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Abstract

This report presents the work carried out from 1st December 2017 to 31st Mai 2018 under
SEAOX project. It aimed to study the feasibility of scattering-based methods for bubbles mon-
itoring, applied to marine plants production. Backscattering theory is first considered, based on
the operation of a sediment monitoring device, adapted to project goals for the occasion. The
second studied option aims to make underwater sound speed and attenuation measurements for
a set of frequencies in order to access the characteristics of the bubbly medium. Both theories
and experimental results are presented and documented in this report, that will support further
investigations.
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Introduction

Under the supervision of prof. Paulo FELISBERTO from SiPLAB (University of Algarve),
the SEAOX project aims to measure oxygen bubbles production by seagrass in shalow water.
Bubble population parameters such as void fraction (i.e the ratio oxygen/water in a given
volume) or distribution according to bubble size are of interest. The first idea to achieve the
project goals was using an acoustic backscatter system (ABS, originally conceived to measure
sediment concentration) in order to get informations on the bubbly medium. For this purpose,
the ABS needed to be characterized and calibrated, since the available information were not
very precise and needed to be extended, then methods had to be developed to determine O2
bubbles concentration. The first part of the present report deals with this method, so-called
”Backscattering and high-frequency methods”, due to the frequencies in operation (MHz order).
The second idea came from an on-going project leaded by Paulo FELISBERTO and João
PARENTE. It aims to measure attenuation and sound speed variation through a bubbly medium
for lower frequencies (kHz order), then access the distribution via these measurements. The
complete set-up and theory are not described in this report, and one must read [1] to fully
understand the necessary background. The second part of this report focuses on this method.
As a result of the report structure, written alongside the work, most of the notations and
objectives are detailed in the first part. In particular, it means that a quick reading of this first
part is necessary to understand what the second part is about.

Notations are explained at the end of the document. When necessary, Matlab objects are
indicated as exemple script.m. A large amount of scripts has been written during these 6-
months, full of comments and most of the time consistent in notations and functions. They can
be used to plot again the different figures of this report.
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Part I

Backscattering and high frequency
methods
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This part deals with the use of a backscattering device to measure the bubble size distribution
in a given water volume. It starts with sonar equation theory, specifically derived for our
application, then deals with directivity and beamwidth of the device, before going through
extraction of data and calibration process. It ends with cross-sections and bubble distribution
theory, that are needed in the second part.

An e-mail exchange with Andy SMERDON from AQUAtec support service is available under
Mail conversation - AQUAtec.pdf.

Even though this part has been the most important in terms of time during the 6-months
contract, it seems difficult to draw accurate conclusions from the ABS device only. The main
bottlenecks are the number of frequency not enough to extract information from the data and
the high-frequencies engaged in the process, hardly adapted to measure the bubble size involved.
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Chapter 1

Sonar equation

The following equations are adapted from [2] and deal with propagation, attenuation and
backscattering. The time dependency is dropped in these equations, and for better visibility so
is the frequency dependency. Spherical coordinates (r, θ, φ) are used, where r is the radius, θ
the inclination and φ the azimuth.

Assume the source produces a sound pressure P0, defined at range r = R0 = 1 m. The
directivity pattern of the source is Dt(θ, φ) (chapter 2 deals with this directivity). Figure 1.1
shows the geometry of the situation.

Figure 1.1: Geometry of the situation. Image from [2, p. 439].
∆R is equivalent to L in this report

1.1 In terms of pressure

The incident pressure Ps(r, θ, φ) for a spherical wave is adapted from [2, p. 139]. The theory
of backscattering must be known in order to understand the following.

Ps(r, θ, φ) = P0 Dt(θ, φ)
R0

r
10−

αw(r−R0)
20 10−0.217Bt(r,θ,φ) (1.1)

where αw is the attenuation rate due to water as a lossy medium (see [2, p. 103]). Bt represents
the attenuation due to bubbles. This last term is discussed further in the chapter. For better

readability, let be att(r, θ, φ) = αw(r−R0)+4.34Bt(r,θ,φ)
20 the total attenuation.

10



Let be |Ls(r, θ, φ)| the backscattering length at (r, θ, φ) and Pscat(r, θ, φ) the scattered pres-
sure. It comes from [2]

Pscat(r, θ, φ) =
|Ls(r, θ, φ)|

R0
Ps(r, θ, φ) (1.2)

The backscattered pressure is, as well, subject to attenuation and spherical divergence. Let
be dPr(r, θ, φ) the pressure received by the transducer from an object situated in (r, θ, φ), and
Dr(θ, φ) the directivity pattern of the receiver.

dPr(r, θ, φ) = Pscat(r, θ, φ) Dr(θ, φ)
R0

r
10−att(r,θ,φ) (1.3)

Arranging equations 1.1, 1.2 and 1.3 leads to:

dPr(r, θ, φ) = P0 Dt(θ, φ)Dr(θ, φ)
R0

r2
|Ls(r, θ, φ)| 10−2·att(r,θ,φ) (1.4)

Equation 1.4 will now be squared to make the differential cross-section ∆σBS(r, θ, φ) =
|Ls(r, θ, φ)|2 appear.

dP 2
r (r, θ, φ) = P 2

0 D2
t (θ, φ)D2

r(θ, φ)
R2

0

r4
∆σBS(r, θ, φ) 10−2·att(r,θ,φ) (1.5)

Assuming the scattering is omni-directional, the total backscattering cross-section σBS(r, θ, φ),
which is the integral of ∆σBS(r, θ, φ) over 4π of solid angle, can be written as (see [2, p. 238])

σBS(r, θ, φ) = 4π∆σBS(r, θ, φ) (1.6)

Now, let be d3V (r, θ, φ) the spherical elementary volume. We can introduce the backscattering
cross-section per unit volume Mv(r, θ, φ) as

Mv(r, θ, φ) d3V (r, θ, φ) = σBS(r, θ, φ) (1.7)

Due to the device resolution L (see section 2.3), the total squared pressure P 2
r (R) received

by the transducer from range R is actually the continuous sum of signal from range R − L
2 to

R+ L
2 over the whole angles, defined as

P 2
r (R) =

∫ R+L
2

r=R−L
2

∫ π
2

θ=0

∫ 2π

φ=0
dP 2

r (r, θ, φ) (1.8)

Arranging equations 1.5 to 1.8 leads to equation 1.9. For visibility reasons, the writing is
lighten.

P 2
r (R) =

P 2
0R

2
0

4π

∫∫
θ,φ

D2
t (θ, φ)D2

r(θ, φ)

∫
r

Mv(r, θ, φ)
1

r4
10−2·att(r,θ,φ)d3V (1.9)

11



1.1.1 Dealing with the range integration

In order to integrate equation 1.9, some assumptions have to be done:

1. L� R

2. Mv is supposed to be constant over range R−L
2 to R+L

2 , so that Mv(r, θ, φ) = Mv(R, θ, φ),

3. The water attenuation term 10−2·att(r,θ,φ) is supposed to be constant over range R− L
2 to

R+ L
2 ,

The second and third assumptions allow to take the terms out of the range integration. The
first one allows to replace r−4 with R−4 (see Appendix). Equation 1.9 can then be rewritten as

P 2
r (R) = P 2

0

R2
0

R4

1

4π

∫∫
θ,φ

D2
t (θ, φ)D2

r(θ, φ)10−2·att(R,θ,φ)Mv(R, θ, φ)

∫ R+L
2

r=R−L
2

d3V (1.10)

The range integration is then

∫ R+L
2

r=R−L
2

d3V = sin θdθdφ

∫ R+L
2

r=R−L
2

r2dr

=
1

3

(
(R+

L

2
)3 − (R− L

2
)3
)

sin θdθdφ

= VG(R) sin θdθdφ

(1.11)

One can notice that sin θdθdφ is the elementary solid angle. It leads to

P 2
r (R) = P 2

0

R2
0

R4

VG(R)

4π

∫∫
θ,φ

Mv(R, θ, φ)D2
t (θ, φ)D2

r(θ, φ)10−2·att(R,θ,φ) sin θdθdφ (1.12)

The integral part of the previous equation can be rewritten as (everything is supposed to be
independent from φ): ∫∫

θ,φ

Mv(R, θ, φ)D2
t (θ, φ)D2

r(θ, φ) 10−2·att(R,θ,φ)d3V

= 2π

∫
θ

Mv(R, θ)D
2
t (θ)D

2
r(θ) 10−2·att(R,θ) sin θdθ

(1.13)

Without any other assumption, the integral cannot be easily solved. In the following are
discussed different possible simplifications. It is anyway supposed that, in our case, the two
directivities are the same, so that D2

tD
2
r = D4

t .

