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Chapter 1

Introduction

This manual describes the C port of the TRACEO Fortran-77 Raytracing Model [1] here-
after called cTraceo. Being feature-identical to the Fortran implementation, cTraceo’s
development was motivated by the need to approach the code base from a software engi-
neering view and focus on higher performance.

The cTraceo model is a two-dimensional raytracing model that can handle irregular
surfaces and complex bathymetries with range-dependent properties (including both com-
pressional and shear velocities and attenuations), and the optional inclusion of objects in
the waveguide. A set of analytical sound speed profiles, as well as both range-independent
profiles and range-dependent sound speed fields are supported. The model allows for free
positioning of the source, as well as of the receiver array, which can be horizontal, vertical,
rectangular or be arbitrarily shaped; such options allow to model cases with unequally
spaced or irregular receiver arrays. A comprehensive list of output options is available,
including ray paths and amplitudes, eigenray search, arrival patterns, acoustic pressure,
coherent transmission loss, and particle velocity components. For ease of use, all results
are written to Matlab “.mat” files, without requiring a Matlab license to be available.

The code of the cTraceo Model is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported License; the model is not distributed in binary
form which requires the user to compile the program from source.

This manual is structured as follows: first, a brief overview of the raytracing theory
behind cTraceo is given in Chapter 2, followed by topics of numerical issues in Chapter 3.
Chapter 4 describes how to compile and install the model, while Chapter 5 describes its
usage. Finally, in Chapter 6 several examples are described along with some comparisons
to other acoustic propagation models.
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Chapter 2

Theoretical Background

This chapter will give a brief overview of the raytracing theory on which the TRACEO
and cTraceo models are based.

2.1 The Acoustic Wave Equation

For a medium with constant density the Acoustic Wave Equation is given by [2]:

∇2p(~r, t)− 1
c2
∂p(~r, t)
∂t2

= 0, (2.1)

where p(~r, t) is the pressure of the acoustic wave and c is the sound speed. Applying a
Fourier Transform to both sides of Eq. (2.1), one can obtain the Helmholtz Equation:[

∇2 + ω2

c2

]
P (~r, ω) = 0. (2.2)

Assuming a plane wave approximation to the solution of Eq. (2.2), the expression for
acoustic pressure can be written as:

P (~r, ω) = A(~r)e−iωτ(~r), (2.3)

where τ(~r) is a rapidly varying phase function known as the Eikonal, and A(~r) is a much
more slowly varying envelope function incorporating the effects of geometrical spreading
and various loss mechanisms [3]. By substituting Eq. (2.3) in Eq. (2.2) and by considering
the following high frequency approximation [1, 2],

∇2A(~r)
A(~r) � ω2

c2 , (2.4)

from the resulting solution’s real part the Eikonal Equation can be obtained:

(∇τ)2 = 1
c2 , (2.5)

9



CHAPTER 2. THEORETICAL BACKGROUND 10

while from its imaginary part the Transport Equation can be obtained:

2(∇A · ∇τ) + A∇2τ = 0. (2.6)

The following sections will sum up the solution for Eq. (2.5) and Eq. (2.6).

2.2 Solution of the Eikonal Equation

From the solution of the Eq. (2.5) one can obtain the surfaces of constant phase (wave-
fronts). Ray paths are orthogonal to the wavefronts and indicate the direction of energy
flow [3]. The solution of the Eikonal Equation requires solving the set of equations given
by [1]:

d

ds

(
1
c

dx

ds

)
= ∂

∂x

(1
c

)
,

d

ds

(
1
c

dy

ds

)
= ∂

∂y

(1
c

)
,

d

ds

(
1
c

dz

ds

)
= ∂

∂z

(1
c

)
, (2.7)

where s stands for the distance traveled by the acoustic wave. By replacing the sound
speed c with sound slowness σ = 1/c, and after simplifying the set of equations given by
Eq. (2.7) for a waveguide with cylindrical symmetry, the following set of equations can
be obtained:

dr

ds
= cσr(s),

dz

ds
= cσz(s),

dσr
ds

= − 1
c2
∂c

∂r
,

dσz
ds

= − 1
c2
∂c

∂z
. (2.8)

The initial conditions for solving Eq. (2.8) are given by [1]:

r(0) = r0, z(0) = z0, σr(0) = cos (θ0)
c0

, σz(0) = sin (θ0)
c0

, (2.9)

where θ0 is the launching angle of the ray, [r0, z0] is the source’s position and c0 is the sound
speed at the source position. By solving Eq. (2.8) together with the initial conditions
(2.9) the raypaths through the waveguide can thus be determined. The next step will be
determining the amplitude of the rays; this is done by solving the transport equation.

2.3 Solution of the Transport Equation

The classical solution for the ray pressure can be written as [2]:

P (s, ω) = 1
4π

√
c(s)
c0

cos (θ0)
J

e−iωτ(s), (2.10)

where θ0 is the ray’s launching angle, c0 is the sound speed at the source, and J stands for
the Jacobian; τ(s) is the time delay along the ray. Unfortunately, the classical solution
breaks down in the vicinity of caustics, due to the fact that the Jacobian becomes zero
[1, 2, 3]. These singularities can be addressed using the Gaussian Beam Approximation,
which is discussed in the following section.
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2.4 The Gaussian Beam Approximation

In the Gaussian Beam Approximation the ray is considered to be the central axis of a
beam, which features a Gaussian intensity distribution along the ray normal, as shown in
Fig. 2.1.

n

Ray trajectory

Beam amplitude

Figure 2.1: Gaussian beams: amplitude decay along the normal.

Thus a particular Gaussian beam solution for acoustic pressure, compatible with cylin-
drical spreading, can be written as [4]:

P (s, n) = 1
4π

√√√√cos θ0

c0

c(s)
rq(s) e

−iω
[
τ(s) + 1

2
p(s)
q(s)n

2
]
, (2.11)

where r is the range coordinate, n is the normal distance to the beam’s central axis, and
p(s) and q(s) are auxiliary functions, derived by solving a system of differential equations
in the neighborhood of the ray axis [4]; q(s) is also proportional to the Jacobian [2]. The
approximation given by Eq. (2.11) solves the issues of the singularities at caustics, but it
introduces other artifacts. Specifically, rays being returned to the source will correspond
to focusing (instead of reflected) waves. And since the cylindrical approximation breaks
down in the vicinity of the origin, the field of such backpropagating rays will increase as
the ray aproaches the source, instead of decaying as raylength increases. A solution for
the drawbacks of Eq. (2.11) is presented in the following section.



