and IF range of r(t) are marked.
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Figure 5.15: Source IF estimate, obtained via CAr(t, f)’s maximization with respect to time. Time
is relative to the first instant of maxima, 0.323 s.

in quadruplets, are clearly distinguished. Unavoidingly, the achieved representation of the

received signal spans a larger time duration and frequency range than WVr(t, f) (compare

with Fig. 5.12(a)). Unlike the WV, the CA strongly attenuates most of the interferences,

while keeping all the important signal components, as discussed in Sec. 4.3.1. The very

small value of w implies a loss of concentration of the signal terms, as referred in Sec. 4.3.1.

Use of (4.24) and (4.25b) to determine wopt could probably reduce this loss of concentration,

by using a larger value for w. However, the loss of concentration has small significance for

the instantaneous frequency estimate result, provided that B is not superior to the LFM’s

instantaneous frequency range, as will be seen below. Maximization of CAr(t, f), f ∈ B,

with respect to time, produced the IF estimate shown in Fig. 5.15. Fig. 5.16 shows one of
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Figure 5.16: One of the functions that were maximized with respect to t, CAr(t, 550), to estimate
the IF of the synthetic source signal.

the maximized functions, CAr(t, 550). This function clearly exhibits many of the aspects of

the channel IR.

The second signal-dependent distribution used for IF estimation was the RGK. For a

choice of the kernel volume parameter β = 1, the RGK of the received signal, RGKr(t, f), is

shown in Fig. 5.17 (a), aside with the corresponding optimal kernel Φopt(ν, τ) –Fig. 5.17 (b).

Global maximization of RGKr(t, f) with respect to t, gave rise to the IF estimate shown in

(a) (b)
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Figure 5.17: RGK signal-dependent distribution of the received synthetic signal, RGKr(t, f) (a),
and contour plot of the corresponding optimal kernel Φopt(ν, τ) (b).

Fig. 5.18.

As both CAr(t, f) and RGKr(t, f) conduced to similar source IF estimates, this last

distribution was adopted, since it makes no assumption about the “order” of the modulation,
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Figure 5.18: Source IF estimate, obtained via RGKr(t, f)’s maximization with respect to time.
Time is relative to the first instant of maxima, 0.322 s.

attaining good “performance” in both linear and non-linear modulation cases.

It is likely that the proposed approach will yield a good IF estimate mainly for the class of

source signals of the form (5.7), for which WVs(t, f) is usually concentrated on a continuous

region centered on the line defined by the pair [t, fi(t)][14]. However, for non-linear frequency

modulation signals, there are always ITs in their auto-WV, what may require a smaller value

for the kernel volume β, if some ITs of the auto-WV have greater amplitude than the signal

terms. The extension to the case of inconstant amplitude modulation component may be

treated the same manner, provided that ai(t) is a sufficiently smooth function, which weakly

increases the spread of the auto-WV along the IF, as will be seen in Chap. 7.

5.2 Source Signature Estimation

This section describes how the source signal can be recovered from a TF representation

“extracted” from the WV of the received signal. This synthesis procedure is a transformation

from a signal representation in the t− f -domain to the t-domain.

WV-based signal synthesis techniques[63] have been developed, which combined smoothing

and masking operations to recover signals from noise-contaminated data[27, 71]. The same

synthesis techniques have been used to perform multi-component signal separation, in the

past[5]. They can isolate a desired component of a multi-component signal, provided that
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the WV signal term corresponding to the desired signal component does not overlap signi-

ficantly with other signal terms or ITs. The usual procedure in signal synthesis is to first

obtain a modified WV, called a “model function”. The solution to the problem is a signal

whose WV is closest to the “model function”. This obeys to some optimization criteria,

from which the least squares approximation[5], the basis function approximation[40] or the

outer product approximation[74] are some examples.

Due to the multi-component structure of the received signal, in this work, source signature

estimation was performed by multi-component signal separation in the received signal, what

allowed to define a “model function” that was transformed to the time domain, first by

WV definition inversion, as explained in next subsection, and afterwards by application of

a signal synthesis technique named the basis method, explained in the second subsection.

5.2.1 Wigner-Ville Inversion

According to (4.6), the WV is defined as a Fourier transform with respect to τ , of a signal’s

local auto-correlation function. It is possible to invert this definition, obtaining the following

inversion equation:

x(t) =
1

x∗(0)

∫
WVx

(
t

2
, f

)
ej2πftdf. (5.12)

It is important to remark that if WVx(t, f) in (5.12) is replaced by some function T (t, f),

(5.12) represents WV inversion if and only if T (t, f) is an auto-WV of some time signal (or

WV realizable[67]). In a discrete-time setting [see (4.7)], both the values x(0) and x(1) must

be known, to exactly recover x(t). If, instead of WVx(t, f), one reasonable approximation

W̃V x(t, f) of WVx(t, f) is available, it is expected that the insertion of W̃V x(t, f) into (5.12)

will give a reasonable approximation of x(t). This reasoning has given a first motivation to
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estimate the emitted signal, as explained in the following. Departing from the estimate f̂i(t),

an estimate W̃V s(t, f) of WVs(t, f) was “extracted” from WVr(t, f), following the definition

W̃V s(t, f) = M(t− τs, f)WVr(t, f), (5.13)

where M(t, f) is a function concentrated around
[
t, f̂i(t)

]
, designated herein by mask, that

‘extracts’ W̃V s(t, f). The estimate W̃V s(t, f) will be named model function. The definition

of M(t, f) takes into account WV’s resolution, for finite-duration signals (cf. Sec. 4.2.1):

M(t, f) =

{
1, f = fi(t)± 1

2T
0, f 6= fi(t)± 1

2T
, t ∈ [t1, t2] , f ∈ [f1, f2] . (5.14)

The source estimate is defined as the result of the inversion of W̃V s(t, f) to the time domain,

using (5.12). It is expected that if W̃V s(t, f) ≈ a WVs(t−τs, f), a ∈ IR, then a good estimate

ŝ(t) can be obtained. The TF inversion is constrained essentially by τs: if τs is the location of

some echo well separated from adjacent echoes, it is expected that the TF domain centered

in this echo will give a good estimate of the source signal.

A reference estimate ŝref (t) has been obtained, by inversion of the product of the WV

of the true source signal s(t), by M(t, f), i.e., inversion of M(t, f)WVs(t, f). According to

(5.14), the width of M(t, f) in the direction of f was 1
T = 1

0.0625s
= 16 Hz. The reference

estimate (real part) is depicted in Fig. 5.19. The obtained correlation coefficient between s(t)
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Figure 5.19: Reference source estimate, obtained by WV inversion of M(t, f)WVs(t, f).

and ŝref (t) was 0.966. This measure will be taken as a reference for subsequent estimation
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results, since it corresponds to the best estimate that can be obtained.

Results

First, a source signal estimate was obtained, by TF inversion of a model function W̃V s(t, f)

centered on the first arrivals, with M(t, f) defined as above, for the calculus of the reference

estimate. This model function is depicted in Fig. 5.20. The real part of the estimated

Figure 5.20: Model function W̃V s(t, f) considered for first arrivals-based source estimation.

source signal ŝ1(t), obtained from inversion of the above function, is shown in Fig. 5.21. The

normalized correlation coefficient between s(t) and ŝ1(t) is 0.750. The WV of the estimate

ŝ1(t) is seen in Fig. 5.22. The difference between this WV and the non-valid WV model

function in Fig. 5.20 is not significant. Alternatively, and if the channel estimate is already

available (see Fig. 5.31), one later arrival can be selected, to avoid the superposition of

the early arrivals in the model function. The choice of the last arrival, at 0.523 s (relative

time) (cf. Tab. 5.2), has given the estimate ŝWI,l(t), whose correlation with s(t) has a
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Figure 5.21: First group of arrivals-based source estimate –real part of ŝWI,f (t)–, by WV inversion.
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Figure 5.22: WV of the first arrivals-based estimated source signal ŝ1(t), by WV inversion.

maximum value of 0.797. This is an improvement to the value 0.750 corresponding to the

first arrivals-based source estimate, but only possible if the channel estimate is available.