12



1.1.2 Window assumption on D4
t

A simplification is proposed in [3]: “the actual two-way beam pattern [D4
t ] can be replaced

by an ideal pattern of unit-relative response within solid angle [θmx], and zero relative response
beyond [θmx].” Product D4

t is thus supposed to hold the following assumption:

D4
t (θ) =

 1 if 0 < θ < θmx

0 if θmx < θ < π
2

(1.14)

The angle θmx actually defines an effective solid angle and can be chosen according to different
possibilities. Validity of this strong assumption is not discussed at all in [3], but has been seen
somewhere else in literature (reference is lost). It allows equation 1.13 to be simplified as

2π

∫
θ

Mv(R, θ)D
4
t (θ) 10−2·att(R,θ) sin θdθ

= 2π

∫ θmx

θ=0
Mv(R, θ) 10−2·att(R,θ) sin θdθ

(1.15)

Figure 1.2 shows the real function D4
t and the windows from two approximations (hypothesis

1 and 2). To be free from the frequency parameter, the x-axis is kAt sin θ (see section 2.1),
where k is the wave number and At the considered transducer radius.

Hypothesis 1

The integration of D4
t (θ) over [0, π2 ] is kept :

∫ π
2

θ=0
D4
t,real(θ)dθ =

∫ θmx

θ=0
D4
t,hyp.1(θ)dθ (1.16)

It leads to

θmx,hyp.1 =

∫ π
2

θ=0
D4
t (θ)dθ (1.17)

Hypothesis 2

The integration ofD4
t (θ) sin θ over [0, π2 ] is kept. This hypothesis allows to make the integrated

beam pattern ψ from [2] appear (see section 2.2):

∫ π
2

θ=0
D4
t,real(θ) sin θdθ =

∫ θmx

θ=0
D4
t,hyp.2(θ) sin θdθ (1.18)

It leads to

θmx,hyp.2 = arccos(1− ψ

2π
) (1.19)

13



Figure 1.2: D4
t (θ) (real and approximated)

As shown in figure 1.2, these approximation are strong and globally wrong. They allow
to define a solid angle on which Mv can be considered as constant. The integration is then
simplified and possible. Other hypothesis could be formulated: for instance, θmx can be defined
as the -3 dB beamwidth for each frequency (see section 2.1).

1.1.3 After window assumptions on D4
t

Once assumptions on D4
t are done, a second assumption is to be made:

Mv(R, θ) 10−2·att(R,θ) = Mv(R) 10−2·att(R) for θ ∈ [0, θmx] (1.20)

This assumption only means that the backscattering cross-section per unit volume is constant
over the insonified volum defined by [0, θmx], and so is the attenuation term. Equation 1.13 can
then be simplified as

2π

∫ π
2

θ=0
Mv(R, θ)D

4
t (θ) 10−2·att(R,θ) sin θdθ

= 2π Mv(R) 10−2·att(R)

∫ θmx

θ=0
sin θdθ

= 2π Mv(R) 10−2·att(R) (1− cos θmx)

(1.21)

where 2π (1− cos θmx) is called ideal beam pattern ψBP and is a solid angle.

1.1.4 Another proposed assumption

Another approximation to calculate the integral part of equation 1.13 is formulated below:

Hypothesis 3

Figure 1.2 shows that D4
t (θ) is zero for kAt sin θ = 3 (to be precise, D4

t is 0.0026 at this
point). The angle θmx is calculated as

kAt sin θmx = 3 (1.22)

14



which leads to

θmx,hyp.3 = arcsin(
3

kAt
) (1.23)

NOTE In our case kAt > 10, so 3
kAt

< 1 so arcsin function is correctly defined.

It is then assumed that Mv(R, θ) 10−2·att(R,θ) is constant over the insonified volume defined
by [0, θmx,hyp.3] (same as equation 1.20). It leads to

2π

∫ π
2

θ=0
Mv(R, θ)D

4
t (θ) 10−2·att(R,θ) sin θdθ

= Mv(R) 10−2·att(R) 2π

∫ θmx,hyp.3

θ=0
D4
t (θ) sin θdθ

≈ Mv(R) 10−2·att(R) 2π

∫ π
2

θ=0
D4
t (θ) sin θdθ

≈ Mv(R) 10−2·att(R) ψ

(1.24)

With this formalism, the integrated beam-pattern ψ from [2] is used and a reasonable solid
angle is defined for the device. The insonified volume where Mv is constant is then defined as

Vins(R) = 2π VG(R)

∫ θmx,hyp.3

θ=0
sin θdθ

= 2π VG(R) (1− cos θmx,hyp.3)

= 2π VG(R) (1− cos arcsin(
3

kAt
))

= 2π VG(R) (1−

√
1− 9

(kAt)2
)

≈ 2πLR2 (1−

√
1− 9

(kAt)2
)

(1.25)

1.1.5 Conclusion on the pressure equation

Whichever assumption is made from previously presented hypothesis, equation 1.9 can now
be rewritten as

P 2
r (R) = P 2

0

R2
0

R4

Mv(R)

4π
ψBP VG(R) 10−2·att(R) (1.26)

NOTE Even though the previous methods allows to make the volume VG appears, it
leads to a possible misunderstanding when reading the equation, because VG(R) ∝ R2. For this
reason, if r−4 is not replaced with R−4 in the range integration (equation 1.11), it leads to (see
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Appendix)

∫ R+L
2

r=R−L
2

1

r4
d3V = sin θdθdφ

∫ R+L
2

r=R−L
2

1

r2
dr

=
L

R2
sin θdθdφ

(1.27)

The same result can be found with VG(R) ≈ LR2 (equivalent for R� L
2 ). It leads to equation

1.28, the one that is used from now.

P 2
r (R) = P 2

0

R2
0

R2

Mv(R)

4π
ψBP L 10−2·att(R) (1.28)

Table 1.1 shows the values of ψBP and θmx according to which hypothesis is used. Of course,
ψBP are the same for hypothesis 2 and 3, but the angle θmx are different. For more information,
refer to chapter 2.

Frequency (MHz)

0.5 1 2 4

ψBP [sr]

Hypothesis

1 0.0073 0.0033 0.0029 0.0007

2 0.0092 0.0041 0.0036 0.0009

3 0.0092 0.0041 0.0036 0.0009

θmx [rad]

Hypothesis

1 0.0483 0.0322 0.0302 0.0149

2 0.0540 0.0360 0.0337 0.0166

3 0.1197 0.0797 0.0747 0.0369

Table 1.1: ψBP and θmx according to hypothesis

Hypothesis 3 is applied from now and at every frequency, so that the isonified volume is as
defined in equation 1.25, and

ψBP (f) = ψ(f)

and

θmx(f) =
3

kAt(f)
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1.2 In terms of voltages

Let us write vs and vr(R), respectively the input voltage of the source and the output voltage
of the receiver from an object situated at range R, and the gains Gs and Kr defined as

Ps = Gsvs

KrPr(R) = vr(R)
(1.29)

The gain Kr takes into account all the gains applied by the device on the raw recorded signal.
We can then write

v2r (R)

K2
r

= G2
sv

2
s

R2
0

R2

Mv(R)

4π
ψ L 10−2·att(R) (1.30)

Equation 1.30 can be written in logarithmic version as

RL = SL+ TS − 2TL (1.31)

with the following notations:

RL = 10 log10 vr
2 − 10 log10K

2
r

SL = 10 log10 vs
2 + 10 log10G

2
s

TS = 10 log10

(
Mv(R)

4π
ψ L

)
TL = 10 log10R− 10 log10R0 + 10 · att(R)

(1.32)

This equation is the same as the one proposed in [3], with some differences in terms, in
particular because the volume VG has been removed. The next chapter deals with directivity
and beamwidth.

1.3 About the attenuation term

As stated at the beginning of this chapter, the attenuation term depends both on water and
bubbles.

1.3.1 Water attenuation

Aquatec provides in [4] the equation 1.33 to calculate the attenuation coefficient αw. This
equation only takes water temperature Θ in ◦C and frequency f into consideration. The co-
efficient 8.68 is to convert from Nepers to dB. Figure 1.3 shows αw over a temperature range
of 10◦C - 30◦C ([4] does not give this range, so it is extrapolated for average water tempera-

tures). The attenuation term 10−
2αw(R−R0)

10 is plotted over range figure 1.4 at Θ = 14◦C for the

17



transducer frequencies. It shows that, at the working range, the attenuation term from water
is negligible.