CHAPTER 2. THEORETICAL BACKGROUND 12

2.5 The Gaussian Beam Aproximation in Cartesian
Coordinates

The typical Gaussian Beam Approximation for a waveguide with cylindrical symmetry is
given by [4]:

P (s, n) = 1
4π

√√√√c(s)
c0

cos (θ0)
rq(s) e

−iω
[
τ(s) + 1

2
p(s)
q(s)n

2
]
. (2.12)

By relying on cylindrical simmetry range values are not expected to decrease, which
imposes some limitations to the application of Eq. (2.12) for backscattering problems.
After a carefull review of the beam expressions on the (x, z) plane, the following expression
for a ray centered Gaussian Beam Approximation can be obtained [1]:

P (s, n) = 1
4π

√√√√c(s)
c0

cos (θ0)
q⊥(s)q(s) e

−iω
[
τ(s) + 1

2
p(s)
q(s)n

2
]
, (2.13)

where n is the normal distance to the central axis of the Gaussian beam, and p(s), q(s)
and q⊥(s) are auxilliary parameters, which determine the beamwidth along the arclength
s.
In contrast to the solution for a waveguide with cylindrical simmetry as given by Eq.
(2.12), q⊥(s) stands in the place of the radial coordinate r. Because the three-dimensional
Gaussian beam expression is solved on (x, z) plane instead of on the (r, z) plane, backscat-
tering can now be accomodated.
The approximation given by Eq. (2.13) is the basis for the calculation of ray amplitudes
in both TRACEO and cTraceo.

2.6 Attenuation

The solution for the acoustic pressure can be written in the form:

P (~r, ω) = A(~r)e−iωτ(~r), (2.14)

where A is the ray’s amplitude, which can be written as:

A = 1
4π

√√√√c(s)
c0

cos (θ0)
q⊥(s)q(s) . (2.15)

The solution given by Eq. (2.15) does not incorporate the losses introduced by volume
attenuation and reflections at media interfaces. To include these loss mechanisms, A is
replaced by a corrected amplitude a, given by:

a = AφrφV , (2.16)

where φr represents the total decay due to interface reflections, and φV represents the
volumetric attenuation. Both factors are described in the following sections.
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2.6.1 Volumetric Attenuation

The volumetric attenuation factor φV is given by:

φV = e−αT s, (2.17)

where s is the ray arclength and αT is the frequency dependent Thorpe attenuation in
dB/m, as given by [5]:

αT = 40f 2

4100 + f 2 + 0.1f 2

1 + f 2 , (2.18)

where the frequency f is given in kHz.

2.6.2 Boundary Reflection

The total amplitude decay due to reflections at media interfaces is given by:

φr =


1 nr = 0

∏nr
i=1 Ri nr > 0

, (2.19)

where nr is the total number of reflections at interfaces, and Ri is the complex reflection
coefficient at the ith reflection. cTraceo considers four types of interfaces:

• Absorbent: the wave energy is transmitted completely to the medium beyond the
interface, so R = 0, thus terminating the ray propagation.

• Rigid: the wave energy is reflected completely, with no phase change, so R = 1.

• Vacuum: the wave energy is reflected completely, with a phase change of π radians,
so R = −1.

• Elastic: the wave energy is partially reflected, with R being a complex value and
|R| < 1.

The reflection coefficient for an elastic medium is calculated through the following set of
equations [6]:

R(θ) = D(θ) cos θ − 1
D(θ) cos θ + 1 , and D(θ) = A1

A2
1− A7√
1− A2

6

+ A3
A7√

1− A5/2

, (2.20)

with
A1 = ρ2

ρ1
, A2 =

∼
cp2

cp1

, A3 =
∼
cs2

cp1

, (2.21)

A4 = A3 sin θ, A5 = 2A2
4, A6 = A2 sin θ, A7 = 2A5 − A52,

where
∼
cp2 = cp2

1 + ∼
α

2
cp

(
1− i∼αcp

)
,

∼
cs2 = cs2

1 + ∼
α

2
cs

(
1− i∼αcs

)
, (2.22)
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∼
αcp = αcp

40π log e ,
∼
αcs = αcs

40π log e ,

where the attenuation values are given in dB/λ. The reflection coefficient is real when
there is no attenuation and the angle of incidence is less than the critical angle

θc = arcsin
(
cp1

cp2

)
.

2.7 Particle Velocity

The particle velocity ~v can be calculated in the freqency domain from the relationship [7]:

~v = − i

ωρ
∇P, (2.23)

where ω is the frequency of the propagating wave, ρ is the medium’s density, P is the
acoustic pressure and ∇ is the nabla operator.



Chapter 3

Numerical Issues

This chapter addresses some of the numerical issues implemented in TRACEO and cTraceo.
Section 3.1 covers the methods available for eigenray search, Section 3.2 addresses Am-
plitudes and Arrivals and Section 3.3 focuses on the method used for calculating particle
velocity components.

3.1 Eigenray Search

Although the search for eigenrays is easily defined as the task of finding rays which
connect source and receiver, it is one of the most difficult raytracing problems to tackle.
It is important to keep in mind that rays may be backscattered towards the source, and
that even if a ray misses the receiver when propagating forward, it still has a chance of
hitting the receiver on the way back to the source. Additional difficulties arise when rays
can be absorbed by boundaries, or when small variations of the launching angle lead to
non-linear variations of ray trajectories (a typical situation when objects are placed inside
the waveguide). Two methods for eigenray search are implemented:

1. The Regula Falsi Method: If all rays are propagating forwards, the model can
interpolate the ray depth at each array range ri for every launching angle θj and
generate a matrix of the form:

r1 r2 r3 . . . rm
θ1 z1(θ1) z2(θ1) z3(θ1) . . . zm(θ1)
θ2 z1(θ2) z2(θ2) z3(θ2) . . . zm(θ2)
θ3 z1(θ3) z2(θ3) z3(θ3) . . . zm(θ3)
... ... ... ... . . . ...
θn z1(θn) z2(θn) z3(θn) . . . zm(θn)


; (3.1)

each row of the matrix allows to calculate the function

f(θ) = zh − zi(θ); (3.2)

if an eigenray exists in the interval i and i + 1, the function f(θ) will switch signs
between θi and θi+1; in such case the Regula Falsi method is used to find the zero
of the function. Once a zero is found, the ray is calculated and written to the

15
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output file as an eigenray. In order to avoid an infinite loop, the eigenray search is
interrupted if the number of iterations is greater than a given threshold. Particular
care is taken in order to deal with rays which for some reason do not reach the given
array range. The search is interrupted if a ray which is being reflected back towards
the source is detected. The Regula Falsi method is computationally accurate and
efficient, as long as the function z(θ) can be properly computed, which won’t be the
case for rays which are reflected back towards the source.

2. The Proximity Method: A less accurate method of eigenray search by Proximity can
be used as an alternative to the Regula Falsi method. Ray depth z is calculated at
every hydrophone range, and for each depth (if there is more than one) the following
difference is calculated:

|zh − z| , (3.3)
where zh represents hydrophone depth; if the difference is less than a given threshold
the ray is written to the output file as an eigenray. The accuracy of the method
depends on the choice of the threshold (the lower, the better), and on the number
of launching angles (the more, the better). Until a better approach is idealized
for dealing with returning rays the proximity method seems to offer a reasonable
compromise between accuracy and stability.

In contrast with TRACEO, cTraceo groups eigenrays together according to the hydrophones
at which they arrive (more on this can be found in Section 5.3.3).