Here, one aspect must be pointed out: the quality of the estimate is conditioned on the

choice of the TF arrival to invert. The previous results show that the more isolated arrival

conduces to a greater quality of the corresponding source estimate. Unfortunately, in noisy
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Figure 5.23: Source estimate quality as a function of τs in M(t− τs, f). The estimate was obtained
via WV inversion, in simulated data. Red lines indicate the instants of the arrivals.

real data, it is difficult to determine the instants of later arrivals, as will be seen in Chap.

7, and one finds here a tradeoff in source estimation. The dependence of the quality of the

source estimate on the position of M(t − τs, f), i.e., on the value τs, is illustrated in Fig.

5.23. There is some evidence that the quality of the estimate increases when τs coincides

with τm, m = 1, ..., M . Not surprisingly, the maximum value of the estimate quality occurs

for the last arrival, at τs = 0.860 s (relative to t0). This is explained by the absence of

neighbour arrivals and ITs in the model function, due to the separation of the last peak of
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h(t) relatively to the other peaks, as seen in Fig. 5.6.

The source estimate is also conditioned by the width of M(t, f). It is expected that if

M(t, f) is centered on a well-resolved arrival, the quality of the estimate will increase with

the width of M(t, f). For the case of a non-resolved arrival, it is difficult to find a relation

between the mentioned width and the quality of the source estimate.

5.2.2 The Basis Method

This section is devoted to the explanation of the theory and application of the basis method, a

bilinear signal synthesis method that makes use of a signal subspace constraint that improves

signal synthesis when it depends on the non-valid WV model function presented in the above

subsection. The reader is referred to [29], for a more detailed explanation of the method.

The basis method was applied in this work, by the following steps(Fig. 5.24):

Step 1: Calculation of WVr(t, f);

Step 2: Modification of WVr(t, f) to generate the model function W̃V s(t, f);

Step 3: Synthesis of the output signal ŝBM(t) from W̃V s(t, f).

Figure 5.24: Scheme illustrating bilinear signal synthesis of ŝBM (t), departing from r(t).

In [29], QTFDs are considered in a general framework, depending on 2 parameters which

may be time t, frequency f , time-lag τ and/or frequency-lag ν. Here, the dependence will

relate to time and frequency. Any QTFD can be written as

Tx,y(t, f) =

∫
t1

∫
t2

uT (t, f ; t1, t2) qx,y (t1, t2) dt1 dt2, (5.15)
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where

qx,y (t1, t2) = x (t1) y∗ (t2) (5.16)

is the outer product of the signals x(t) and y(t), and uT (t, f ; t1, t2) is the kernel function

specifying the QTFD Tx,y(t, f)[73].

The problem under consideration is the synthesis of a signal x(t), based on the (appro-

ximate) specification of its QTFD Tx(t, f). Let T̃ (t, f) be a given model function [a model

function W̃V s(t, f) has already been considered in the previous subsection]. It is intended

to find a signal x(t) such that its QTFD Tx(t, f) equals the model function T̃ (t, f). Unfor-

tunately, the model will not, in general, be a valid QTFD of any signal. In this situation, it

is natural to look for the signal x(t) whose QTFD Tx(t, f) is closest to the model T̃ (t, f), in

the sense that it minimizes the “synthesis error”

εx =
∣∣∣∣∣∣T̃ − Tx∣∣∣∣∣∣ . (5.17)

By squaring the synthesis error, one must solve the minimization problem

min
x
ε2x = min

x

∣∣∣∣∣∣T̃ − Tx∣∣∣∣∣∣2 , (5.18)

where

∣∣∣∣∣∣T̃ − Tx∣∣∣∣∣∣2 4
=

∫
f

∫
t

∣∣∣T̃ (t, f)− Tx(t, f)
∣∣∣2 dt df. (5.19)

The minimization (5.18) is termed the bilinear signal synthesis problem. A subspace-constrained

version of the bilinear signal synthesis problem shall also be formulated, where the signal

x(t) is constrained to be an element of a given linear signal subspace S:

min
x∈S

εx = min
x∈S

∣∣∣∣∣∣T̃ − Tx∣∣∣∣∣∣ . (5.20)
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There are two reasons for including a subspace constraint. First, the subspace constraint

can be used for imposing certain properties on the synthesis result x(t): by prescribing a

suitable signal space S, x(t) can be forced to be band-limited, analytic, time-limited, causal,

symmetric, etc. Second, in some instances, the structure of the QTFD Tx(t, f) calls for a

signal subspace constraint: for example, discrete-time WV suffers from severe aliasing effects

unless the signals are restricted to a suitably defined subspace of band-limited signals[11].

The bilinear signal synthesis problem is solved for arbitrary (sub-)space S and arbitrary

QTFDs possessing an unitary property on the space S. The space S may be defined by an

orthonormal basis {ek(t)} spanning S such that every x(t) ∈ S can be represented as

x(t) =
∑
k

αkek(t), with αk = 〈x|ek〉 =

∫
t

x(t)e∗k(t)dt. (5.21)

Orthonormality of the basis signals is expressed by 〈ek|ek′〉 = δkk′ , where δkk′ is the Kronecker

delta symbol. An important issue regarding signal spaces is that the linear signal space S

induces a corresponding linear T -domain space ST ⊆ L2 (IR2) which is defined as the linear

space of all linear combinations of cross-QTFD outcomes Tx,y(t, f), with x(t), y(t) ∈ S.

Now, if a QTFD Tx,y(t, f) is S-unitary, then an orthonormal basis {Tkl (t, f)} of ST is

Tkl(t, f) = Tek,el(t, f), (5.22)

where {ek(t)} is any orthonormal basis of S.

As shown in [29], the squared version of the minimization problem (5.20) is equivalent to

min
x∈S

ε2S,x = min
x∈S

∣∣∣∣∣∣T̃S − Tx
∣∣∣∣∣∣2 , (5.23)

where ε2S,x and T̃S are the synthesis error and model’s projections on ST , respectively.

According to (5.21), the subspace constraint is incorporated by representing the signal x(t)
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in terms of the basis {ek(t)} spanning S:

x(t) =

Nb∑
k=1

αkek(t), (5.24)

where Nb, the dimension of the space S, may be infinite. This induces a corresponding

T -domain representation of Tx(t, f) in terms of the induced T -domain basis {Tkl(t, f)}:

Tx(t, f) =

Nb∑
k=1

Nb∑
l=1

γklTkl(t, f), with γkl = αkα
∗
l . (5.25)

The model projection T̃S(t, f), too, is an element of the induced T -domain space ST , and

can thus be represented in terms of the induced T -domain basis {Tkl(t, f)}:

T̃S(t, f) =

Nb∑
k=1

Nb∑
l=1

γ̃klTkl(t, f), with γ̃kl =
〈
T̃S|Tkl

〉
, (5.26)

where < · > denotes the 2D functional inner product operator. Using (5.25) and (5.26), and

the orthonormality of the induced T -domain basis {Tkl (t, f)}, the (squared) synthesis error

can be developed as

ε2S,x =
∣∣∣∣∣∣T̃S − Tx

∣∣∣∣∣∣2 =

∣∣∣∣∣
∣∣∣∣∣
Nb∑
k=1

Nb∑
l=1

(γ̃kl − αkα∗l )Tkl

∣∣∣∣∣
∣∣∣∣∣
2

=

Nb∑
k=1

Nb∑
l=1

|γ̃kl − αkα∗l |
2 =

∣∣∣∣∣∣Γ̃−ααH∣∣∣∣∣∣2
F
, (5.27)

with the (Nb×Nb)-dimensional coefficient matrix Γ̃ = (γ̃kl) and theNb-dimensional coefficient

vector α = (αk); ||·||F denotes the Euclidean matrix norm (Frobenius norm), and H stands

for complex transposition. The dyadic-product matrix ααH is Hermitian and rank 1; the

matrix Γ̃, on the other hand, is generally not Hermitian but can be split into a Hermitian

component Γ̃H and an anti-Hermitian component Γ̃A. With this, the squared synthesis error

can be decomposed as:

ε2S,x =
∣∣∣∣∣∣Γ̃−ααH∣∣∣∣∣∣2

F
=
∣∣∣∣∣∣(Γ̃H + Γ̃A

)
−ααH

∣∣∣∣∣∣2
F

=
∣∣∣∣∣∣Γ̃H −ααH

∣∣∣∣∣∣2
F

+
∣∣∣∣∣∣Γ̃A

∣∣∣∣∣∣2
F

= ε2SH,x + ε2SA, (5.28)
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where the “anti-Hermitian” error component εSA =
∣∣∣∣∣∣Γ̃A

∣∣∣∣∣∣
F

does not depend on x(t) (i.e.,

on α), and can hence be disregarded for minimization. Thus, it remains to minimize the

“Hermitian” error component

εSH,x =
∣∣∣∣∣∣Γ̃H −ααH

∣∣∣∣∣∣
F

(5.29)

in the absence of any constraint [note that the constraint x(t) ∈ S has been taken account

of by representing x(t) according to (5.24)]. Minimization of (5.29) amounts to the appro-

ximation of the Hermitian matrix Γ̃H by a dyadic product ααH . With µk and vk denoting,

respectively, the real-valued eigenvalues sorted by decreasing value, and the corresponding

orthonormal eigenvectors of the Hermitian matrix Γ̃H , a derivation presented in [29] yields

the solution

αopt =
√
µ1ejϕv1, (5.30)

where it was assumed that the largest eigenvalue µ1 is nonnegative, and ϕ is an arbitrary

phase constant. Inserting (5.30) and the spectral decomposition

Γ̃H =

Nb∑
k=1

µkvkv
H
k (5.31)

into (5.29), the residual synthesis error is obtained as

ε2SH,min = ε2SH,xopt =
∣∣∣∣∣∣∑Nb

k=2 µkvkv
H
k

∣∣∣∣∣∣2
F

=

Nb∑
k=2

µ2
k, (5.32)

where the orthonormality of the eigenvectors vk has been used.

The basis method can finally be summarized as follows:

Step 1: Calculate the expansion coefficients of the model projection T̃S (t, f):

γ̃kl =
〈
T̃S|Tkl

〉
=

∫∫
T̃S (t, f)T ∗kl (t, f) dt df, 1 ≤ k, l ≤ Nb; (5.33)
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Step 2: Form the matrix Γ̃ = (γ̃kl), and take its Hermitian component

Γ̃H =
1

2

(
Γ̃ + Γ̃H

)
; (5.34)

Step 3: Calculate the largest eigenvalue µ1 and the associated (normalized) eigen-

vector v1 of Γ̃H ; if µ1 ≥ 0, then the synthesis solution is given by [cf. (5.24)]

xopt(t) =

Nb∑
k=1

αopt,kek(t). (5.35)

An open problem is the choice of the best basis {ek(t)} and the number of basis functions

Nb. This choice can be based on a priori information about the source signal, or, as previously

said, on properties that are to be imposed on the synthesis result. In what concerns the

number Nb, the discrete-time version of the basis method implemented in the present work

has shown that a number Nb of half the number of data points of the synthesis result xopt(t)

was sufficient to decompose xopt(t) in the basis {ek(t)}, with a good approximation.

Ambiguity of the Signal Synthesis Solution

The solution to the signal synthesis problem (5.20) is not uniquely defined. Let us assume

that the QTFD Tx(t, f) is invariant with respect to some signal transformation T such that

TTx(t, f) = Tx(t, f) for all x(t) ∈ S. Let’s suppose also that x(t) ∈ S entails (Tx)(t) ∈ S.

Then, if x0(t) ∈ S is a solution to (5.20), (Tx0) is a solution as well since it is also an element

of S and achieves the same minimal synthesis error. It is thus seen that any invariance of

the QTFD with respect to a space-preserving signal transformation entails a corresponding

ambiguity of the signal synthesis solution. Now, in the case of an S-unitary QTFD, only a

very trivial and comparatively harmless invariance exists. In fact, it can be shown that

Tx1(t, f) = Tx2(t, f), (5.36)
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with x1(t), x2(t) ∈ S then implies

x2(t) = x1(t)ejϕ, (5.37)

with ϕ being an arbitrary phase constant.

A second ambiguity may exist, if the basis {ek(t)} that defines S is not unique. In this

case, it is likely that the synthesis result will not be very sensitive to a change of basis,

provided that the number Nb is sufficient to constrain the result xopt(t) to be an element of

S, with good approximation, for each basis {ek(t)}.

Results

For application of the basis method, the considered signal space S was the subspace B of

band-limited signals, with the band [f1, f2] = [0, fs/2]. This is a natural band limitation,

when dealing with discrete-time signals, and as a first study of method’s performance. It

follows from the sampling theorem[57] that an orthonormal basis {ek(t)} spanning B is given

by

ek(t) = h(t− k/υ), −∞ < k <∞, (5.38)

where

h(t) = υ ej2πf0tsinc(υt) (5.39)

is the impulse response of an ideal bandpass filter with passband [f1, f2]; here, f0 = (f1 + f2) /2

and υ = f2 − f1 denote the passband’s center frequency and bandwidth, respectively. The

chosen number Nb of basis functions was half the number of data points, Nb = 1024. A

discrete-time version of the basis method was implemented, replacing the integrals in the

definition of the expansion coefficients (5.33), by sums. The considered model function was

the same as in previous section, W̃V s(t, f) in Fig. 5.20.
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Figure 5.25: Source estimate –real part of ŝBM (t)–, in synthetic data. This estimate was obtained
via the basis method, taking as input the model function in Fig. 5.20.

Figure 5.26: WV of ŝBM (t).

The obtained source estimate [the real part of the analytic signal ŝBM(t)] is depicted in

Fig. 5.25, and corresponds to a cross-correlation coefficient of 0.793 with the true source

signal in Fig. 5.7. The maximum of the correlation between s(t) and ŝBM(t) is 0.856

(represented by the dashed line in Fig. 5.27). This value represents a superior quality

relative to the “naive” inversion in Sec. 5.2.1, which gave a correlation maximum of 0.750.

The WV that best approximates the model function W̃V s(t, f), i.e., the WV of the estimate

ŝBM(t), is depicted in Fig. 5.26. The band limitation signal constraint is reflected not only

in the increased signal duration, as can be seen already in Fig. 5.25, but also in an increase

of the IF range, since the limitation to [0, fs/2] let freedom to the estimate’s IF to extend

within the whole [0, 850] Hz interval, in order to attain the minimum (5.32). It is difficult

to predict what would be the effect of increasing fs, on the synthesis result.

In view of the ambiguity of the signal synthesis solution afore-mentioned, all the complex

signals ŝBM(t)ejϕ are solutions to the signal synthesis problem[cf. (5.36)–(5.37)]. However,
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Figure 5.27: Evolution of the correlation coefficient between the real parts of s(t) and ŝBM (t), as
a function of ϕ, in simulated data. The dashed line indicates the correlation between s(t) and
ŝBM (t).

it is often necessary to recover the real emitted signal [real part of s(t) in (5.2)], and Fig.

5.27 shows the correlation coefficient between the real parts of s(t) and ŝBM(t) as a function

of ϕ. The maximum value of this function is 0.860.

5.3 Channel Estimation

This section describes the estimation of the parameters {am, τm; m = 1, ..., M} that

characterize the channel’s IR. In the first subsection, the classical matched-filter is mentioned.

Afterwards, the TF channel estimator will be presented as an equivalent TF formulation of

the matched-filter. Last subsection treats channel estimation solved by matched-filtering

with the source estimate.