αw(f,Θ) = 8.68 · (2.1 · 10−10(Θ− 38)2 + 1.3 · 10−7) · f2 [dB m−1] (1.33)

Figure 1.3: Attenuation coefficient αw over water temperature Θ from [4]

Figure 1.4: Attenuation term from water over range for 4 frequencies at Θ = 14◦C

1.3.2 Bubbles attenuation

It is stated in [2, p. 314] that the attenuation from a bubbly medium can be written as

10−
2αb(R−R0)

10

where coefficient αb depends on the bubbly medium characteristics, such as bubbles radius
distribution. In order to obtain this equation, [2] supposes in its equation (8.3.12) that σeN
does not depend on x (where N and x are notations from [2], corresponding to n and R). This
independence from range cannot be assumed in the current case, so the equation has to be
adapted. Let be Is(r) the incident wave intensity at range r. The power attenuation equation
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can be written ([2]) as
dIs(r)

dr
= −I0Se(r) (1.34)

where I0 = Is(R0). Se is the extinction cross-section per unit volume, defined further in chapter
5. Integrating, this leads to

Is(R) = I0 exp(−
∫ R

R0

Se(r)dr) (1.35)

which can be expressed in terms of pressure as

Ps(R) = P0 exp(−1

2

∫ R

R0

Se(r)dr) (1.36)

Let be Bt(R) =
∫ R
R0
Se(r)dr. In terms of decibels,

Ps(R) = P0 10−
10

2 ln 10
Bt

= P0 10−2.17Bt

= P0 10−
4.34
20

Bt

(1.37)

The last expression allows to make factor 4.34 from [2] appears. If Se is constant over the
working range (as assumed in [2]), the same result as the one in the book is found.

Moreover, in chapter 6 is detailed another theory from [5] for attenuation. The script
attenuationScript.m allows to compare results from the two theories.
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Chapter 2

Directivity, beamwidth and
insonified volume

This chapter deals with directivity, beamwidth, integrated beam-pattern, insonified volume
and resolution considerations. Matlab script: directivity.m.

2.1 Directivity and beamwidth

According to [2], the pressure directivity pattern Dt(θ) for a circular piston transducer of
frequency f and radius At holds the following equation 2.1:

Dt(θ) =
2J1(kAt sin θ)

kAt sin θ
(2.1)

where J1 is the first order Bessel function, k = 2πf
c is the wave number and c is the sound speed

in the water. The circular piston transducer model is used by AQUAtec for its transducers1. The
theoretical directivity patterns are plotted on figure 2.1 for the frequencies of the device: 0.5, 1,
2 and 4 MHz. From the directivity pattern can be theoretically computed the -3 dB two-ways
directivity beamwidth D2

t for each frequency. Table 2.1 shows the corresponding theoretical
values and the data provided by AQUAtec (the relative difference is less than 1.9 %).

Frequency f [MHz]
Two-ways -3 dB beamwidth [◦]

according to AQUAtec according to [2]

0.5 7.50 7.36

1 5 4.91

2 4.68 4.60

4 2.32 2.28

Table 2.1: Two-ways -3 dB beamwidths

1Going through different papers, it seems the condition kAt � π has to be fulfilled, or something close to.
An e-mail from AQUAtec support service states that the two ways -3 dB beamwidth should be greater than 30π

kAt
.

No real information found.
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Figure 2.1: Theoretical directivity pattern Dt for the ABS transducers according to [2]

2.2 Integrated beam pattern

The integrated beam pattern ψ is defined in [2] as

ψ =

∫∫
θ,φ

D2
t (θ, φ)D2

r(θ, φ) sin θ dθdφ (2.2)

In our case, the directivity patterns of the source and the receiver are considered the same
and independent from φ, so it leads to equation 2.3. Table 2.2 shows the numerical results for
the device.

ψ =

∫∫
θ,φ

(
2J1(kAt sin θ)

kAt sin θ

)4

sin θ dθdφ

≈ 5.78

(kAt)2
when kAt > 10 (see [2, p. 360])

(2.3)

Frequency f [MHz] Integrated beam pattern ψ [sr]

0.5 0.0092

1 0.0041

2 0.0036

4 0.0009

Table 2.2: Integrated beam pattern values

In section 1.1 is made the assumption that D4
t (θ) can be seen as a window:

D4
t (θ) =

 1 if 0 < θ < θmx

0 if θmx < θ < π
2

(2.4)
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If this assumption is used with equation 2.2 as proposed in hypothesis 2, it leads to

ψ =

∫ 2π

φ=0

∫ θmx

θ=0
sin θ dθdφ

⇒ θmx = arccos(1− ψ

2π
)

(2.5)

2.3 Insonified volume and resolution

In this section is explained the integral limits R± L
2 of equation 1.11.

Let L be the resolution length of the device: an object in a range between R− L
2 and R+ L

2
will be considered as being at range R. The transducer works by sending a sound wave of
duration τ , and c is the sound speed in water. For one wave, the device starts emitting at t0
and stops at t0 + τ . At tR and tR+L, the device receives the fronts of the signal backscattered
from ranges R and R+L respectively. The two signals will overlap if ∆t = tR+L− tR < τ . The
limit is then for ∆t = τ . It comes the following equations:

tR =
2R

c

tR+L =
2(R+ L)

c

⇒ ∆t =
2L

c

∆t = τ


L =

τc

2
(2.6)

For L = τc
2 , the device can make the difference between two scattering objects at ranges

R− L
2 and R+ L

2 . If the range distance between them is shorter than L, the objects cannot be
isolated. The parameter L is called bin size, or resolution.

Figure 2.2 illustrates the insonified volume, defined in equation 1.25.

Figure 2.2: Insonified volume illustration
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Chapter 3

Extracting data from the device

This chapter deals with getting information from raw data. The device is presented, as
well as the raw data. A calibration theory is also proposed, but it does not fit accurately the
experimental result. Further work must be carried out (see section 3.4).

Matlab script: plotData 3D.m.

AQUAtec supplies a software to extract data from the device and to convert the files format.
In our case, the software could not be installed, so a Matlab script from AQUAtec has been
adapted for this purpose (in a shorter time than AQUAtec): see exportConvertABS.m.

3.1 Device short presentation

The device is an AQUAscat 1000S. It aims to measure sediment concentration by using acous-
tic backscatter method. Four transducers are available on the device, and their characteristics
are shown in table 3.1.

NOTE ABS data also give the transducers radius, however radius for 0.5 MHz is wrong
(given 9 mm, real 12 mm). More, data are sorted according to [1, 2, 4, 0.5] MHz, which is not
convenient. For logical purpose, I usually sort according to increasing frequency, especially in
function loadABS Data.m.

Frequency Radius

f [MHz] At [mm]

0.5 12

1 9

2 4.8

4 4.9

Table 3.1: Transducers characteristics from AQUAtec

23



Figure 3.1: IPMA 2016 data - Signal received from surface
(The signals are shifted up (+1))

3.2 IPMA set of data

In [6, chapt. 5] is presented a set of backscattering data from 2016 that, in the current
document, are used to test the Matlab scripts and the methods. The signal was recorded
every 5 minutes during 2 diurnal periods with a bin size of 40 mm. Below are presented some
considerations about these data:

• A periodical pattern can be seen in the signal received from surface range

• The 4 MHz quality of the signal needs to be verified, as it looks rather poor on the whole

• The raw signal is range compensated

3.2.1 About the periodical pattern

Figure 3.1 shows the signals for the 4 frequencies received from surface range. A periodical
pattern can be seen, in 0-5 h or 25-30 h. The period is 40 min. This figure as been plotted
by choosing the maximum value of the raw signal. The periodical pattern can be explained
with the tide height and the resolution. The tide decreases in 0-5 h at 0.05 m/h, which means
it needs 48 min to fall 40 mm down (bin size). The 40 minutes period is of the same order.
Figure 3.2 shows the signal between 2 and 5 h: the tide height can be seen moving down, and
due to integration procedure, the backscattering signal is either in one bin or astride two bins.

NOTE Integration of the signal around the surface range does not solve the problem
(tried in plotData 3D.m): There is no linearity (adding two bins does not lead to one bin).
Control with equation 1.30, compensation taken into account.

A periodical pattern should also appear when the tide is increasing. It is not the case, because
the tide increases faster, and the bin size is too broad, which acts as a filter.

3.2.2 About the compensation

Figure 3.3 shows the raw data extracted from the device for the whole experiment, at 1 MHz
(signals for the other frequencies are the same). The surface is clearly visible (yellow line). Two
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datatips show the value of backscattered signal received from the surface at low and high tide,
in dB (chosen at maximum received signal on the periodical pattern of previous subsection).
Let be assumed that:

• The surface is a perfect mirror (see 3.4),

• The energy loss due to bubbles is negligible on the way,

• The raw signal is vr(R) with notations of chapter 1.

Under these assumptions, the signal must be, at least, subject to spherical attenuation R−1

(see equation 1.28). Table 3.2 shows the values of received signal, and the ones predicted by
the theory. It can clearly be seen that there is no spherical decrease in raw data. It can be
explained by a pre-compensation for range from AQUAtec software (not stated in the technical
documents). The raw data is not vr but vr × R. If the data are ”decompensated” from range
(i.e divided by R), the same process than previously leads to second part of table 3.2. In that
case, the differences match, which proves the range R compensation.