3.2 Amplitudes and Arrivals

Ray amplitudes and travel times are calculated using the same methods used for eigenray
search, with the difference that instead of the entire ray, only the eigenray’s last values
are written to the output file. As with eigenrays, arrivals are grouped together according
to the hydrophones at which they arrive (more on this can be found in Section 5.3.4).

3.3 Calculating Particle Velocity

When calculating particle velocity, both ω and ρ factors of Eq. (2.23) are ignored. This
way, calculating particle velocity at a given point is simply a matter of determining the
horizontal and vertical derivatives of the acoustic pressure and multiplying them by i.
To approximate the vertical derivative at a specific point, the acoustic pressure is first
calculated above and below of the chosen point; in a second step a parabolic interpolator
is used to approximate the derivative at the chosen point. A similar strategy with three
horizontal points is used to obtain the horizontal derivative at the center. The spacing
between the points is defined, arbitrarily, as being equal to λ/10 unless the hydrophone
spacing is less than this value, in which case the distance will be equal to half the shortest
distance between hydrophones.



Chapter 4

Installation

The code of the cTraceo model is licensed under the Creative Commons Attribution-
NonCommercial-ShareAlike 3.0 Unported License1 and is not distributed in binary form,
which requires the user to compile the program from source. The following sections will
describe compiler requirements, library dependencies as well as code compilation.

4.1 Compiler Requirements

Code development of the cTraceo model was done with the Clang compiler but the code
can also be compiled with the GNU C Compiler. Compilation of cTraceo requires a C
compiler which supports the C99 standard because of its support for complex math. The
code has been compiled and tested successfully with versions 2.8 and 2.9 of Clang. The
GNU C Compiler supports C99 partially since version 4.3 and fully since version 4.5. The
code has been compiled and tested successfully with versions 4.4.4 and newer of GCC on
Linux, and with version 4.5.3 on Windows (using Cygwin2).

4.2 Library Dependencies

For ease of use, cTraceo writes all results as Matlab “.mat” files. In previous versions,
the model required a Matlab license to be available for compilation and usage. Currently,
a set of internal functions has come to replace the reliance on Matlab’s API for matfile
output. Nevertheless it is still optionally possible to revert to the old behaviour of linking
the code with Matlab, should the user so desire, although this is only supported in Linux
and requires extra configuration.

1A summary as well as the full text of the Creative Commons Attribution-NonCommercial-ShareAlike
3.0 Unported License can be found at http://creativecommons.org/licenses/by-nc-sa/3.0/

2Cygwin provides Windows versions of essential Linux development tools like “make“ and ”gcc“. For
more information visit http://www.cygwin.com.

17
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4.3 Makefile Configuration

Before compiling the model, the user must first adapt the included makefile to the target
system. All system dependent makefile variables are listed at the top of the file, along
with examples and allowable values, as shown below:

Makefile Variable Description

CC Sets the command to invoke for compilation.

OS Defines for which operating system to compile.

ARCH Defines whether to compile for 32 bit or 64 bit systems.

USE_MATLAB When compiling cTraceo on Linux it is possible
to choose between using Matlab or the internal func-
tions to write the result files. In case doubt, leave at "0".

MATLAB_DIR As the name suggest, this variable should contain the
path to the base directory of the system’s Matlab
installation. This is needed when linking with Matlab
for writing “.mat” files, and is only possible on Linux.
Only Relevant when “USE_MATLAB” = 1.

MATLAB_VERSION This option is needed for selecting the appropriate
variable types as required by different versions of
Matlab.
Only Relevant when “USE_MATLAB” = 1.

After setting the makefile variables, the method of compilation varies according to the
operating system, as described in the following subsections.

4.3.1 Linux

In Linux operating systems, actual compilation is started by opening a command line,
changing to the directory which contains the source files and typing:

$> make

This will compile the model and place the resulting binary called “ctraceo” in the “bin/”
subdirectory. Finally, for convenience, the user should add the resulting binary’s location
to the system’s $PATH environment variable.
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4.3.2 Windows

To compile cTraceo on windows, Cygwin is required, so the first step will be downloading
the most recent version from www.cygwin.com and installing it.
During the installation of Cygwin, the setup program allows choosing aditional packages.
At his point the user must add devel>gcc4 and devel>make to the list of selected pack-
ages before continuing with the installation. Several other packages will be installed for
dependencies.
After the installation of Cygwin and it’s additional packages, the folder c:/cygwin/bin
(or whichever folder Cygwin was installed to) will need to be added to the system’s PATH
environment variable.
From within the Cygwin command line, the user will need to navigate to the location
which contains cTraceo’s source code; this will look similar to:

$> cd / cygdr ive /c/Users /username/Documents/models / cTraceo

and run:
$> cd make

which will produce an executable called ctraceo.exe in the "bin/" subdirectory which
can now be used like any other Windows executable. Finally, for convenience, the user
should add the resulting binary’s location to the system’s $PATH environment variable.



Chapter 5

Using The Model

This chapter focuses on the model’s usage. cTraceo requires an input file, hereafter called
infile. After model execution two output files are produced, the first is a Matlab “.mat” file
with all the results and the second is an auxilliary log file (the file with the *.log extension).
The infile is described in Section 5.1, running the model is described in Section 5.2, and
the matlab files described in Section 5.3.

5.1 The Input file

The input file (hereafter called infile) is a plain text file composed of text blocks, with
each block describing a particular element of the waveguide, from top to bottom. To
make the file friendlier for human reading, blocks are separated by lines of dashes (“-”).
The model’s distribution package includes an M-File named wtraceoinfil.m, located in
the M-Files/ subdirectory, which simplifies the creation of infiles from within Matlab
and should be sufficient for most cases. The documentation of wtraceoinfil.m is in-
cluded in Appendix A. Even though the examples presented in Section 6.1 make use of
wtraceoinfil.m, the block structure of the infile is described in detail below:

T i t l e
Source Block
Alt imetry Block
Sound Speed Block
Objects Block
Bathymetry Block
Array Block
Output Block

The following subsections describe the structure of each block.

20
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5.1.1 Title

The Title consists of a single line character string, which will be written to the output
file and also to the log file.

5.1.2 Source Block

The infile’s source block describes the parameters of the acoustic source as follows:

ds ray step [m]
xx zx source coo rd ina t e s [m]
xbox (1 ) xbox (2 ) range box [m]
f r eqx source f requency [Hz ]
nthtas number o f launching ang l e s
theta (1 ) theta ( nthtas ) f i r s t and l a s t launching ang l e s [ degree ]

Optionally, the user can set ds to zero, which results in cTraceo using the ranges of the
rbox to automatically choose a step size.