5.3.1 Matched-Filter

The matched-filter (MF) is a well-known filter that can be used in the identification of mul-

tiple time-delay attenuation channels, when the input and received signals are available[37].

The matched-filter simply calculates the correlation function between the known input signal

and the received signal. In a discrete-time setting, the estimation of the amplitude vector a

is shown to be equivalent to the least squares estimation or, under the Gaussian white noise
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assumption, to a generalized maximum likelihood problem[37].

Taking the signals involved in this work, the MF output is the correlation function

Γsr,rr,t(τ) =

∫
sr(t)rr(t+ τ)dt. (5.40)

For each particular true time-delay value τ = τp, 1 ≤ p ≤M , the correlation takes the value

Γsr,rr,t(τp) = apEs + am

M∑
m=1
m6=p

Γsr,t(τp − τm), (5.41)

where Es is the energy of sr(t). For values τp such that Γsr,rr,t (τp − τm) = 0, ∀m 6= p, the

matched-filter output is thus proportional to the amplitude ap of the channel, at time-lag τp.

The condition Γsr,rr,t (τp − τm) = 0 is verified if the separation between the time-delays τp

and τm is greater than the duration of the auto-correlation function Γsr,t(τ). If this is the case

for all the time-delays pairs, the main peaks of Γsr,rr,t(τ) are located in τm, m = 1, ..., M ,

and the matched-filter is an optimum estimator of the channel amplitudes am and time-

-delays τm[17]. If there are some pairs of time-delays separated by less than the duration of

Γsr,rr,t(τ), it is not possible to resolve all the individual signals from the MF output, and the

overlap introduces errors into the amplitude and arrival time estimates. The effects of the

overlap can be reduced by using a broader bandwidth source[17]. For the data considered

in this work, the source bandwidth of ≈ 500 Hz has revealed to be acceptable, for channel

estimation. Often, the channel estimate is based on the envelope of the cross-correlation

function, since it is a low-pass signal[44].

For the considered simulation case, the channel estimate obtained by matched-filtering is

depicted in Fig. 5.28. In practice, to identify the impulses of the IR, in the MF estimate, a

threshold can be fixed on the cross-correlation envelope, to then take all peaks greater than

the specified threshold as the desired estimates, forming the vectors âred and τ̂ red containing
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Figure 5.28: Channel estimate obtained by classic matched-filtering: normalized envelope of the
cross-correlation function between emitted and received signals (the well-known arrival pattern).
Data correspond to the simulated scenario.

the resolved amplitudes and time-delays, respectively. This procedure allows to identify, at

least, all the arrivals separated in time by more than the imposed resolution, i.e., all but the

first peaks. As said before, the resolution depends directly on the source signal’s bandwidth,

and for the 300-800 Hz LFM, it is found that it is expected to resolve all the peaks separated

by more than ≈ 2.07 ms (indicated in Fig. 5.6), as given by the first zero (C.6) of the

LFM’s autocorrelation function. In practice, the first 8 impulses of h(t) are not resolved,

and the quality of the channel estimate will refer only to the remaining 37 impulses. The

corresponding estimated amplitudes and time-delays are summarized in Tabs. 5.1 and 5.2,

respectively. One normalized measure of the quality of the results can be given as

ρh,a = 1− ||ared − âred||
2

; (5.42a)

ρh,τ = 1− ||τ red − τ̂ red||
2

, (5.42b)

where the vectors are of unit norm. The performance of the MF was quantified by ρh,a =

0.9730 and ρh,τ = 0.9997, for amplitude and time-delay estimation, respectively.

5.3.2 Time-Frequency Formulation of the Matched-Filter

This section describes a procedure for channel estimation, for the LFM emitted signal, where

the IF estimate obtained in Sec. 5.1 was used in conjunction with a TF formulation of cor-
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relation. The channel estimate was obtained either by filtering of WVr(t, f) or RGKr(t, f),

as will be described in the following.

Wigner-Ville Coherent Integration

As mentioned in Tab. 4.2, the WV obeys to Moyal’s formula[20]:∫ ∞∫
−∞

WVx1,x2(t, f)WV ∗x3,x4
(t, f) dt df =

[∫ ∞
−∞

x1(t)x∗3(t) dt

] [∫ ∞
−∞

x2(t)x∗4(t) dt

]∗
(5.43)

For the particular cases x1(t) = r(t), x2(t) = r(t), x3(t) = s(t + τ) and x4(t) = s(t), one

gets:∫ ∞∫
−∞

WVr(t, f)WV ∗s(t+τ),s(t)(t, f) dt df =

[∫ ∞
−∞

r(t)s∗(t+ τ) dt

] [∫ ∞
−∞

r(t)s∗(t) dt

]∗
.

(5.44)

This shows that correlation can be performed in the TF domain. This constitutes the TF

formulation of the MF. Suppose the emitted signal is an infinite-duration LFM signal. In

this case, the left-hand side of (5.44) amounts crudely to an integration of WVr(t, f) along

the IF of s(t). Now, in the case of a finite duration LFM signal, that is the case in simulated

data, integration of WVr(t, f) along fi(t) gives an approximate expression to (5.44). This

can be seen by integrating WVs(t, f), along fi(t − τi), what can be viewed as a coherent

integration:

ΓCI =

∫ ∞
−∞

WVs [t, f0 + α (t− τ)] dt = [T sinc (πατT )]2 . (5.45)

Taking into account the envelope of the auto-correlation of an LFM signal (C.5), one can

see that, for τi = 0 and τ = 0, ΓCI = 4a2
Γ(0). Moreover, the first zero of (5.45) is

b =
1

αT
, (5.46)

that is an approximation to z1 in (C.6), when

∆f � 4

T
. (5.47)
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This means that channel estimation performed by TF coherent integration attains essentially

the same resolution as the MF, when the condition (5.47) is verified. Fig. 5.29 compares
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Figure 5.29: Comparison of the LFM auto-correlation envelope (blue line), with the function obtai-
ned via coherent integration on the WV of the LFM, for the simulated data. Here, α = 8000 Hz/s
and T=0.0625 s.

normalized versions of the functions (C.5) and (5.45), where it can be seen the similarity

between the two corresponding channel estimators. When the condition (5.47) is not verified,

the zeros of (5.45) will be closer than the zeros of (C.5), while the side-lobes of (5.45) will

be greater than their homologous in (C.5), as illustrated in Fig. 5.30, for the particular case

of ∆f = 20 Hz and 4/T = 64 Hz.
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Figure 5.30: Comparison of the LFM auto-correlation envelope (blue line), with the function ob-
tained via coherent integration on the WV of the LFM, for the case α=320 Hz/s and T=0.0625
s.

In view of the above considerations, channel estimation was done by coherent integration

of WVr(t, f), along the path defined by f̂i(t) in Fig. 5.18. The obtained channel estimate

is shown in Fig. 5.31. Applying a threshold value of 0.25, the estimated amplitudes and
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Figure 5.31: Channel estimate, obtained by coherent integration of WVr(t, f), in synthetic data.

time-delays summarized in Tabs. 5.1 and 5.2, respectively, were obtained. This result is to

be compared with the channel estimate obtained by classic matched-filtering, depicted on

Fig. 5.28. For the problem at hand, ∆f = 500 > 4/T = 64, and it can be verified that the

obtained resolution is comparable to that of the matched-filter result. The quality of the

channel estimate is given by ρh,a = 0.9664 and ρh,τ = 0.9996, for amplitudes and time-delays,

respectively.