Hypothesis on
raw data

Range (m) Time (h) Raw signal
level (dB)

Difference (dB) Theoretical
difference (dB)

= vr
0.96 30.08 -0.5166

0.0197 4.65
1.64 8 -0.5363

= vr ×R
0.96 30.08 -0.3396

2.346 2.326
1.64 8 -2.685

Table 3.2: Signal level difference: raw data vs. theory, f = 1 MHz

3.3 Rewriting the equations

The laboratory does not have the proper equipment to make a complete characterization of
the device. The following method is adapted from [2] and [7]. Let us start by writing equation
1.30 slightly differently. The frequency dependency f is written back.

v2r (f,R) = v2s(f) K2
r (f)G2

s(f)
R2

0

R2

Mv(f,R)

4π
ψ(f) L 10−2·att(f,R)

= C2
0 (f)

Mv(f,R)

R2
10−2·att(f,R)

(3.1)

where

C2
0 (f) = v2s(f)H2

sr(f)
R2

0

4π
ψ(f)L

Hsr(f) = Kr(f)Gs(f)

(3.2)

In theory, for a specified set of parameters (f, L), the value of C2
0 is constant and does not

vary with range R. By using the auto-calibration method described below, one can access this
value.
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Figure 3.2: IPMA 2016 data - Signal received (focused on surface range)
Time evolution between 2 h (white) and 5 h (red) after the experiment starts, for 1 MHz

Figure 3.3: IPMA 2016 data - Raw signal for 1 MHz

Figure 3.4: IPMA 2016 data - “Decompensated” signal for 1 MHz
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3.4 Auto-calibration method

This method is adapted from [2]. Figure 3.5 illustrates the setup1. The idea is to calibrate
the device by pointing it toward a smooth water/air interface in a water tank. This surface is
assumed to be a large enough perfect mirror. The distance R = Rref is measured and from the
perfect mirror assumption, |Ls(Rref )| = 1 in the insonified volume Vins(Rref ) (see chapter 1),
which leads to

Mv(f,Rref )Vins(Rref ) = 4π ∆σBS

= 4π
(3.3)

and then

Mv(f,Rref ) =
4π

Vins(Rref )

=
2

LR2
ref (1−

√
1− 9

(kAt)2
)

(3.4)

Another strong assumption is done for the calibration experiment: the bubbles in water are
negligible, so that the attenuation term from bubbles (see chapter 5) is equal to 1. Since the
water attenuation is also negligible, it is then possible to calculate C2

0 (f, L) as

C2
0 (f, L) =

v2r,ref (f)

4π
R2
refVins(Rref ) (3.5)

Again, this value is supposed to be constant for a fixed frequency. However, making multiple
measurements at different range will allow to validate this. If the value is not constant with
range, then multiple measures will have to be conducted.

As stated in introduction, this section needs corrections and experimental validation to prop-
erly calibrate the device. The biggest issue lies in the wave model used under perfect-mirror
assumption: [2] assumes plane wave propagation, so that doubling the distance leads to dou-
bling the propagation attenuation, which is really different from spherical wave propagation.
More, how the insonified volume relates to the interface still poses a challenge.

1Please note the device height parameter hd is different from the length of the device and takes into account
the anchoring structure (not shown in figure 3.5).
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Figure 3.5: Calibration setup
The device is on the ground and points toward the air/water interface

Transducer

Parameter Unit Symbol direct setting Comment

Water height (from tank bottom) m hw No Max 1.60

Device height (from tank bottom) m hd No Structure included

Transducer frequency MHz f No 0.5, 1, 2 and 4

Maximum range (from transducers) m Rmax No

Minimum range (from transducers) m Rmin No

Effective measured range m ∆Reff No

Bin size mm L Yes 2.5, 5, 10, 20 or 40

Number of bins / N Yes From 1 to 256

Start bin / N0 Yes

Transmit power dB T dBx Yes 0, -6, -12 or off

Gain relative to default dB RdBx Yes 0, +12 or +20

Profile rate Hz fprof Yes From 1 to 128

Profile length s τ No

Burst length s Tburst No

Burst interval s Tint Yes

Number of stored profiles / mprof Yes To average in post-
treatment

Table 3.3: Parameters to be set for the calibration experiment

Table 3.3 shows the parameters that should be set for each calibration test. Each frequency
must be tested independently. The water height can be set in the tank, allowing it to be adjusted
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as needed, up to 1.60 m. Noise measurement should also be performed, by recording without
sending power, and at each water level. With the notations from this table, the following
equation holds (with c the sound speed in water):

L =
τc

2

Rmin = N0 × L

Rmax = (N −N0)× L

∆Reff = Rmax −Rmin

Tburst =
mprof

fprof

Tint ≥ Tburst

(3.6)

Regarding the geometry parameters, the device is 51 cm high, the large structure is 34 cm
high and the fixing tool is 44 cm high. Taking into account the space needed by the cables,
the top of the device should not be higher than 60 cm from the tank ground, in order to be
able to have the water/air interface at Rmax = R0 = 1 m. To adjust near range equations (see
section 3.6) with experiment, it can be interesting to record data close to the transducers.

3.5 Accessing the backscattering cross-section per volum unit

Informations are in Mv(f,R)×10−2att(f,R). Once the calibration has been conducted for each
frequency f available on the ABS, i.e C2

0 (f, L) is known, it is easy to access the product:

v2r (f,R) = C2
0 (f)

Mv(f,R)

R2
10−2·att(f,R)

⇒Mv(f,R)× 10−2att(f,R) =
R2

C2
0 (f)

v2r (f,R)

(3.7)

3.6 About near field correction

It has been shown in [8] that, for the backscattering signal level in a range near from the
transducer, “there is a significant departure from the spherical spreading response”. The doc-
ument proposes a backscatter expression (that is the one used by AQUAtec device) and a near
field correction factor ξ (that is not used by AQUAtec as it is) that are both described in
Appendix.

Even though these equations are not used here, the near range effect can be taken into
consideration by considering the previous equations only far from the device (see figure 3.6).
The 2 MHz transducer has the shortest near-range limit while the 4 MHz has the longest one.
Figure 3.6 shows the ξ factor for the four transducers. For ξ = 1.1, the 2 MHz limitation is
7.5 cm and the 4 MHz limitation is 15.2 cm.

One should notice that near-range equation depends on both frequency and transducer radius.
Since transducers radius are not constant on the device (see table 3.1), the results can differ
from the expectation when taking only frequency into account. However, it will be seen later
(chapter 4) that near range effect does not seem to follow the equation.
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Figure 3.6: Near range factor ξ from [8]
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Chapter 4

Calibration experiment

The following chapter reports the calibration experiment that has been carried out by Paulo
FELISBERTO and Jef PHILIPPINE on 2018, February 15 in the water tank of the IPMA-
EPPO (Estação Piloto de Piscicultura de Olhão), Olhão, in the framework of the SEAOX
project. It first describes the tank location and the experimental setup, then presents the data
and the associated processing. The methods proposed by AQUAtec in the software AQUAs-
cat will not be used, regarding the equipment they need to be carried on. Matlab scripts:
calibration150218.m and loadABS Calibration.m. The data are under Calibration 15022018
folder.

4.1 Overview of experimental setup

4.1.1 Tank location and device

The experimental area is located at the IPMA-EPPO Olhão. The chosen tank was empty at
first (see pictures 4.1 and 4.2), allowing the equipment to be installed, then filled with water.
During the experiment, the water level did not change and the water pumps were not working.
The tank was not clean, and possible interferences from particles and floating grass could have
taken place (see section 4.2.3). The device was powered by the AQUAscat battery pack and
USB-linked to the computer, so that parameters could be directly set and test started.

Figure 4.1: Tank and working table Figure 4.2: Device in the empty tank
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Figure 4.3: Device in the tank (close view)

4.1.2 Parameters description

Figure 3.5 shows the setup notations used in the report. The geometrical1 and fixed values
are presented in table 4.1, and the variable parameters in table 4.2. As shown in 4.2, 18 sets of
parameters were tested. Device and transducers are supposed completely perpendicular to the
water surface. Water level has been measured by hand when installing the structure, and the
transducers orthogonality (relating to the device itself) have not been tested.

Parameter Unit Symbol Value

Water height (from tank bottom) m hw 1.60

Device height (from tank bottom) m hd 0.61

Maximum range (from transducers) m Rmax 1

Profile rate Hz fprof 40

Number of stored profiles / mprof 6000

Burst length s Tburst 150

Table 4.1: Fixed parameters of the calibration experiment

Parameter Unit Symbol Values

Transmit power dB T dBx off and 0

Gain relative to default dB RdBx 0, +12 and +20

Bin size mm L 2.5 10 40

Number of bins / N 256 256 30

Start bin / N0 300 1 1

Minimum range (from transducers) m Rmin 0.750 0.01 0.04

Effective measured range m ∆Reff 0.640 2.56 1.20

Table 4.2: Parameters to be set for the calibration experiment

The transmit power T dBx was set off to carry out noise measurements2. The water temper-
ature Θ was measured for every set and was 14.7◦C for the 7 first trials and 14.9◦C for the
others. It is used to correct the sound speed water c in the tank (1500 m s−1 in the device

1Please note the device height parameter hd is different from the device length and takes into account the
anchoring structure (not shown in figure 3.5).