5.1.3 Altimetry Block

The altimetry block contains the definition of the upper interface. The first five lines of
the altimetry block define several parameters for the interface while the remaining lines
contain the interface’s coordinates and elastic properties. The first five lines are as follows:

atype i n t e r f a c e type
aptype i n t e r f a c e p r op e r t i e s
a i type i n t e r p o l a t i o n type

a t iu at t enuat ion un i t s
na t i number o f i n t e r f a c e coo rd ina t e s

where:

• atype determines the interface type and can be one of the following characters:

’A’ absorbent interface
’E’ elastic interface
’R’ rigid interface
’V’ vacuum beyond interface

• aptype specifies if the interface’s properties are homogeneous or not, and can be
one of the following characters:
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’H’ homogeneous interface
’N’ non-homogeneous interface

• aitype determines the type of interpolation to be used and can be one of the
following strings:

’FL’ flat interface
’SL’ flat interface with a slope
’2P’ piecewise linear interpolation
’4P’ piecewise cubic interpolation

• atiu specifies the shear and compressional attenuation units, and can be one of the
following characters:

’F’ dB/kHz
’M’ dB/meter
’N’ dB/neper
’Q’ Q factor
’W’ dB/λ

These are the same units as used by Bellhop and KRAKEN, for specific details see
[8].

• nati indicates the number of interface coordinates to read from the subsequent
lines.

The remaning lines of the altimetry block depend on the value of aptype.
For homogeneous interface properties (aptype = ’H’) the first line contains the elastic
properties of the medium beyond the interface (compressional wave speed, shear wave
speed, density, compressional attenuation and shear attenuation), followed by lines con-
taining the range and depth coordinates of the interface:

cpa t i (1 ) c s a t i ( 1 ) rhoa t i (1 ) apat i (1 ) a s a t i ( 1 )
r a t i ( 1 ) z a t i ( 1 )
r a t i ( 2 ) z a t i ( 2 )
r a t i ( 3 ) z a t i ( 3 )
. . .
r a t i ( na t i ) z a t i ( na t i )

Alternatively, for non-homogeneuous interface properties (aptype = ’N’), each subse-
quent line will contain the range and depth coordinates, as well as the elastic properties
along the surface:

r a t i ( 1 ) z a t i ( 1 ) cpa t i (1 ) c s a t i ( 1 ) rhoa t i (1 ) apat i (1 ) a s a t i ( 1 )
r a t i ( 2 ) z a t i ( 2 ) cpa t i (2 ) c s a t i ( 2 ) rhoa t i (2 ) apat i (2 ) a s a t i ( 2 )
r a t i ( 3 ) z a t i ( 3 ) cpa t i (3 ) c s a t i ( 3 ) rhoa t i (3 ) apat i (3 ) a s a t i ( 3 )
. . .
r a t i ( na t i ) z a t i ( na t i ) cpa t i ( na t i ) . . .
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5.1.4 Sound Speed Block

The sound speed block contains the definition of the sound speed properties, as shown
below:

c d i s t type o f sound speed d i s t r i b u t i o n
c c l a s s c l a s s o f sound speed
nr0 nz0 number or po in t s in range , number o f po in t s in depth

where:

• cdist determines the type of sound speed distribution, and can be one of the fol-
lowing strings:

’c(z,z)’ sound speed profile c = c(z)
’c(r,z)’ sound speed field c = c(r, z)

• cclass specifies the class of sound speed, and can be one of the following strings:

’ISOV’ isovelocity profile
’LINP’ linear profile
’PARP’ parabolic profile
’EXPP’ exponential profile
’N2LP’ n2-linear profile
’ISQP’ inverse-square gradient profile
’MUNK’ Munk profile
’TABL’ tabulated profile

All but the last value of cclass describe analytical profiles, whose derivatives can be cal-
culated explicitely. For the analytical sound speed profiles (cdist= ’c(z,z)’ and cclass
6= ’TABL’) all range derivatives are zero, while depth derivatives are calculated depend-
ing on the value of cclass. For tabulated sound speed fields (cdist = ’c(r,z)’ and
cclass = ’TABL’) both range and depth derivatives are calculated using a bi-dimensional
barycentric cubic interpolator, on the grid of nr0×nz0 points.

The parameters of the analytical profiles can be specified through a simple list of the form:

z0 (1 ) c0 (1 )
z0 (2 ) c0 (2 )

The following is a description of each analytical profile:

• Isovelocity profile:

c(z) = c0 = constant ,
dc

dz
= 0 , d

2c

dz2 = 0 ;

therefore, only the value c0(1) is used during the calculations.
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• Linear profile:
c(z) = c0 + k (z − z0) ,

dc

dz
= k ,

d2c

dz2 = 0 ;

the parameters are calculated as z0 = z(1), c0 = c(1) and

k = c(2)-c(1)
z(2)-z(1)

.

• Parabolic profile:

c(z) = c0 + k (z − z0)2 ,
dc

dz
= 2k (z − z0) ,

d2c

dz2 = 2k ;

the parameters are calculated as z0 = z(1), c0 = c(1) and

k = c(2)-c(1)
(z(2)-z(1))2 .

• Exponential profile:
c(z) = c0e

−k(z−z0) ,

dc

dz
= −kc0e

−k(z−z0) ,
d2c

dz2 = k2c0e
−k(z−z0) ;

the parameters are calculated as z0 = z(1), c0 = c(1) and

k = 1
z(2)-z(1)

ln
[
c(1)
c(2)

]
.

• n2-linear profile:
c(z) = c0

[1 + k (z − z0)]1/2 ,

dc

dz
= −kc0

2 [1 + k (z − z0)]3/2 ,
d2c

dz2 = 3k2c0

4 [1 + k (z − z0)]5/2 ;

the parameters are calculated as z0 = z(1), c0 = c(1) and

k = 1
z(2)-z(1)

(c(1)
c(2)

)2

− 1
 .

• Inverse-square gradient profile:

c(z) = c0

1 + k (z − z0)[
1 + k2 (z − z0)2

]1/2

 ,
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dc

dz
= kc0

2
[
1 + k2 (z − z0)2

]3/2 ,
d2c

dz2 = −3k3c0 (z − z0)[
1 + k2 (z − z0)2

]5/2 ;

the parameters are calculated as z0 = z(1), c0 = c(1) and

k = 1
z(2)-z(1)

√
a

1− a ,

with

a =
[
c(1)
c(2)

− 1
]2

.

• Munk profile:
c(z) = c0

[
1 + ε(η + e−η − 1)

]
,

dc

dz
= 2εc1

B
(1− e−η) , d

2c

dz2 = 4εc1

B2 e
−η ,

with the parameters ε = 7, 4× 10−3, η = 2 (z − z0) /B, B = 1,3 km, (z0 represents
the depth of the channel axis and c0 the corresponding value of sound speed); the
parameters are calculated as z0 = z(1) and c0 = c(1). The remaining values are
ignored.