Signal-Dependent Distribution Coherent Integration

An interesting alternative to WV coherent integration is to coherently integrate a signal-

dependent distribution of r(t), proceeding the same way as with WVr(t, f). The result of

the integration of RGKr(t, f) was the estimate ĥRGK(t), shown in Fig. 5.32, whose last 37

peaks are mentioned in Tabs. 5.1 and 5.2. The quality of the channel estimate is given

0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

Time (s)

N
or

m
al

iz
ed

 a
m

pl
itu

de

Figure 5.32: Simulation channel IR estimate obtained by RGKr(t, f)’s coherent integration.

by ρa = 0.9760 and ρτ = 0.9997, for the amplitudes and time-delays, respectively. Some
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interesting issues can readily be seen. First, this estimate is very similar to the previous

estimate obtained by WVr(t, f) integration (cf. Fig. 5.31, and Tabs. 5.1 and 5.2). This

is not surprising, since the RGK contains essentially all the important signal terms –the

replicas of the emitted signal–, hence conserving the information of these replicas. Second,

due to the absence of many negative values in RGKr(t, f) as opposed to WVr(t, f), the mean

amplitude of ĥRGK(t) is greater than that of ĥWV (t), which constrains a threshold-based peak

detection to a greater threshold than in the previous case. A greater threshold may however

disregard small peaks, specially at greater times, in ĥRGK(t). Third, the estimate ĥRGK(t)

is a smoother function than ĥWV (t), what is possibly explained by the practically complete

absence of ITs in RGKr(t, f). This smoothness may conduce to a less ambiguous extraction

of the channel parameters.

5.3.3 Matched-Filtering with the Source Estimate

Alternatively to the procedure of WV coherent integration of the previous subsection, the

channel estimate can be obtained by cross-correlation between ŝ(t) and r(t), once ŝ(t) be

available, as schematized in Fig. 5.2. This can give a better channel estimate, if there is

some broadening in WVs(t, f), in which case fi(t) doesn’t contain the whole information

of s(t), and hence an integration of WVr(t, f) along fi(t) is not sufficient to estimate the

channel. This situation occurs when s(t) is composed of both FM and AM components.

Taking the estimate ŝBM(t), the channel estimate obtained by matched-filtering with

ŝBM(t) is represented in Fig. 5.33, and the estimated resolved 37 last amplitudes and time-

delays are summarized in Tabs. 5.1 and 5.2, respectively. The quality of the channel estimate

is given by ρh,a = 0.9738 and ρh,τ = 0.9995, for the amplitudes and time-delays, respectively.
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Figure 5.33: Channel estimate obtained by matched-filtering of r(t) with the estimate ŝBM (t).

True MF WV coh. int. RGK coh. int. MF with ŝBM(t)
0.2809 0.3275 0.2767 0.3071 0.2703
0.2894 0.3534 0.3415 0.3605 0.3201
0.2977 0.3500 0.3048 0.3365 0.3108
0.3058 0.3179 0.2836 0.3206 0.2978
0.3149 0.3793 0.3722 0.3836 0.3645
0.3167 0.3802 0.2901 0.3254 0.2965
0.3211 0.3745 0.3721 0.3837 0.3669
0.3213 0.3948 0.3419 0.3678 0.3389
0.3278 0.3611 0.3344 0.3534 0.3269
0.3246 0.3343 0.3575 0.3698 0.3527
0.3313 0.3562 0.2871 0.3290 0.3009
0.3230 0.3396 0.3416 0.3634 0.3395
0.3245 0.3384 0.2953 0.3323 0.3039
0.3277 0.3371 0.3393 0.3594 0.3414
0.2988 0.3106 0.3164 0.3352 0.3184
0.3429 0.3843 0.3316 0.3656 0.3441
0.3274 0.3885 0.3325 0.3584 0.3405
0.3315 0.4117 0.3551 0.3778 0.3511
0.3283 0.3650 0.3573 0.3650 0.3453
0.3170 0.3517 0.3044 0.3332 0.3102
0.3211 0.3430 0.3004 0.3261 0.3048
0.3251 0.3579 0.3287 0.3507 0.3273
0.3165 0.3352 0.3261 0.3447 0.3239
0.3073 0.3316 0.3063 0.3327 0.3172
0.3067 0.3223 0.2945 0.3197 0.3007
0.3112 0.3556 0.3312 0.3488 0.3342
0.3167 0.3642 0.3360 0.3535 0.3350
0.3254 0.3815 0.3440 0.3596 0.3447
0.3202 0.3726 0.3210 0.3560 0.3385
0.3219 0.3636 0.3374 0.3525 0.3355
0.3177 0.3244 0.3084 0.3303 0.3115
0.4136 0.4599 0.4220 0.4416 0.4213
0.3095 0.3349 0.3081 0.3258 0.3076
0.3115 0.3482 0.3305 0.3486 0.3292
0.2976 0.3296 0.2943 0.3127 0.2990
0.2985 0.3258 0.2900 0.3094 0.2903
0.2981 0.3242 0.3027 0.3169 0.3026

Table 5.1: Amplitude estimators comparison in noiseless simulated data. The amplitudes respect
to the resolved last 37 Dirac functions of the IR.
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True MF WV coh. int. RGK coh. int. MF with ŝBM(t)
0 0 0 0 0

0.0042 0.0041 0.0041 0.0041 0.0041
0.0095 0.0094 0.0088 0.0094 0.0088
0.0140 0.0141 0.0135 0.0141 0.0135
0.0284 0.0282 0.0282 0.0282 0.0282
0.0336 0.0335 0.0335 0.0335 0.0335
0.0403 0.0406 0.0406 0.0406 0.0406
0.0458 0.0459 0.0459 0.0459 0.0459
0.0646 0.0647 0.0647 0.0647 0.0647
0.0709 0.0712 0.0712 0.0712 0.0712
0.0790 0.0788 0.0788 0.0788 0.0788
0.0857 0.0859 0.0859 0.0859 0.0859
0.1087 0.1088 0.1088 0.1088 0.1088
0.1161 0.1159 0.1159 0.1159 0.1159
0.1256 0.1259 0.1259 0.1259 0.1259
0.1333 0.1335 0.1335 0.1335 0.1335
0.1604 0.1606 0.1606 0.1606 0.1606
0.1689 0.1688 0.1688 0.1688 0.1688
0.1797 0.1800 0.1800 0.1800 0.1800
0.1886 0.1888 0.1888 0.1888 0.1882
0.2195 0.2194 0.2194 0.2194 0.2194
0.2290 0.2288 0.2288 0.2288 0.2288
0.2411 0.2412 0.2412 0.2412 0.2412
0.2510 0.2512 0.2512 0.2512 0.2512
0.2856 0.2859 0.2859 0.2859 0.2859
0.2961 0.2959 0.2959 0.2959 0.2959
0.3095 0.3094 0.3094 0.3094 0.3094
0.3204 0.3206 0.3206 0.3206 0.3206
0.3586 0.3588 0.3588 0.3588 0.3588
0.3701 0.3700 0.3700 0.3700 0.3700
0.3845 0.3847 0.3847 0.3847 0.3847
0.3963 0.3965 0.3965 0.3965 0.3965
0.4377 0.4376 0.4377 0.4377 0.4376
0.4501 0.4500 0.4500 0.4500 0.4500
0.4658 0.4659 0.4659 0.4659 0.4659
0.4785 0.4788 0.4788 0.4788 0.4788
0.5230 0.5229 0.5230 0.5230 0.5229

Table 5.2: Time-delay estimators comparison in noiseless simulated data. The time-delays respect
to the resolved last 37 Dirac functions of the IR.



Chapter 6

Performance in Noise

This chapter is devoted to a brief description of deconvolution robustness to noise. When

talking about noise, many considerations usually evolve, concerning stationarity, whiteness,

etc. In real data, the noise ξ(t) in (2.8) can assume any distribution, and many cases of

statistical relations between the implicit random variables are possible. Here, in simulations,

analysis will be restricted to white noise (stationary of all orders, as seen in Sec. 4.1).