2off actually means -18,06 dB
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software), according to equation 4.1 (from [2]). The temperature is fixed at Θ = 14.8◦C in the
data analysis, so it leads to c = 1505 m s−1.

c = 1449.2 + 4.6 Θ− 0.055 Θ2 (4.1)

The salinity is not taken into consideration (almost 35 ppm in the tank).

4.2 Experimental data

Figures 4.4 to 4.9 show the recorded raw data. Different setups are tested, presented in
table 4.2. Each figure shows either noise or “signal” data, (respectively transmit power T dBx =
0 or off), for a specific resolution L and gain relative to default RdBx .

4.2.1 First remarks

Several remarks can be done:

• The effective measured range ∆Reff for L = 10 mm was too broad (see figure 4.7). It
should have been focused on the surface range, as with L = 2.5 mm (see figure 4.5). Near
range effects and echoes (signal from 2 m) are visible. It does not really matter since
manual processing is performed afterwards.

• The near range effect is clearly visible when L = 10 mm (see figure 4.7). Due to resolution
issues, this effect is visible only for f = 0.5 MHz when L = 40 mm (see figure 4.9).
However, the results do not match the theory presented in chapter 2: for instance, the
signal for f = 4 MHz should have the longest near range value, but in this case the signal
for f = 0.5 MHz clearly has it. Awaiting possible further measurements, 20 cm should be
considered as the near range limit for the 4 frequencies.

• The gain relative to default RdBx effect is difficult to properly understand. Figure 4.10
shows the signal for L = 2.5 mm, focused on surface range. The full scale does not change
(almost 1 V), and the gain seems to be applied only on low level. In calibration150218.m

are calculated the RdBx values for all signals from figures 4.4 to 4.9, and these values are not
what they are supposed to. Range compensation has already been detailed (see section
3.2.2): I wonder if the device applies some kind of non-linear gains on the data.

• 40 mm resolution is too wide for such an experiment (see figure 4.11 for the signal focused
on the surface range). In [6], the tide of the tank (directly connected to Ria Formosa) is
said to be varying around 1.80 m. The device height was by then 74 cm, the minimum
level from the device top was about 1 m and the maximum level about 1.5 m, so a tide
of 50 cm. It leads to a minimum tide from the ground of about 1.80 m and a maximum
tide about 2.30 m. Table 4.3 shows the maximum effective measured range according to
the bin size. A 2.5 mm resolution is not enough to cover the whole range, even with the
device height. A 5 mm resolution (also possible, even though not tested here) would allow
∆Reff = 1.28 m. Adding the 20 cm near range limit and the necessary device height hd
(minimum 60 cm), the whole range between the device and the high tide level is almost
covered. The other resolutions would lead to a wider and useless covered range. Of course,
this is a trade off between range and resolution.
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• Strong signature is received from above the water surface and is difficult to explain. The
first idea was relating to the spherical insonified volume (see figure 2.2): signal from the
outside limits (θ = θmx) should arrive later than signal from the center (θ = 0), but basic
geometrical calculations do not lead to the right equivalent range value. [3, p.634] states
that such a signal is “due to surface reverberation”, but does not deal any further with
this matter. The experiment described in [3] takes place offshore, where waves and wind
conditions seem to have important impact. It is hard to estimate the impact of such
conditions for the present experiment, since it took place in a small tank, protected from
waves and wind. This question is still unanswered and might play a part in the proper
calibration of the device.

L (mm) ∆Reff max (m)

2.5 0.640

5 1.280

10 2.56

20 5.120

40 10.240

Table 4.3: Maximum effective measured range according to resolution

4.2.2 Signal to noise ratio

A signal to noise ratio is computed to estimate the impact of noise on the measurements.
The signal energy is calculated as shown in equation 4.2. The near range effect is not taken
into consideration for this ratio, so the integration ranges for L = 10 mm and L = 40 mm are
respectively [0.2 m ; 1.9 m] and [0.2 m ; 1.2 m]. For L = 2.5 mm, the whole signal is integrated.
The signal to noise ratio SNR is then calculated in equation 4.3 and the results are shown in
table 4.4 when RdBx = 0 dB. The ratio is high enough for the noise to be neglected.

E(vr) =
∑
R

v2r (R) (4.2)

SNR =
E(vr(signal))

E(vr(noise))
(4.3)

RdBx = 0 dB
Frequency (MHz)

0.5 1 2 4

L (mm)

2.5 33 33 44 46

10 47 55 58 54

40 48 45 63 67

Table 4.4: Signal to noise ratio (in dB) for RdBx = 0 dB
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Figure 4.4: Noise for L = 2.5 mm

Figure 4.5: Signal for L = 2.5 mm
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Figure 4.6: Noise for L = 10 mm

Figure 4.7: Signal for L = 10 mm
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Figure 4.8: Noise for L = 40 mm

Figure 4.9: Signal for L = 40 mm
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Figure 4.10: Signal for L = 2.5 mm (focus on surface range)

Figure 4.11: Signal for L = 40 mm (focus on surface range)
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4.2.3 About particles in the water

Figures 4.12 and 4.13 show the logarithmic signals for L = 2.5 mm and L = 10 mm, both
focused on surface range. For L = 2.5 mm, two peaks (at R = 0.84 m and R = 0.96 m) are
clearly visible for f = 1 MHz, independently from the values of RdBx , and can also be seen for
L = 10 mm. These peaks could be symptomatic of some unexpected material just below the
water surface. The fact that only f = 1 MHz detects it could be (this is only an idea and has
not been verified yet) related to scattering cross-subsection resonance with material radius (see
figure 5.2).

Figure 4.12: Signal (dB) for L = 2.5 mm (focus on surface range)

Figure 4.13: Signal (dB) for L = 10 mm (focus on surface range)

4.3 Processing the data

Equation 3.5 shows how to access the value of C2
0 (f, L). Since the effect of parameter RdBx

is for the moment unknown, only the signals for RdBx = 0 dB and RdBx = +12 dB are processed
in calibration150218.m
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4.4 Further calibration work

This chapter has presented the setup and the data of the experiment, as well as the calibration
results. Here are some notes about the fursther work related to this calibration. In order to
characterize near range effects and make the measurements for the 5 mm resolution, another
experiment has been carried out at IPMA-EPPO, on Mai 21st 2018. Due to lack of time, the
data could not be processed: only the conversion *.aqa to *.mat has been done. Below are the
main parameters that have been chosen:

• The transmit power was set to 0 dB, -6 dB and -12 dB.

• The gain relative to default was set to 0 dB and 12 dB.

• The bins sizes were 2.5 mm and 5 mm.

• The number of bin was 256 for every measure.

• The tank was way cleaner than the first time.

We then theoretically have 12 files. However, it seems 2 are missing, for an unknown reason.
The experiment has be carried out so that the post-treatment should be easier than the first
one, especially because the data lengths are now all the same (256 bins). It means that loops
and automatic processes can be used. It seems insignificant, but writing operations manually
takes a lot of time!
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Chapter 5

Backscattering cross-section
distribution

This chapter deals with the backscattering cross-section, the bubble size distribution, and
introduce the extinction cross-section. It is stated in [9] that several formulas exist for these
cross-sections, depending on authors and hypothesis. This chapter shows the first formulations
that have been chosen, then explains their limitations and indicates the final formulas.

Oxygen bubbles size depend mainly on water movement, and not on seagrass species: a weak
water flow allows the bubble to grow on the leaf surface, so that large radius is reached when
it comes off. On the contrary, strong water movements lead to small bubble radius. This fact
can allow to make assumptions on bubbles size.

Matlab script: crossSectionCalc.m.

5.1 Extinction cross-section

Closely related to backscattering cross-section per unit volum Mv, the extinction cross-section
per unit volum Se is actually the total cross-section of a particle, due simultaneously to backscat-
tering and absorption. It represents the total losses of energy from the incident beam (see [2,
chapt. 8]). As stated and explained in chapter 1, the attenuation term form bubbly medium
can be written as

10
− 4.34

20

∫R
R0

Se(r)dr (5.1)

Since the attenuation from water can be, at the working range of this paper and as shown
in chapter 1, considered as negligible, the attenuation term at range R is due to bubbly water
only:

att(R) =
4.34

20

∫ R

R0

Se(r)dr (5.2)

Related to the extinction cross-section per unit volume Se, the extinction cross-section σe is
defined as the equivalent of σBS for Mv (see equation 1.7).
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5.2 How to isolate Mv and 10−2·att

As stated in chapter 3, the product Mv(f,R)× 10−2att(f,R) can be extracted from the device.
From this product, we must isolate Mv and 10−2att. An iterative method is proposed in [3],
roughly explained below. Two difficulties are encountered: first, isolate backscattered signal
from bubbles attenuation (the main issue here). Second, closely related (we deal with it in
section 5.6), the way to extract n from Mv and Se is not petty. In the following method, we
assume a way is known to extract n.