A custom sound speed profile can be specified through the combination cdist = ’c(z,z)’
and cclass = ’TABL’. The tabulated sound speed profile is then specified as follows:
z0 (1 ) c0 (1 )
z0 (2 ) c0 (2 )
. . .
z0 ( nz0 ) c0 ( nz0 )

Alternatively, a sound speed field can be specified through the combination of cdist =
’c(r,z)’ and cclass = ’TABL’, to be then specified as follows:
r0 (1 ) r0 (2 ) r0 (3 ) . . . r0 ( nr0 )
z0 (1 ) z0 (2 ) z0 (3 ) . . . z0 ( nz0 )
c (1 , 1 ) c (1 , 2 ) . . . c (1 , nr0 )
c (2 , 1 ) c (2 , 2 ) . . . c (2 , nr0 )
c (3 , 1 ) c (3 , 2 ) . . . c (3 , nr0 )
. . .
c ( nz0 , 1 ) c ( nz0 , 2 ) . . . c ( nz0 , nr0 )

When specifying the sound speed profile or field it is highly recommended to use an
evenly spaced grid, avoiding vertical segments where a smooth variation is followed by an
isovelocity layer. Including such segments introduces unrealistic artifacts induced by an
inaccurate calculation of sound speed gradients.
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5.1.5 Object Block

The Object Block begins with a single line containing the number of objects present in
the waveguide:
nobj

If nobj = 0, no objects are defined and the remainder of the block is empty. All of the
remaining lines are only required for nobj > 0. When objects are present, the next line
specifies the method of interpolation to be applied to the boundaries of all objects.
o i type

Allowable values of oitype are ’2P’or ’4P’ -no other types are allowed.
Next, each object shall be specified through a structure, where the first four lines specify
the object’s properties, and the following lines describe the object’s contour. The object’s
upper and lower boundaries are sampled along a common range interval. The structure
looks like the following:
otype ob j e c t type
obju at tenuat ion un i t s
no number o f c oo rd ina t e s
ocp ( i ) ocs ( i ) orho ( i ) oap ( i ) oas ( i ) e l a s t i c p r op e r t i e s
ro (1 ) zdn (1 ) zup (1 )
ro (2 ) zdn (2 ) zup (2 )
. . .
ro ( no ) zdn ( no ) zup ( no )

otype and obju may take the same values as those indicated for the Altimetry Block
in Section 5.1.3.

5.1.6 Bathymetry Block

The Bathymetry Block has the same structure as the Altimetry Block, described in
Section 5.1.3.

5.1.7 Array Block

This block contains the specifications for the receiver array and is made up of the following
four lines:
artype array type
nra nza number o f e lements in range and depth
r (1 ) r (2 ) . . . . r ( nra ) hydrophone ranges
z (1 ) z (2 ) . . . . z ( nza ) hydrophone depths
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Where artype can correspond to one of the following strings:

’RRY’ Rectangular arRaY
’HRY’ Horizontal arRaY
’VRY’ Vertical arRaY
’LRY’ Linear arRaY

Note that when artype = ’LRY’ it is required that nra = nza.

5.1.8 Output Block

The Output block is the last block in the infile and determines which output the model
shall generate and write to the output file. The output block has the following structure
outype output type
miss e i genray parameter

The option outype defines the type of output and can correspond to one of the following
strings:

’RCO’ output Ray COordinates;
’ARI’ output All Ray information;
’ERF’ output Eigenrays (use Regula Falsi);
’EPR’ output Eigenrays (use PRoximity method);
’ADR’ output Amplitudes and Delays (use Regula falsi);
’ADP’ output Amplitudes and Delays (use Proximity method);
’CPR’ output Coherent acoustic PRessure;
’CTL’ output Coherent Transmission Loss;
’PVL’ output coherent Particle VeLocity;
’PAV’ output Coherent acoustic Pressure And Particle velocity.

The miss parameter is used as a threshold to find eigenrays and to calculate arrivals. It
specifies the distance in meters at which a ray passing a hydrophone shall be considered
as an eigenray.

5.2 Running The Model

The only command line argument required by cTraceo is the name of the input file,
without its extension:

$> ct rac eo f i l ename

The following section will describe the output files generated by cTraceo
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5.3 Output Matlab Files

The model outputs the resutls as Matlab “.mat” files. For every input file one output file
is written to disk. The name of the output file depends on the type calculation performed
by the model, as described in the following subsections.

5.3.1 Ray Coordinates

Ray coordinates are calculated by setting outype = ’RCO’. When calculating ray coordi-
nates, only the Eikonal Equation is solved and the resulting ray coordinates are written
to “rco.mat”, which contains the following variables:

rco.mat
caseTitle ........The title given to this case, as defined in the input file.

rays ..............An array of structures with size N, with N being the number
of rays calculated. Each element of this array contains the
information corresponding to one of the launched rays.

theta ..........A scalar representing the ray’s launching angle in degrees.

r ..............A vector containing the ray’s range coordinates in meters.

z ..............A vector containing the ray’s depth coordinates in meters.

thetas ............A vector containing the launching angles of the calculated
rays.
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5.3.2 All Ray Information
All ray information is calculated by setting outype = ’ARI’. When calculating all ray
information, the Eikonal as well as the Dynamic Equations are solved. The results are
written to “ari.mat”, which contains the following variables:

ari.mat
caseTitle ........The title given to this case, as defined in the input file.

rays(n) ...........An array of structures with size N, with N being the number
of rays calculated. Each element of this array contains the
information corresponding to one of the launched rays.

theta ..........A scalar representing the ray’s launching angle in degrees.

r ..............A vector containing the ray’s range coordinates in meters.

z ..............A vector containing the ray’s depth coordinates in meters.

tau ............A vector containing the propagation time in seconds along
the ray’s path.

amp ............A vector of complex values representing the amplitude
component of Equation 2.3.

iReturns ......A boolean indicating whether the ray has inverted its
horizontal direction (for instance by reflection).

nSurRefl ......A scalar containing the ray’s number of surface reflections.

nBotRefl ......A scalar containing the ray’s number of bottom reflections.

nObjRefl ......A scalar containing the ray’s number of object reflections.

nRefrac ........A scalar containing the number of refraction points.

refrac_r ......A vector containing the range coordinates in meters of the
ray’s refraction points, if any exist.

refrac_z ......A vector containing the depth coordinates in meters of the
ray’s refraction points, if any exist.

thetas ............A vector containing the launching angles of the calculated
rays.
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5.3.3 Eigenrays
As seen in Section 5.1, there are two methods for determining a hydrophone’s eigenrays:
by Proximity (outype = ’EPR’) and by Regula Falsi (outype = ’ERF’). Both method’s
results are written to a file named “eig.mat” and contain the following variables:

eig.mat
eigenrays(r,z) ...An array of structures with size dimR by dimZ, where dimR

and dimZ are the hydrophone’s horizontal and vertical index
within the hydrophone array. Each element contains the
eigenrays arriving at hydrophone (r,z).

nEigenrays ....A scalar containing the number of eigenrays which arrived at
hydrophone (r,z).

rHyd ...........The range coordinate in meters of hydrophone (r,z).

zHyd ...........The depth coordinate in meters of hydrophone (r,z).

eigenray(n) ...An array of structures with size nEigenrays. Each element of
this array contains the information corresponding to one of
the rays which arrived at hydrophone (r,z).

theta .......The ray’s launching angle in degrees.

r ...........A vector containing the eigenray’s range coordinates.

z ...........A vector containing the eigenray’s depth coordinates.

tau .........A vector containing the propagation time in seconds along
the ray’s path.