Let ξ(t) be a stationary complex white random process, present in the received signal

following (2.8), uncorrelated with the source signal, such that

E ξ(t) = 0; (6.1a)

E [ξ(t)ξ∗(t− τ)] = σ2
ξδ(τ), (6.1b)

where E designates the expectation operator. Since the approach in the present work is

based on the analysis and transformation of WVr(t, f), it is natural to find the expected

value of WVr(t, f), in the presence of noise. Letting x(t) = s(t) ∗ h(t), one finds that

E WVr(t, f) = WVx(t, f) + E WVξ(t, f)

= WVx(t, f) + σ2
ξ . (6.2)

Two aspects can readily be seen. First, the noise power is the same at each TF location,

what is not surprising, since ξ(t) is simultaneously white and stationary. Second, and as

77
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a consequence of the above issue, the blind deconvolution method can be performed the

same way as in the noiseless data case of Chap. 5, provided that WVr(t, f) is replaced by its

expected value, since the noiseless WV (5.6) will now be added, in average, to a constant.

In what concerns RGKr(t, f), a theoretical analysis is more difficult, since its kernel is

dependent on the analyzed signal. However, since the distribution is calculated departing

from the AF of the analyzed signal, one can readily verify that

E AFr(ν, τ) = AFx(ν, τ) + σ2
ξδ(ν)δ(τ), (6.3)

what shows that the AF of the noiseless signal x(t) is added in average to 0, except at the

origin of the (ν, τ)-plane, hence not representing a significant change on the calculus of the

optimal kernel, relatively to the noiseless case. This can explain the robustness of the RGK

in the presence of noise, already mentioned in [4].

The signal-to-noise ratio is here defined as:

SNRdB = 10 log
1
N

∑N−1
n=0 s

2(n)

σ2
ξ

, (6.4)

where N is the number of time samples. An illustration of deconvolution behaviour in

noisy data is given, which comprises average values corresponding to 100 realizations of the

received signal, for SNR = -5 dB. The average function RGKr(t, f), with β = 1, plotted in

Fig. 6.1, is seen to be not much sensitive to noisy data, as discussed in [4]. Maximization

of RGKr(t, f) with respect to time produced the IF estimate depicted in Fig. 6.2. The

coherent integration of the average WV of the received signal, WV r(t, f) has given the

channel estimate of Fig. 6.4. The source estimate obtained by application of the basis

method can be seen in Fig. 6.3.

Source estimation’s performance in noise is illustrated below. For values of SNR ranging

from -20 to 10 dB, source estimation was done by application of the basis method, as
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Figure 6.1: Average RGKr(t, f) (β=1), for SNR=-5 dB and 100 trials.
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Figure 6.2: IF estimate, in -5 dB noisy data, for 100 trials. The dashed line represents the true IF.
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Figure 6.3: Source estimate, obtained via the basis method, with SNR=-5dB, for 100 trials.
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Figure 6.4: Channel estimate, obtained by WV r(t, f) integration, with SNR=-5dB, for 100 trials.

explained in Sec. 5.2.2. The model function was again centered on the strongest arrivals,

and the number of basis functions was here also Nb = 1024. The performance measure was

naturally the correlation coefficient between the true signal s(t) and the estimate ŝBM(t),
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and is depicted as a function of the SNR, in Fig. 6.5. Each SNR value corresponds to 100
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Figure 6.5: Source estimation performance in noise.

trials.

Channel estimation’s performance in noise was measured by the normalized performance

measures (5.42) of the channel estimates obtained by WV r(t, f) coherent integration, for

values of SNR ranging from -5 to 10 dB. The same threshold value of 0.25 was used to

determine the time locations of the last 37 resolved peaks of the IR estimate, as in Sec. 5.3.

For values of SNR below -5 dB, it was not possible to clearly distinguish the 37 resolved

peaks, with the specified threshold. The estimated dependence of the performance measures

on the SNR is illustrated in Fig. 6.6, again corresponding to 100 trials for each SNR value.
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Figure 6.6: Channel estimation performance in noise.



Chapter 7

Experimental Data: the
INTIMATE ’96 Sea Trial

The INTIMATE ’96 sea trial was primarily designed as an acoustic tomography experiment

to observe internal tides, and details of the experimental setup have appeared elsewhere[15].

It was conducted in the continental platform near the town of Nazaré, off the west coast of

Portugal, during June 1996, and consisted of several phases during which the acoustic source

was either spatially stationary or being towed along predetermined paths. The results in

this chapter concern ten data snapshots acquired in phase 1 during which the scenario is as

shown in Fig. 7.1.

The source signal used in the INTIMATE ’96 sea trial was a 300–800 Hz LFM sweep with

2-s duration, repeated every 8 s, and emitted in practice by an electro-acoustic transducer of

type Janus-Helmholtz. The transducer presented a main resonance at 650 Hz and a secondary

resonance at 350 Hz, as measured on the device, and seen in Fig. 7.2(a). Considering the

transducer as a linear filter, an approximation of its IR, for a null spectral phase, is depicted

in Fig. 7.2 (b). A model s(t) of the emitted signal is represented in Fig. 7.3. The signal

s(t) is well approximated by the product of the 300–800 Hz LFM sweep by the IA ai(t)

[approximately equal to the transducer amplitude spectrum in Fig. 7.2(a), in the LFM’s

IF range] shown in Fig. 7.4. According to this approximation, the IF fi(t) of s(t) is
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Figure 7.1: INTIMATE ’96 real data environment scenario considered in this chapter.
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Figure 7.2: Electro-acoustic transducer amplitude spectrum (a) and IR (b), in the INTIMATE ’96
sea trial.
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Figure 7.3: Model of the true source signal –real part of s(t)– in the INTIMATE ’96 sea trial.
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Figure 7.4: IA ai(t) of the source signal model, in the INTIMATE ’96 sea trial.

essentially the same as the IF of the LFM sweep, as seen in the representation of the IF of

s(t), determined using (B.6) –Fig. 7.5.
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Figure 7.5: IF of s(t), in the INTIMATE ’96 sea trial.

One of the snapshots received at 5.5-km range on the 115-m depth hydrophone is shown

in Fig. 7.6. The SNR has been estimated to be approximately 10 dB within the frequency

band of interest[37].
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Figure 7.6: One of the received snapshots, at 5.5-km range, on the 115-m depth hydrophone, in
the INTIMATE ’96 sea trial.

Figure 7.7: Portion of the average distribution RGKr(t, f), in the INTIMATE ’96 sea trial.

Instantaneous Frequency Estimation

Taking into account the available ten snapshots, fi(t) was estimated, by maximization of

the average RGK, denoted by RGKr(t, f), obtained by averaging over the snapshots’ indi-

vidual RGK distributions, and represented in Fig. 7.7. The IF estimate f̂i(t) is shown in

Fig. 7.8. By comparison with the true IF fi(t) in Fig. 7.5, it can be seen that the main

difference between fi(t) and f̂i(t) occurs around the time interval [1.2, 1.6] s, corresponding

to the frequency interval [600, 700] Hz, which contains the main resonance of the transducer

spectrum [Fig. 7.2(a)].

Source Signature Estimation

Source signature estimation was done by application of the basis method described in

Sec. 5.2.2. Proceeding the same way as in Sec. 5.2.1, in the context of WV inversion, a
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Figure 7.8: IF estimate f̂i(t) of the source signal, obtained by maximization of RGKr(t, f), in the
INTIMATE ’96 sea trial.

Figure 7.9: WV of s(t).

reference source estimate was obtained by application of the basis method to a model func-

tion defined as the multiplication of the WV of s(t) by a function M(t, f) whose width in

the direction of f was 1
T = 1

2 s
= 0.5 Hz, centered on [t, fi(t)]. For a number Nb = 2048

–half the number of data points– of basis functions, the real part of the obtained reference

estimate is depicted in Fig. 7.10.
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Figure 7.10: Reference source estimate, obtained by application of the basis method, in the INTI-
MATE ’96 sea trial.