“Bottom-up” strategy: The idea is to start from the first bin (the closest from the device),
considering the attenuation term 10−2att is negligible for such a short distance (also considering
there are no bubbles at the top of the device). The initial value is then Mv. The computation
starts from the bottom to reach the furthest bin.

Initialisation First bin: 10−2att is assumed equal to 1. Mv value is immediate. n can be computed.

Iteration For a specific bin:

1. 10−2att is calculated from n value of previous bin.

2. Mv value is immediate, so n can be computed.

3. Next step.

Another iterative method (that could be called “top-down”) could be used. Under the as-
sumption that total attenuation along the way (i.e attenuation of the last bin) is known, then
the same process from previous method can be applied. With figure 5.7 (see theory below), one
can also notice that Mv and Se can be assimilated for large enough bubble radius. Under such
an assumption, the calculation can be made easier.

5.3 Bubble size distribution

It is stated in [2, p. 310] that, when ”widely spaced bubbles are insonified, the acoustical cross-
section of the individuals simply add”. It is assumed right in this report without discussion. For
a given bubble size distribution m(a,R) in the insonified volume Vins(R) defined in chapter 1,
and with σBS , σe the backscattering and extinction cross-section respectively (σe is to Se what
σBS is to Mv), it can be written

σBS(R) =
∑
a

m(a,R)σBS(a,R) (5.3)

σe(R) =
∑
a

m(a,R)σe(a,R) (5.4)

where the a dependency denotes the parameters for only one bubble radius. The backscattering
cross-section per volume unit Mv(f,R) and the extinction cross-section per volume unit Se(f,R)
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over the insonified volume at range R can then be written as

Mv(f,R) =
1

Vins(R)

∑
a

m(a,R)σBS(a, f,R)

=
∑
a

n(a,R)σBS(a, f,R)

(5.5)

and

Se(f,R) =
1

Vins(R)

∑
a

m(a,R)σe(a, f,R)

=
∑
a

n(a,R)σe(a, f,R)

(5.6)

where n(a,R) is the number of bubbles of radius a per volume unit at range R, defined as

n(a,R) =
m(a,R)

Vins(R)
(5.7)

For better readability, range dependency is dropped from now in this chapter when writing
the equations. Because of the continuous distribution of size, the sums are replaced by the
following integrals:

Mv(f) =

∫ +∞

a=0
σBS(a, f)n(a)da (5.8)

Se(f) =

∫ +∞

a=0
σe(a, f)n(a)da (5.9)

One must notice that shifting from sum to integral changes the unit of n from m−3 to m−4.
The strict explanation lies in the fact that n(a)|sum ≡ n(a)da|integral. Stricto sensu, the number
of bubbles per unit volum is then n(a)da.

5.4 Cross-section and damping constants: first formulas

This section deals with the first formulas that were supposed to be used (especially because
they appear both in [2] and [3]). Going through hypothesis, it appears that these equations are
limited and can be extended (this is show in section 5.5).

5.4.1 For microbubbles, ka� 1

It is stated in [2, p. 302] that the cross-sections σBS(a, f) and σe(a, f) of one single mi-
crobubble of radius a, at frequency f and for ka� 1 (with k the wave number) can be written
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as

σBS(a, f)|
ka<1

=
4πa2(

f2R(a)

f2
− 1

)2

+ δ2(a, f)

(5.10)

σe(a, f)|
ka<1

=
δ(a, f)

δr(a, f)
× σBS(a, f)|

ka<1
(5.11)

where fR is the resonance frequency, δ the total damping constant and δr the scattering damping
constant. The complete theory can be found in [2, chapt. 8] and will not be detailed in this
document. It has to be highlighted that these equations are under clean bubbles in fresh-water
assumption, and that sea-water changes the values of damping constant. The following equations
are used for fR and δ (from [2]):

fR(a, z) =
3.25

√
1 + 0.1z

a
(5.12)

δ(a, f) = δr(a, f) + δt(a, f) + δv(a, f) (5.13)

In these equations, z is the depth from water surface (so is related to range from transducer),
δt is the damping constant due to thermal conductivity and δv is the damping constant due to
shear viscosity. These constants are calculated in [2] (calculations are not detailed here), and
figure 5.1 shows their evolution for f = 1 MHz in absolute value. The other frequencies have
the same pattern.

Figure 5.2 shows total acoustical backscattering cross-section σBS(a) of one single bubble of
radius a for the four frequencies of the transducer. To each frequency f is associated a resonance
radius aR so that fR(aR, z) = f . As a matter of information, resonance effect is stronger with
lower frequencies.

5.4.2 For bigger bubbles, ka� 1

It is stated in [2, p. 290] that for larger bubbles (ka� 1), the backscattering and extinction
cross-sections are equivalent to the ones for the ”rigid sphere” model. This model is mentioned
in [2, p. 270] and the formulas are given in [2, p. 270] and [10]. In this case, the backscattering
extinction cross-sections σBS(a, f) and σe(a, f) are

σBS(a, f)|
ka>1

= πa2 (5.14)

σe(a, f)|
ka>1

= 2πa2 (5.15)
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Figure 5.1: Damping constant absolute value over bubble radius @ z = 1 m, f = 1 MHz
Plotted with crossSectionCalc.m

Figure 5.2: Scattering cross-section @ 1 m depth according to particle radius, for ka� 1
Plotted with crossSectionCalc.m

5.4.3 Comparison and ”all ka” model

Figure 5.3 shows the backscattering cross-section over bubbles radius for the 2 theories: rigid
sphere and microbubbles. It can be seen that

1. For ka � 1, the ”microbubbles model” response is way stronger than the ”rigid sphere”
one,

2. The ”microbubbles model” is really not adapted for ka� 1.

The backscattering cross-section for both ka� 1 and ka� 1 is then defined as

σBS(a, f) =

σBS(a, f)|
ka<1

when ka� 1

σBS(a, f)|
ka>1

when ka� 1
(5.16)

and σe follows of course the same equations. σBS is plotted in figure 5.4 for 4 frequencies (the
limit value for ka is here set to 2.16 after reading the intersection x-coordinate).
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Figure 5.3: Scattering cross-section @ 1 m depth according to different theories
Plotted with crossSectionCalc.m

Figure 5.4: Scattering cross-section @ 1 m depth for all ka
Plotted with crossSectionCalc.m

5.5 Cross-section and damping constants: second and final for-
mulas

In [9] are presented extended formulations close to the ones proposed in section 5.4, but
taking into consideration more hypothesis. In particular, an equation for the whole range ka
is proposed. Going through the different equations of the document, it appears the parameters
(such as damping constants for instance) are the same than used in section 5.4. To lighten the
writing, the following notations are used:

δtv = δt + δv

= δ − δr
(5.17)
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The final equations for σBS and σe are

σBS(a, f) =
4πa2(

f2R(a)

f2
− 1− δtv(a, f)δr(a, f)

)2

+

(
δtv(a, f) +

f2R(a)

f2
δr(a, f)

)2 (5.18)

σe(a, f) =
δtv(a, f)

δr(a, f)
×
(

1 +
δr(a, f)

δtv(a, f)
+ δ2r (a, f)

)
× σBS(a, f) (5.19)

Equations 5.18 and 5.19 are used in the following document, since they cover the whole
ka range with only one expression. The damping constants formulations are known, so σBS
and σe can be calculated. Figures 5.5 and 5.6 show the backscattering and extinction cross-
sections according to the previous equations from [9]. Figures 5.4 and 5.5 can be compared:
the curves are the same for small ka, and differ when ka � 1. Actually, according to [2] and
[10], σBS = πa2 for large ka, but according to [9], σBS = 4πa2. This factor 4 is the difference
between the two curves for ka� 1.

Figure 5.5: Scattering cross-section @ 1 m depth for all ka, from equation 5.18
Plotted with crossSectionCalc.m

Figure 5.6: Extinction cross-section @ 1 m depth for all ka, from equation 5.19

Figure 5.7 shows the ratio σBS
σe

over the radius range. It can clearly be seen that for a large

47



enough bubble radius (the limit is around 50 µm), the cross-sections σBS and σe are equal.

Figure 5.7: Cross-sections ratio @ 1 m depth, from equation 5.19

5.6 Distribution and cross-section per unit volume

Now, to access the distribution n(a) at range R, equations 5.21 should be solved:

Mv(f) =

∫ +∞

a=0
σBS(a, f)n(a)da (5.20)

Se(f) =

∫ +∞

a=0
σe(a, f)n(a)da (5.21)

These are Fredholm integral equations, where only 4 values are known for Mv(f) at range R.