amp .........A vector of complex values representing the amplitude
component of Equation 2.3.

iReturns ...A boolean indicating whether the ray has inverted its
horizontal direction (for instance by reflection).

nSurRefl ...A scalar containing the ray’s number of surface reflections.

nBotRefl ...A scalar containing the ray’s number of bottom reflections.

nObjRefl ...A scalar containing the ray’s number of object reflections.

nRefrac ....A scalar containing the number of refraction points.

refrac_r ...A vector containing the range coordinates in meters of the
ray’s refraction points, if any exist.

refrac_z ...A vector containing the depth coordinates in meters of the
ray’s refraction points, if any exist.
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arrayR ............A vector containing the range coordinates of the hydrophone
array’s elements.

arrayZ ............A vector containing the depth coordinates of the hydrophone
array’s elements.

caseTitle ........The title given to this case, as defined in the input file.

thetas ............A vector containing the launching angles of the calculated
rays.
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5.3.4 Amplitudes And Delays
As seen in Section 5.1, cTraceo provides two methods for determinining amplitudes and
arrivals: by proximity (outype = ’ADR’) and by Regula Falsi (outype = ’ADR’). Both
method’s results are written to a file named “aad.mat” and contain the following vari-
ables:

aad.mat
arrayR ............A vector containing the range coordinates of the hydrophone

array’s elements.

arrayZ ............A vector containing the depth coordinates of the hydrophone
array’s elements.

caseTitle ........The title given to this case, as defined in the input file.

arrivals(r,z) ....An array of structures with size dimR by dimZ, where dimR
and dimZ are the hydrophone’s horizontal and vertical index
within the hydrophone array. Each element contains the
arrivals at hydrophone (r,z).

nArrivals .....A scalar containing the number of arrivals at hydrophone
(r,z).

rHyd ...........The range coordinate in meters of hydrophone (r,z).

zHyd ...........The depth coordinate in meters of hydrophone (r,z).

arrival(n) ....An array of strutures with size nArrivals. Each element of
this array contains the information corresponding to one of
the arrivals at hydrophone (r,z).

theta .......The ray’s launching angle in degrees.

r ...........A scalar containing the eigenray’s final range coordinate.

z ...........A scalar containing the eigenray’s final depth coordinate.

tau .........A scalar containing the eigenray’s total propagation time in
seconds.

amp .........A complex scalar representing the final amplitude component
of Equation 2.3.

maxNumArrivals ...The maximum number of arrivals at any of the hydrophones.

sourceZ ...........The depth in meters of the acoustic source.

thetas ............A vector containing the launching angles of the calculated
rays.
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5.3.5 Coherent Acoustic Pressure
Coherent Acoustic Pressure is calculated by setting outype = ’CPR’, with the results
written to “cpr.mat”, which has the following structure:

cpr.mat
arrayR ............A vector containing the range coordinates of the hydrophone

array’s elements.

arrayZ ............A vector containing the depth coordinates of the hydrophone
array’s elements.

caseTitle ........The title given to this case, as defined in the input file.

p .................An array of complex scalars with size dimR by dimZ contain-
ing the acoustic pressure at the hydrophones, where dimR and
dimZ are the hydrophone arrays’s horizontal and vertical sizes.

thetas ............A vector containing the launching angles of the calculated
rays.

5.3.6 Coherent Transmission Loss
Coherent Transmission Loss is calculated by setting outype = ’CTL’, with the results
written to “ctl.mat”, which has the following structure:

ctl.mat
arrayR ............A vector containing the range coordinates of the hydrophone

array’s elements.

arrayZ ............A vector containing the depth coordinates of the hydrophone
array’s elements.

caseTitle ........The title given to this case, as defined in the input file.

thetas ............A vector containing the launching angles of the calculated
rays.

tl ................An array of scalars with size dimR by dimZ containing the
transmission loss at the hydrophones in dB, where dimR and
dimZ are the hydrophone arrays’s horizontal and vertical sizes.
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5.3.7 Particle Velocity
Particle Velocity is calculated by setting outype = ’PVL’, with the results written to
“pvl.mat”, which has the following structure:

pvl.mat
arrayR ............A vector containing the range coordinates of the hydrophone

array’s elements.

arrayZ ............A vector containing the depth coordinates of the hydrophone
array’s elements.

caseTitle ........The title given to this case, as defined in the input file.

thetas ............A vector containing the launching angles of the calculated
rays.

u .................An array of scalars with size dimR by dimZ containing the
horizontal component of particle velocity at the hydrophones
in dB, where dimR and dimZ are the hydrophone arrays’s
horizontal and vertical sizes.

w .................An array of scalars with size dimR by dimZ containing the
vertical component of particle velocity at the hydrophones
in dB, where dimR and dimZ are the hydrophone arrays’s
horizontal and vertical sizes.
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5.3.8 Coherent Acoustic Pressure And Particle Velocity
Coherent Acoustic Pressure and Particle Velocity are calculated by setting outype =
’PAV’, with the results written to “pav.mat”, which has the following structure:

pav.mat
arrayR ............A vector containing the range coordinates of the hydrophone

array’s elements.

arrayZ ............A vector containing the depth coordinates of the hydrophone
array’s elements.

caseTitle ........The title given to this case, as defined in the input file.

p .................An array of complex scalars with size dimR by dimZ contain-
ing the acoustic pressure at the hydrophones, where dimR and
dimZ are the hydrophone arrays’s horizontal and vertical sizes.

thetas ............A vector containing the launching angles of the calculated
rays.

u .................An array of scalars with size dimR by dimZ containing the
horizontal component of particle velocity at the hydrophones
in dB, where dimR and dimZ are the hydrophone arrays’s
horizontal and vertical sizes.

w .................An array of scalars with size dimR by dimZ containing the
vertical component of particle velocity at the hydrophones
in dB, where dimR and dimZ are the hydrophone arrays’s
horizontal and vertical sizes.



Chapter 6

Model Results

This chapter presents results obtained with the cTraceo model, first with some examples
in Section 6.1, comparisons with other models in Section 6.2 and performance issues in
Section 6.3. All M-files mentioned in this Chapter are included along with the source
code.

6.1 Examples
The model is distributed along with a significant number of different examples, located
within the examples/ subdirectory. To showcase some of cTraceo’s capabilities, Sec-
tion 6.1.1 presents deep water calculations for a Munk profile and Munk field. Section
6.1.2 presents shallow water examples, beginning with pekeris waveguide followed by an
ultra-shallow range-dependent lake waveguide with an object, caracteristic of the Sletvik
experimental site.

6.1.1 Deep Water
The deep water examples consider a waveguide with variable boundaries, namely a sinu-
soidal surface and a Gaussian sea mountain. Following the classical case described in [4],
the acoustic source is located at a depth of 1000 m, and the maximum range corresponds
to 100 km. The first example considers the Munk sound speed profile shown in Fig.
6.1(a), while the second exapmple considers a Munk sound speed field, with a channel
depth deepening from 1000 m to 2000 as shown in Fig. 6.1(b). Ray paths for the first
case are obtained by running the M-File varbounds_ssp_rco.m and the corresponding
result is shown in Fig. 6.2(a). Similarly, Fig. 6.2(b) shows the ray paths for the second
example, as obtained from varbounds_ssf_rco.m. The obtained figures showcase the
model’s capacity to handle range-dependent boundaries in combination with sound speed
profiles and/or sound speed fields.