In what concerns blind deconvolution, the model function was defined as the multiplica-
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tion of the average WV, denoted by WV r(t, f) [defined similarly to RGKr(t, f)] –Fig. 7.11

–, by a mask M(t, f) centered on f̂i(t). The real part of the obtained source estimate ŝBM(t)

Figure 7.11: Portion of the average distribution WV r(t, f), in the INTIMATE ’96 sea trial.

is depicted in Fig. 7.12. The evolution of the correlation coefficient between the real parts
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Figure 7.12: Source estimate –real part of ŝBM (t)–, in the INTIMATE ’96 sea trial, with ϕ = 0.

of s(t) and ŝBM(t), with ϕ, is represented in Fig. 7.13. The maximum correlation coefficient

is 0.524, occurring for ϕ = −3.08 rad, and the maximum of the correlation between the

analytic signals is 0.530. The WV of ŝBM(t) is shown in Fig. 7.14. The obtained correlation

coefficient is justified by the fact that only the IF of s(t) was reasonably recovered –Fig.

7.15–, as compared to fi(t) in Fig. 7.5, unlike the AM component –Fig. 7.16, as compared to

Fig. 7.4. A possible explanation for the obtained result is the inclusion of many unresolved

arrivals in W̃V s(t, f), since it is centered on the first arrivals. This is reinforced by the bias

of f̂i(t). Of course, a latter better resolved replica could be chosen, based on the channel
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Figure 7.13: Normalized correlation coefficient between the real parts of s(t) and ŝBM (t), for
different values of ϕ.
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Figure 7.14: WV of ŝBM (t), in the INTIMATE ’96 sea trial.
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Figure 7.15: Instantaneous frequency of ŝBM (t), in the INTIMATE ’96 sea trial.
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Figure 7.16: IA of ŝBM (t), in the INTIMATE ’96 sea trial. This is to be compared with the true
IA ai(t) in Fig. 7.4.
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estimate, to construct the model function; however, in noisy real data, this seems difficult,

since the arrivals are not so clearly distinguished –cf. Fig. 7.19–, as opposed to the channel

estimate in noiseless simulated data –Fig. 5.31.

Channel Estimation

The unavailability of the knowledge of the true IR h(t) led naturally to consider the MF

estimate as the reference channel estimate, shown in Fig. 7.17. Also, for the case of co-
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Figure 7.17: Reference channel estimate, defined as the average output of the MF, in the INTI-
MATE ’96 sea trial.

herent integration-based channel estimation, a channel estimate was obtained by coherent

integration of WV r(t, f), where fi(t) in Fig. 7.5 was supposed known, giving rise to the

channel estimate ĥIF (t) in Fig. 7.18. The correlation between ĥIF (t) and ĥMF is 0.883.

This result proves that the knowledge of the IF of s(t) is not sufficient to obtain a good

estimate of the channel IR, with respect to the MF estimate. The obtained channel estimate
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Figure 7.18: Channel estimate ĥIF (t) in the INTIMATE ’96 sea trial, by WV r(t, f) coherent
integration, assuming the knowledge of the IF of s(t).
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ĥB(t), departing from f̂i(t) in Fig. 7.8, is shown in Fig. 7.19, with a correlation coefficient

of 0.838, with respect to the MF estimate. The channel estimate ĥPMF (t) obtained by the

average cross-correlation between ŝBM(t) and r(t), is shown in Fig. 7.20. It can be seen

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

Time (s)

N
or

m
al

iz
ed

 a
m

pl
itu

de

Figure 7.19: Channel estimate in the INTIMATE ’96 sea trial, by WV r(t, f) coherent integration,
departing from f̂i(t).

that both ĥMF (t) and ĥPMF (t) contain essentially 8 packets of energy with a time dispersion

of approximately 0.45 s. However, there is a difference in the attenuation law, which can

be explained by the not high quality of the source IA estimate used in the calculation of

ĥPMF (t). The normalized correlation coefficient between ĥMF (t) and ĥPMF (t) is 0.843.
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Figure 7.20: Average channel estimate obtained by cross-correlation between ŝBM (t) and r(t), in
the INTIMATE ’96 sea trial.
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Chapter 8

Conclusions and Perspectives

This work has demonstrated the feasibility of single sensor blind deconvolution by TF pro-

cessing, when the channel behaves as a multiple time delay-attenuation channel, and the

source is a deterministic non-stationary signal. The departure point of the blind deconvo-

lution approach was the source signal IF estimation. The fact that the underwater medium

impulse response typically contains a set of strong peaks at the beginning allowed the iden-

tification of the source signal IF, in the TF plane. This IF estimate was obtained by global

maximization with respect to time, of a signal-dependent TFD of the received signal –in

this case, the RGK– that allows to distinguish the source resolved replicas. In what con-

cerns source signature estimation, two forms were presented to accomplish this step of blind

deconvolution. In the first form, a model function centered around the IF estimate and

“extracted” from the WV of the received signal was transformed to the time domain, by

inversion of the WV definition equation. In simulated noiseless data, the obtained source

signal estimate, when the model function was centered on the first arrivals, had a quality

of 0.750. When performing the same reasoning on the last arrival, the quality increased to

0.796, what shows the importance of departing from a well resolved replica of the source

signal, in view of its accurate recovery. The non-validity of the model function as a WV

led naturally to the application of a synthesis method that, prior to the TF inversion, finds
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a corresponding valid WV –the basis method, in this work. This constituted the second

form of source signature estimation. By means of a signal subspace constraint, this method

improved the quality of the first arrivals-based source estimate to a correlation coefficient of

0.856. Channel estimation was accomplished in two ways. The first form was a TF formula-

tion of matched-filtering, where the information contained on the estimated IF of the source

was used, to form a domain for integration of the WV of the received signal. The second was

simply a matched-filtering with the source estimate obtained previously. The robustness of

these correlation-based channel estimation approaches is dependent on the relation between

the channel impulses separation and the resolution imposed by the emitted signal band.

This fact implied the impossibility of resolving the too close first peaks of the channel IR.

In simulated noiseless data, the quality of channel estimates was always superior to 0.966.

On simulated noisy data, the blind deconvolution approach proved to be robust, for SNRs

greater than -5 dB . Analysis of real data from the INTIMATE ’96 experiment has revealed

some important issues: although the IF of the source signal was reasonably estimated, there

remains a difficulty in obtaining a good estimate of the IA. This can be explained by the use

of the non-resolved arrivals packet for source inversion. In what concerns channel estimation,

the use of the source estimate produced a slightly better channel estimate, comparatively to

the MF estimate. However, if the noise is not white, it is likely that the channel estimate

obtained by TF coherent integration can even be a better channel estimate than the MF

estimate, when a good IF estimate is available. This idea is motivated by the noise rejection

caused by integration exclusively along the (estimated) IF of the source signal. Also, in the

presence of more than one data snapshot at reception, it is likely that the proposed chan-

nel estimation approach could reduce the minimum number of received signal realizations,
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necessary to obtain a meaningful channel estimate.

It was verified that the information contained in the TFDs of the single-channel received

signal compensates for the lack of complementarity and information redundancy about the

emitted waveform, present in multi-channel systems. The blind deconvolution problem has

been studied with nonlinear signal analysis, what is not surprising, comparatively to the

(not equivalent) nonlinearity of conventional blind deconvolution algorithms.

There are many open problems, one of which is the positioning of the model function,

for source signature estimation. One alternative to the use of a single model function would

be to take into account the redundancy of source signal information in the received arrivals,

defining one model function for each estimated time-delay of the IR, and then combining

in some manner the several source estimates obtained from all the model functions, to

obtain the final source estimate. The channel estimate resolution could be improved by

means of integration of a high-resolution TFD, like the MUSIC-based TFD recently proposed

in [52]. Due to the denoising characteristics of the RGK, one alternative to accomplish

blind deconvolution of a broad class of signals could be to increase the degrees of freedom,

parameterizing the RGK of the received signal as a distribution containing M replicas of the

source signal, and parameterizing the structure of the emitted signal as having an IA that is

the sum of Gaussian functions, and whose instantaneous phase is a polynomial of degree 3.