5.6.1 About the void fraction

The void fraction qv(R) at range R is defined as

qv(R) =
Vbubbles(R)

Vins(R)
(5.22)

where Vbubbles is the total volume of bubbles at range R. For only spherical bubbles, it would
be defined as

Vbubble =
4

3
π

∫
a
m(a) a3da (5.23)
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where, just as a reminder, m(a) is the bubble size distribution in the insonified volume at range
R. It can be written, with equation 5.7:

qv =
4

3
π

∫
a

m(a)

Vins
a3da

=
4

3
π

∫
a
a3 n(a)da

(5.24)

In the specific case of only one bubble radius a, the value of void fraction leads to n(a)
through

n(a) =
3

4

qv
πa3

(5.25)

In general, the ”one bubble radius” assumption is wrong, but it can allow to reduce the radius
integration range. If qv is known and the maximum attenuation term 10−2·att can be calculated
(this point should be dealt with in chapter 3, but it seems tougher than expected), then a
minimum radius can be extracted from tables. Associated with a maximum bubble radius from
visual observations, it might allow to frame the radius range.

5.6.2 Issues in solving the equation

The following subsection deals with the issues one reaches when trying to solve equation 5.21.

1. Mv(f) is only known in 4 values. It is not enough to solve the Fredholm equation for the
whole radius range (under-determined equations set).

2. Several methods are proposed in [3] to solve the equations sets, based on iterations or
matrix computation, but they will be only approached solutions, with a need to interpolate
the values for Mv(f).

3. Some assumptions on σBS(a, f) has been tried. Considering the bubble radius is large
enough to be in ka > 1 area (reminder, k is the wave number), i.e where σBS(a, f) =
σBS(a, f)|

ka>1
= πa2. This assumption allows to write the following:

Mv(f) = π

∫ +∞

a= 1
k

a2n(a)da (5.26)

which means Mv(f) is independent from the frequency. This assumption is questionable,
and has to be justified case by case. It leads to a loss of information (since the four
frequencies are useless), but allows to compute∫ +∞

a= 1
k

a2n(a)da

which is somehow close to ∫
a
a3n(a)da

49



Combined with assumptions on mean-values, it could lead to something like∫
a
a3n(a)da ≈ ā

∫
a
a2n(a)da

4. There is something to do with qv and attenuation comparison for high and low frequencies.
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Conclusion on high frequency
methods

This long part detailed the physical equations under the back-scattering device operation,
as well as the progresses that have been done for calibrating the aforesaid device. It also goes
through the explanation of what information are needed as a result from the process. The
inverse problem solutions have been dropped out before the end, since low-frequencies method
(detailed further in part II) seems more promising to meet the project target. However, if
this method eventually leads to a deadlock, or if it needs complementary informations to work
properly, or again for another use of backscattering in, say, another project, this first part will
be a good base to start on.
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Part II

Attenuation, sound-speed and low
frequency methods
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This parts deals with the attenuation and sound-speed variation based method. For a full
understanding of what follows, one needs to read over chapter 5 of this report and thesis [1].
Basically, the idea is to used (one-way) attenuation and sound speed measurements to access
bubbles population. The setup is described in [11]. Several Matlab scripts have been written
to simulate the following process. As stated in part I, this method looks more promising than
the ABS one to meet the project target of bubble population measurements. However, even if
the theory is now understood enough, experiments has to be conducted in order to confirm or
disprove it. To set an example, the water sound speed for a specific set of void fraction, bubble
size and wave frequency is supposed to reach values up to 2 or 3 times its usual value, what
should be considered cautiously.
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Chapter 6

Theoretical background

6.1 Dispersion equation and complex sound speed

Most of the following is based on [5], where is developed a rigorous mathematical model
describing the evolution of both phase speed and attenuation of a sound wave in bubbly medium.
Leaving apart the complete derivation, the present document starts from the following dispersion
equation (6.1. The notations are slighlty different in order to match the rest of this report) and
takes the same path. The following theory is valid for low void fraction only ([11, p. 2700]),
and must be considered cautiously “in the neighborhood of the resonance of the bubbles” ([5,
p. 744]).

k2m =
ω2

c2
+ 4πω2

∫ +∞

0

an(a)

ω2
R − ω2 + jω2δ(a, ω)

da (6.1)

where km is the complex wave number, a the bubble radius, n the bubble distribution, ω is
the pulsation and j is the imaginary unit. The inner part of the integral in equation 6.1 looks
closely like equation 5.11. The ratio between c and the complex sound speed cm = ω

km
is derived

as
c2

c2m
= 1 + 4πc2

∫ +∞

0

an(a)

ω2
R − ω2 + jω2δ(a, ω)

da (6.2)

It should be underlined that in [5] is defined a “damping constant” b, that can also be found
in [9], and that corresponds to b = πfδ. Let be K = K1 + jK2 the kernel function defined as
(see simuKernel.m).

K(a, ω) =
4πc2a

ω2
R − ω2 + jω2δ(a, ω)

=
4πc2a

(ω2
R − ω2)2 + ω4δ2

× (ω2
R − ω2 − jω2δ)

= K1(a, ω) + jK2(a, ω)

(6.3)

so that we can rewrite 6.2 as

c(ω)2

cm(ω)2
= 1 +

∫ +∞

0
K(a, ω)n(a)da (6.4)
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Now let be u and v defined as

c(ω)

cm(ω)
= u(ω)− jv(ω) (6.5)

With these notations, u relates to the phase speed of the sound wave, and v relates to
the attenuation, and both u and v can be accessed via measurements for different frequen-
cies. The method presented below aims to determined the bubbles distribution n. The script
attenuationScript.m deals with this theory and allows to plot the same figures as presented
in [5].

6.2 u and v calculation

From an experimental point of view, [11] details how to access u and v from data. Here is
an adapted version of these equations. The experimental setup is shown in figure 6.1. The blue
ring is the source, while the two red spheres are the receivers (respectively 1 and 2 from right
to left). Let be R1, R2 the respective ranges of receivers.

There are two ways of calculating u and v. The acoustic theory states that, for an incident
source pressure Ps (of pulsation ω and reference range R0, see chapter 1), pressures P1 and P2

at receivers 1 and 2 are written

P 2
s = P 2

0 ejωt

P 2
1 =

P 2
0R

2
0

R2
1

ej(ωt−kmR1)

P 2
2 =

P 2
0R

2
0

R2
2

ej(ωt−kmR2)

(6.6)

As we can easily see, the spherical spreading attenuation will play a part in the attenuation
calculation. Without bubbles between the source and the first receiver, and since the water
attenuation is assumed negligible for these ranges (magnitude 1 m, see section 1.3 for the
justification), we can write

P 2
1 =

P 2
0R

2
0

R2
1

exp

[
jω(t− R1

c
)

]
(6.7)

Assume that bubbles production between the two receivers can be “ turned on and off ”. Let
subscripts |bubbles and |fresh refer to the situation when bubbles are present and when they are
not, respectively. Then we have

P 2
2 |fresh =

P 2
0R

2
0

R2
2

exp

[
jω(t− R2

c
)

]

P 2
2 |bubbles =

P 2
0R

2
0

R2
2

exp

[
jω(t− R1

c
− u(R2 −R1)

c
)

]
exp

[
−ωR2v

c

] (6.8)
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There is a little trick here: bubbles are only between the two receivers ! Writing P2|bubbles
the same way P1 is written with R2 instead of R1 is not correct.

6.2.1 First way of computation

First way to compute u, v is by using P1 and P2|bubbles with bubbles present, so that

u =
c

R2 −R1
× Time delay between the two receivers (6.9)

and by making the ratio of pressures amplitudes (denoted by ||.||), we have

v =
c

ω(R2 −R1)
× R2

1

R2
2

× ln
||P 2

1 ||
||P 2

2 ||
(6.10)

This method presents the advantage of doing only one experiment to get both u and v.
However, the distances R1, R2 between the source and the receivers are needed to properly
compute the attenuation. It can seem unexpected. It is due to the spherical attenuation, that
relates to R−2, so that is not an exponential decrease: the “past” of the signal needs to be
known in order to properly compute the attenuation.

6.2.2 Second way of computation

Another way to compute u and v is proposed in [11, p. 2702]. It is based on the difference
between pressures P2 with and without bubbles. Only the attenuation equation changes. The
sound speed equation stays the same. From equation 6.8, the attenuation is directly accessed
by making the ratio between the pressures amplitudes with and without bubbles:

v =
c

ωR2
× ln

||P 2
1 |fresh||

||P 2
2 |bubbles||

(6.11)

This method does not depend or the distance R1 anymore, but need two measures, with and
without bubbles.

The choice between these two methods is a matter of tradeoff.