36
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Figure 6.1: (a) Munk sound speed profile as used in varbounds_ssp_rco.m; (b) idealized
Munk sound speed field as used in varbounds_ssf_rco.m.
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Figure 6.2: cTraceo model result obtained from: (a) varbounds_ssp_rco.m; (b)
varbounds_ssf_rco.m.
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6.1.2 Shallow Water
The first shallow water example is a pekeris waveguide with flat boundaries, as shown
in Fig. 6.3. The result shown in Fig. 6.4 ilustrates eigenrays which where found by
the proximity method. The figure reveals that this method generates groups of eigenrays
which propagate along similar paths. The Regula Falsi method for eigenray search may be
used to avoid such grouping of rays. For instance, the results shown in Fig. 6.5, calculated
by running pekeris_erf.m produced the expected eigenrays without such groups. The
Regula Falsi method was also used in pekeris_adr.m to generate the amplitudes and
delays shown in Fig. 6.6, which reveals the formation of quadruplet groups.
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Figure 6.3: The flat pekeris waveguide used for shallow water examples.
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cTRACEO − Eigenray Search by Proximity in a Pekeris flat waveguide.

Figure 6.4: Eigenrays obtained using the Proximity Method from pekeris_epr.m.
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cTRACEO − Eigenray Search by Regula Falsi in a Pekeris flat waveguide.

Figure 6.5: Eigenrays obtained using the Regula Falsi Method from pekeris_erf.m.
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Figure 6.6: Arrival pattern obtained using the Proximity Method from pekeris_adr.m.

Results for the Sletvik waveguide1 are shown in Fig. 6.7, as obtained from sletvik_pav.m.
This showcases cTraceo’s capability to do field calculations of acoustic pressure and par-
ticle velocity components when an object is included in the waveguide.

1Norwegian University of Science and Technology, Sletvik Field Station:
http://www.ntnu.edu/biology/sletvik-field-station
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(a)

(b)

(c)

Figure 6.7: cTraceo model resultsobtained from sletvik_pav.m: (a) Acoustic pressure;
(b) horizontal component of particle velocity; (c) vertical compoent of particle velocity.
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6.2 Model Comparisons
This section presents some comparisons between cTraceo results and results obtained by
other models. First a comparison with the Bellhop raytracing model and the KRAKEN
normal mode model is presented in Section 6.2.1, followed by a comparison of cTraceo’s
results with those of the UAN project in Section 6.2.2.

6.2.1 Comparison with Bellhop and KRAKEN
The discussion presented in [9, 10] and [4] share in common a calculation of transmission
loss for the canonical Munk profile shown in Fig.6.1. The source frequency is 50 Hz, and
the source is located at a depth of 1000 m. 51 rays were traced with cTraceo between
-14◦ and 14◦, restricting the ray fan exclusively to waterborne rays (see Fig. 6.8). The
ray plot indicates the existence of three large shadow zones, two of them (10-50 km and
70-100 km) in the upper part of the waveguide and the other one (40-80 km) in the lower
part.
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Figure 6.8: Ray trace obtained with cTraceo.

Those rays were used to calculate a transmission loss curve for a receiver at 800 m depth.
The comparison between cTraceo, Bellhop and KRAKEN as seen Fig. 6.9, reveals a good
agreement in the general trend of transmission loss calculated by all models. The differ-
ences in amplitude are negligible, except in the shadow zones, where rays contribute poorly
to the field. These comparison results where obtained with the cTraceo_vs_Bellhop.m
and cTraceo_vs_Kraken.m M-Files contained in the “examples/” subdirectory.
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Figure 6.9: Transmission loss comparison between results obtained with: (a) Bellhop
(continuous line) and cTraceo (dashed line); (b) KRAKEN (continuous line) and cTraceo
(dashed line).
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6.2.2 Comparison with UAN models
The last comparison is shown in Fig. 6.10, which exhibits the transmission loss calculated
at 25,6 kHz by cTraceo and the acoustic models JEPE, REV3D and XRAY, used by the
partners of the UAN project2; the figure reveals that all the models exhibit the same
trend.
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Figure 6.10: Transmission loss comparison: TRACEO vs. JEPE, REV3D and XRAY.

2http://www.ua-net.eu/



CHAPTER 6. MODEL RESULTS 45

6.3 Performance Comparisons
For the performance comparisons, the average processing times for three executions of
each of the comparison cases was determined. Instead of the absolute timing results, the
ratio

Ratio = T[Model]

T[cTraceo]

between the processing times for the compared model and cTraceo is used as a way of
assessing the performance differences. Thus, the higher the value, the faster cTraceo is in
relation to the compared model.
The performance results from the comparison between cTraceo, Bellhop and KRAKEN
in Section 6.2.1, are summed up in Table 6.1:

Ratio
Bellhop 1.25
KRAKEN 0.92
TRACEO 1.45

Table 6.1: Comparison between cTraceo, Bellhop and KRAKEN.

Another set of comparisons compares cTraceo’s processing times against those of TRACEO
for several of the examples distributed along with the model, as shown in Table 6.2:

Test Case
Filename N. Rays Array Size (r×z) Ratio
pekeris_epr.m 5001 1×1 1.73
pekeris_erf.m 5001 1×1 1.75
munk_epr.m 1001 1×1 3.20
munk_erf.m 1001 1×1 3.20
isovelocity_pvl_rry.m 101 501×201 1.69
isovelocity_pvl_rry_2o.m 101 501×201 3.99

Table 6.2: Processing time comparison between TRACEO and cTraceo.

The pekeris_epr.m and pekeris_erf.m examples perform an eigenray search by Prox-
imity and by Regula Falsi, respectively, in a pekeris waveguide with vacuum above the
surface, a rigid bottom and 2001 launched rays.
The munk_epr.m and munk_erf.m examples also perform an eigenray search by Proximity
and by Regula Falsi, respectively. The waveguide has a flat rigid bottom and a flat vac-
uum surface interface. 1001 rays are launched and a tabulated Munk sound speed profile
is ued.
The isovelocity_pvl_rry.m example models particle velocity in a waveguide with an
isovelocity sound speed profile, flat vacuum surface and flat rigid bottom. The previous
case is extended in the isovelocity_pvl_rry_2o.m example by including two objects in
the waveguide. In both cases 101 rays are launched and a rectangular array of receivers
with a dimension of 501×201 is considered.