The procedure would be to estimate all these parameters, for example by the use of random

search, as is the case in genetic algorithms. This parameterization of the problem could

amount to the estimation of about 100 parameters. A more complicated propagation scenario

arises in the presence of low-frequency sources, in which case the physical phenomenon of

frequency dispersion is significant and only accounted for by normal mode-based propagation
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modelling. In this case, frequency dispersion[36] could be first compensated, before replica

identification. This procedure would probably require the knowledge of the source position,

to define the inherent eigenfunctions in propagation modal modelling.
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[44] Maroni, C.-S., Modulation Linéaire de Fréquence et Compression d’Impulsion. Applica-

tion au Sondeur de Sédiments. Rapport de Recherche no EIA 974, (ENSIETA, Brest,

1997).

[45] Michalopoulou, Z.-H.; Ma, X.; Picarelli, M. and Ghosh-Dastidar, U., “Fast Matching

Methods for Inversion With Underwater Sound”, Proceedings of Oceans 2000, Provi-

dence (2000).

[46] Mignerey, P. and Finette, S., “Multichannel Deconvolution of an Acoustic Transient in

an Oceanic Waveguide”, J. Acoust. Soc. Am. 92 (1), 351–64 (1992).

[47] Moyal, J.E., “Quantum Mechanics as a Statistical Theory”, Proc. Cambridge Phil. Soc.

45, pp. 99–124 (1949).

[48] Munk, W. and Wunsch, C., “Ocean Acoustic Tomography: a Scheme for Large Scale

Monitoring”, Deep-Sea Res. 26, pp. 123–61 (1979).

[49] Munk, W.; Worcester, P. and Wunsch, C., Ocean Acoustic Tomography. (Cambridge

University Press, Cambridge, 1995).

[50] Nandi, A., “Blind Identification of FIR Systems Using Third Order Cumulants”, Sig.

Proc. 39, pp. 131–47 (1994).

mailto:R.L.Lagendijk@its.tudelft.nl


BIBLIOGRAPHY 101

[51] Neelamani, R.; Choi, H. and Baraniuk, R.G., “Wavelet-Based Deconvolution for

Ill-Conditioned Systems”, Proceedings of the IEEE Int. Conf. Acoust., Speech and Sig.

Proc., Phoenix, AZ, March (1999).

[52] Nickel, R. and Williams, W., “High Resolution Frequency Tracking Via Non-Negative

Time-Frequency Distributions” (2000).

[53] Oehlmann, H. and Brie, D., “Distribution de Wigner-Ville Locale pour la Réduction des
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missions 2A, pp. 61–74 (1948), translated into English by I. Selin, (RAND Corp. Report

T–92, Santa Monica, CA, 1958).

[70] Walden, A.T., “Non-Gaussian Reflectivity, Entropy, and Deconvolution”, Geophysics

50, pp. 2862–88 (1985).

[71] Wang, C. and Cadzow, J., “Signal Enhancement of Wigner-Ville Time-Frequency Sig-

nals”, IEEE Proceedings – Southeastcon (1990).

[72] Wigner, E.P., “On the Quantum Correction for Thermo-Dynamic Equilibrium”, Physics

Review 40, pp. 749–59 (1932).

[73] Wigner, E.P., “Quantum-Mechanical Distribution Functions Revisited”, in Perspectives

in Quantum Theory, Youngman, W. and Merwe, A. van, Eds. New York: Dover (1971).

[74] Yu, K.B. and Cheng, S., “Signal Synthesis from Pseudo-Wigner Distribution and Appli-

cations”, IEEE Trans. Acoustic, Speech, and Sig. Proc. ASSP–35, No. 9, pp. 1289–302

(1987).

[75] Zhao, Y.; Atlas, L.E. and Marks, R.J., “The Use of Cone-Shape Kernels for Generalized

Time-Frequency Representation of Nonstationary Signals”, IEEE Trans. Acoust. Speech

Sig. Proc. 38, July, pp. 1084–91 (1990).

http://www.nobel.se/physics/laureates/1963/wigner-bio.html
http://www.nobel.se/physics/laureates/1963/wigner-bio.html


104



Appendix A

The Hilbert Transform

Consider the complex signal x(t) and the quadrature filter HQ(f) whose transfer function

is[44]

HQ(f) = −j sgn(f). (A.1)

The impulse response of HQ(f) is given by

hQ(t) = pp

(
1

πt

)
, (A.2)

where pp designates principle part. The Hilbert transform of x(t) is defined by the convolu-

tion of x(t) with hQ(t):

H [x(t)]
4
= x(t) ∗ hQ(t) =

1

π

∫ ∞
−∞

x(u)

t− u
du, (A.3)

where the improper integral is to be understood as an abbreviation of its Cauchy’s principal

value.
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Appendix B

The Analytic Signal

Very advantageous in calculus simplification and mathematical formulation of intuitive no-

tions like a signal’s envelope or instantaneous frequency[44], the analytic signal, introduced

by Gabor[21], is defined here. Consider a real signal x(t). Since its Fourier transform is

of Hermitian symmetry, all the signal information is contained in positive frequencies. The

signal xa(t) obtained by negative frequencies suppression (analytic filtering) is the analytic

signal associated to x(t):

xa(t)
4
= x(t) + j H[x(t)], (B.1)

where H[x(t)] is the Hilbert transform of x(t). It’s easy to verify that, in the frequency

domain:

Xa(f) = FT [xa(t)] = X(f) + j FT {H[x(t)]} = X(f) [1 + sgn(f)] , (B.2)

where FT designates the Fourier transform operator. Thus:

Xa(f) =

{
2X(f), f ≥ 0
0, f < 0

, (B.3)

or, equivalently:

Xa(f) = 2u(f)X(f), (B.4)
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with u(f) the frequency-dependent step function.

The key-point is that xa(t) can be expressed in the polar form

xa(t) = ai(t)e
jϕi(t), (B.5)

with the meaning of instantaneous amplitude (IA) (also known as envelope) and phase for

ai(t) and ϕi(t), respectively. The instantaneous frequency is obtained by simple differentia-

tion:

fi(t)
4
=

1

2π

dϕi(t)

dt
. (B.6)

All the instantaneous quantities refer to xa(t) and the original signal x(t) as well. The signal

xa(t) can thus be decomposed in two components: an amplitude modulation component

ai(t) and a phase modulation component ϕi(t) [implicitly, frequency modulation component

fi(t)].



Appendix C

Auto-Correlation Function of an LFM
Signal

Due to the importance of matched-filtering in channel estimation, this appendix derives

the expression of the auto-correlation function of the particular case of an LFM signal.

Let v(t) be a real LFM signal null outside the interval [0, T ], with modulation rate α and

instantaneous frequency f0 at t = 0. Its temporal auto-correlation function Γv,t(τ) can be

defined by

Γs(τ) =

∫ ∞
−∞

v(t)v(t− τ)dt. (C.1)

Let v2(t) = v(−t) and let zv(t) and zv2(t) be the analytic signals associated to v(t) and v2(t),

respectively. Due to the filtering property of analytic signals[44]:

Γv,t(τ) = v(τ) ∗ v2(τ) =
1

2
Re [zv(t) ∗ zv2(t)] . (C.2)

It is readily verified that

zv(t) = ej2π(α2 t2+f0t). (C.3)

Inserting zv(t) into (C.2):

Γv,t(τ) =
1

2
(T − |τ |) cos π(2f0 + αT )|τ |sinc πα|τ |(T − |τ |). (C.4)
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In many applications, one is interested only on the IA of Γv,t(τ), given by

aΓ(τ) =

{
1
2
|(T − |τ |)sinc πα|τ |(T − |τ |)| , τ ∈ [−T , T ]

0, τ ∈/ [−T , T ]
. (C.5)

For τ ≥ 0, the first zero of aΓ(τ) is given by

z1 =
T −

√
T 2 − 4/α

2
. (C.6)

The quantity 2z1 gives an idea of the resolution of a matched-filter for multiple time-delay

attenuation channel identification, when it is driven by an LFM input.
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