Chapter 7

Conclusions And Future Work

TRACEO’s conversion to the C language has led to a model which is able to generate the
same results as its predecessor, but with a significant performance and usability gain. Also,
cTraceo features improved memory handling, which results in greatly reduced memory
usage and the removal of hard limits to variable’s dimensions.
From the performance comparisons shown in Section 6.3, it can be observed that cTraceo’s
performance advantage relative to it’s predecessor increases with the complexity of the
modeled environment. This is due to code improvements at many stages. Even so, several
possibilities for code optimization still remain, and it would be desirable to explore them
in the future.
Another desirable option for future performance improvement is the implementation of
a GPU version of the model. Due to the high computional throughput of GPUs, a
GPU version would also be a good starting point for the model’s extension to the three-
dimensional case.
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Appendix A

Documentation for wtraceoinfil.m

The wtraceoinfil.m is included in the M-Files/ subdirectory and is used to easily write
an infile from within Matlab, as described in Section 5.1. The following is a description
of the input structures for the M-File:

source_info :A structure containing the source configuration
|
|---.ds :The ray step [m].
|
|---.position :A vector containing the source coodinates [m].
| Format:
| [rx, zx]
|
|---.rbox :A vector containing the "range box"; lower and
| upper boundaries for the ray range coordinates [m].
| Format:
| [rbox1, rbox2]
|
|---.f :Source frequency [Hz]
|
’---.thetas :A vector containing the launching angles.

The length of the vector, as well as the first
and the last elements will be used.

surface_info :A structure containing the surface (altimetry)
| configuration.
|
|---.type :A string defining the type of interface.
| Allowed values are:
| ’’’A’’’ Absorvent surface
| ’’’E’’’ Elastic surface
| ’’’R’’’ Rigid surface
| ’’’V’’’ Vacuum beyond surface
|
|---.ptype :A string defining the type of interface properties
| Allowed values are:
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| ’’’H’’’ Homogeneous surface properties
| ’’’N’’’ Non-Homogeneous surface properties
|
|---.properties :A vector if interface properties are homogeneous;
| An array if properties are non-homogeneous, each line
| representing the properties at a point of the surface.
| Format:
| [cp, cs, rho, ap, as]
| or:
| [cp1, cs1, rho1, ap1, as1;
| cp2, cs2, rho2, ap2, as2; ... ]
| Where:
| cp :Compressional speed [m/s]
| cs :Shear speed [m/s]
| rho :Density of medium beyond interface [kg/m3]
| ap :Compressional attenuation [see ".units"]
| as :Shear attenuation [see ".units"]
|
|---.units :A string defining the units of the attenuation
| values given in the interface properties.
| Allowed valueas are:
| ’’’F’’’ dB/kHz
| ’’’M’’’ dB/meter
| ’’’N’’’ dB/neper
| ’’’Q’’’ Q factor
| ’’’W’’’ dB/<wavelength in meter>
|
|---.x :An array containing the surface coordinates.
| Each line contains the range and depth coordinate
| of a surface point.
| Format:
| [r1, z1;
| r2, z2; ... ]
|
’---.itype :A string defining the interpolation type used

for the surface.
Allowed values are:

’’’FL’’’ Flat surface
’’’SL’’’ Surface with a Slope
’’’2P’’’ Piecewise linear interpolation
’’’3P’’’ Piecewise parabolic interpolation
’’’4P’’’ Piecewise cubic interpolaton

ssp_info :A structure containing the sound speed
| configuration.
|
|---.cdist :A string defining the type of sound speed distribution.
| Allowed values are:
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| ’’’c(z,z)’’’ Sound speed profile (range-independent)
| ’’’c(r,z)’’’ Sound speed field (range-dependent)
|
|---.cclass :A string defining what type of sound speed profile
| to use. Allowed values are:
| ’’’ISOV’’’ Isovelocity
| ’’’LINP’’’ Linear
| ’’’PARP’’’ Parabolic
| ’’’EXPP’’’ Exponential
| ’’’N2LP’’’ n2-linear
| ’’’ISQP’’’ Inverse square gradient
| ’’’MUNK’’’ Munk
| ’’’TABL’’’ Tabulated
|
|---.r :A vector containing the range coordinates.
|
|---.z :A vector containing the depth coordinates.
|
’---.c :A vector for sound speed profiles, or an array

for sound speed fields.

object_info :A structure containing optional object
| configuration.
|
|---.nobjects :A scalar containinng the number of objects.
|
|---.itype :A string determining what type of interpolation to
| use for all objects. Allowed values are:
| ’’’2P’’’ Piecewise Linear
| ’’’3P’’’ Piecewise Parabolic
| ’’’4P’’’ Piecewise Cubic
|
|---.npobjects :A vector, with each element containing the number
| of points of an object.
|
|
|---.x :A 3D array containing the coordinates of all
| objects. Objects are composed of an upper a lower
| surface, defined in pairs for a range coordinate.
| Format:
| x(<object_number>;
| <r>, <z_lower_surface>, <z_upper_surface>;
| <coord_index>)
|
|---.type :Determines the object interface type.
| ’’’A’’’ Absorvent surface
| ’’’E’’’ Elastic surface
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| ’’’R’’’ Rigid surface
| ’’’V’’’ Vacuum beyond surface
|
|---.units :A vector of strings, with each string defining
| which attenuation untis to use for the
| corresponding object properties.
| Allowed valueas are:
| ’’’F’’’ dB/kHz
| ’’’M’’’ dB/meter
| ’’’N’’’ dB/neper
| ’’’Q’’’ Q factor
| ’’’W’’’ dB/<wavelength in meter>
|
’---.properties :An Array, with each line representing the

interface properties of the corresponding object.
Format:

[cp1, cs1, rho1, ap1, as1;
cp2, cs2, rho2, ap2, as2; ... ]

Where:
cp :Compressional speed [m/s]
cs :Shear speed [m/s]
rho :Density of medium beyond interface [kg/m3]
ap :Compressional attenuation [see ".units"]
as :Shear attenuation [see ".units"]

bathymetry_info :Identical to surface_info (see above)

output_info :A structure containing the desired output
| configuration.
|
|---.ctype :A string defining what calculation to perform.
| Allowed values are:
| ’’’RCO’’’ Ray Coordinates
| ’’’ARI’’’ All Ray Information
| (RCO + ray amplitudes)
| ’’’ERF’’’ Eigenrays, using Regula
| Falsi method
| ’’’EPR’’’ Eigenrays, using
| Proximity method
| ’’’ADR’’’ Amplitudes and Delays,
| using Regula Falsi method
| ’’’ADP’’’ Amplitudes and Delays,
| using Proximity method
| ’’’CPR’’’ Coherent Acoustic Pressure
| ’’’CTL’’’ Coherent Transmission Loss
| ’’’PVL’’’ Coherent Particle Velocity
| ’’’PAV’’’ Coherent Acoustic Pressure
| and Particle Velocity
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|
|---.array_shape:A string defining the shape of the hydrophone array
| Allowed values are:
| ’’’RRY’’’ Rectangular Array
| ’’’HRY’’’ Horizontal Array
| ’’’VRY’’’ Vertical Array
| ’’’LRY’’’ Linear Array
|
|---.r :Range coordinates of hydrophone array
|
|---.z :Depth coordinates of hydrophone array
|
’---.miss :Determines distance threshhold for eigenray search.
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