Figure 6.1: Low-frequency experimental setup - figure from [1]
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Chapter 7

Kernel inversion process

Based on the theory presented in section 6, a kernel-based inversion process is presented in
[11]. This process is detailed here, with some changes in notations. Let be Q, Q1 and Q2 defined
as

Q1(ω) =

∫
a
K1(a, ω)n(a)da

Q2(ω) =

∫
a
K2(a, ω)n(a)da

Q(ω) = Q1(ω) + jQ2(ω)

(7.1)

From equation 6.5 it can be written

Q(ω) =

∫
a
K(a, ω)n(a)da = (u− jv)2 − 1

= u2 − v2 − 1− 2juv

(7.2)

and then
Q1(ω) = u2 − v2 − 1

Q2(ω) = −2uv
(7.3)

The factor −2 in Q2 is simplified in [11], so that the equations from the report are slightly
different from [11].

7.1 Discretisation

Obviously, from a finite set of pulsations ωi, one can access only a finite set of u and v, so a
finite set of n. [11] proposes to use a linear interpolation on n. The method is detailed below,
again slightly different from the article.

It is first assumed that the working radius range can be framed on [alw, ahg]. This interval
is then divided in M − 1 subdomains, so that M values n(aj), j ∈ [[1,M ]] will be determined.
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Linear interpolation is used on this set of values, so that

n(a) =
M∑
j=1

n(aj)ϕj(a) (7.4)

where the M hat functions ϕj are defined as (see simuPhi.m)

ϕj(a) =



0 if a < aj−1

a− aj−1
aj − aj−1

if aj−1 ≤ a < aj

aj+1 − a
aj+1 − aj

if aj ≤ a < aj+1

0 if aj+1 ≤ a

(7.5)

Equations 7.1 and 7.4 lead to

Q(ω) =

∫ ahg

alw

K(a, ω)

M∑
j=1

n(aj)ϕj(a)da

=
M∑
j=1

n(aj)

∫ ahg

alw

K(a, ω)ϕj(a)da

(7.6)

7.2 Matrix-form writing

For a given number of pulsations nbF , we have ωi, i ∈ [[1, nbF ]] and equation 7.6 can be
written in matrix form:

Q = Γ× n (7.7)

where

Q =
[
Q(ωi)

]
i,1

Γ =

[∫ ahg

alw

K(a, ωi)ϕj(a)da

]
i,j

n =
[
n(aj)

]
j,1

(7.8)

One must not overlook that equation 7.7 is actually a set of 2 equations, dealing respectively
with Q1,K1 and Q2,K2. [11] states that using the second kernel leads to better results than
using the first one. However, this discrimination is not used in the simulation.
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7.3 Problem inversion

Equation 7.7 should now be inverted. As stated previously, two inversions can take place,
relating to the two kernels. In [11] is proposed constrained inversion, especially with Tikhonov
method. Different methods are tested in simulationScript.m. This script works as follow:

1. Simulation of a distribution n(a) over radius range [alw, ahg] (mainly sum of normal dis-
tribution, but this can be changed in simuDistrib.m). The script also allows to control
the adequation between the radius range and the set of frequencies.

2. Simulated u and v from the distribution and the chosen set of frequencies, pure or with
noise/offset (see simuDisp.m).

3. Calculations of Q1 and Q2 from u and v.

4. Calculation of hat functions ϕj (see simuPhi.m), kernels K1 and K2 (see simuKernel.m)
and integrated discretized kernel (see simuKPhi.m).

5. Different inversion processes (see below), in order to output two solutions for n, relatively
to K1 and K2.

6. Along the script, most of the simulated and calculated values can be plotted, and step-
controls are written on the way.

The different methods used to invert the problem are enumerated below. The explanations
only give a rough idea of how behave the method, and strongly depends on the noise level, the
simulation etc. These methods give n from both kernels, as well as their mean value, so that 3
solutions are available. Smoothing function (5-points moving average) can be applied to reduce
oscillations: usually, it deteriorates the solutions for non-noisy data, but increases the quality
for oscillating solutions.

PSINVM Pseudo-inverse method, based on built-in Matlab function pinv. No constraint, the cal-
culation is simply n = Γ† ×Q, where † denotes the Moore-Penrose pseudo-inverse, and
the negative values are replaced by zero. It seems that this method gives usable results
when 2 × nbF < M < 3 × nbF . Below, the inversion is totally inaccurate. Above, the
solution starts to overfit. The accuracy of the solution strongly depends on the simulated
distribution.

NNLSM Non-negative least-square method. The only constraint is the non-negativity of the solu-
tion. Based on the built-in Matlab function lsqnonneg. It gives rather good result for
pure u and v up to M = 1.5 × nbF , then starts to overfit and oscillate. For noisy data,
the inversion deteriorates fast for M > 0.5 × nbF . For these values of M , it seems that
the method is robust to offset.

LSQLIN Based on built-in function lsqlin, this method allows to constrain the solution as pro-
posed in [11, p. 2705]. More generally, and according to Matlab documentation, this
function solves least-squares curve fitting problems of the form

min
x

1

2
||C · x− d||22 such that

{
A · x ≤ b and A′ · x = b′ and lb ≤ x ≤ ub

}
Even though the function itself accepts a reduced number of input argument, it seems in
our case that a usable value can be obtained only with correct bounds lb ≤ x ≤ ub. For
instance, using simply 0 ≤ x ≤ ∞ gives inaccurate results, with or without noise.
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TRM Tikhonov regularization based method. Function tikhonov comes from [12], and its oper-
ation is described in the associated documentation. The different constraints are included
in a regularization parameter λ that must be supplied to the function. That being said,
determining this parameter is rather tough: the proposed method is then experimental
testing by means of the simulation script. It must be underlined that a function version
of simulationScript.m is written under simuInversion.m, intended to be used together
with simulationIter.m in order to experimentally tune the regularization parameter. In
our case, for a parameter around 10−13 and without noise, the solutions perfectly fit the
simulated distribution on a range 0.3 × nbF < M < 10 × nbF (bigger values have not
been tested). The solutions are less accurate for noisy data (oscillations), but smoothing
allows to get really acceptable results for 1.25 × nbF < M < 2.5 × nbF . The methods
seems quite robust to offset without noise, but shows troubles dealing with noise and offset
simultaneously.

One must notice:

• M and nbF parities play a part in the accuracy of proposed solution for every method.
I think (and this is only feelings) that, from a numerical point of view, some couples
(M,nbF ) will work better than others, maybe due to prime number or divisibility issues.

• To get an accurate behaviors of the method, many different distributions should be tested.
Even though the Matlab implementation of such a thing is easy, the calculation time
increases rapidly.

• The simulation clearly shows that reducing the noise with multiple measurements leads
to better inversions.

Other observations are made in the next chapter, illustrated for a specific set of frequencies.
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Chapter 8

Case study: [20-90] kHz
measurement band

In this chapter is specifically studied the inversion process for available data from [20-90] kHz
measurements. It is based on the frequencies of the transducers used in [1]. It allows to point
out both general and specific observations about the inversion process.

8.1 Shape of Q1 and Q2

Experimentally, the inversion turns out well if Q1 and Q2 over frequency present specific
shapes, shown in figure 8.1, and that these shapes are described by enough points.

Both the shape and the amplitude of Q1, Q2 are of importance in inversion. Figure 8.2 shows
the evolution of amplitude for different void fraction (the bubble size distribution is a normal
distribution centered on 90 µm with 10 µm of standard deviation and an amplitude between 1010

and 1013 m−4). The shapes stay the same but the amplitudes increase with the void fraction.

Figure 8.1: Specific shapes of Q1 and Q2 (mind the y-axes)
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Figure 8.2: Specific shapes of Q1 and Q2 (mind the y-axes) for different values of qv

8.2 Frequency and radius

The harmony between the frequency band and the working radius range is important, since
one will not be able to inverse the problem for any radius range from a specific frequency band.
This harmony seems to strongly depends on the resonance frequency defined in equation 5.13.
Figures 8.3 and 8.4 show the kernels K1 and K2 for frequencies between 20 kHz and 90 kHz,
along a large radius range. Three parts (roughly) can be distinguished:

1. Below 30 µm. For all the considered frequencies, K1 and K2 are flat and almost zero.
If the distribution is concentrated in this area, the shape for Q presented in section 8.1
is shown figure 8.7. The characteristic shape is not fully described, which lead to poor
inversion.

2. Between 30 µm and 0.3 mm. K1 and K2 are variating there, around their resonance
radius aR, and at least one frequency always differs from the others. Figures 8.5 and 8.6
show the kernel plotted on this specific part. The legends are removed for readability, and
more frequencies are plotted. Working in this range makes the shape of Q1 and Q2 quite
centered in the frequency band and fully described: it looks like the best option for an
accurate inversion.

3. Above 0.3 mm. Smooth variations, the patterns are the same. If the distribution n is
concentrated there, the shapes of Q1 and Q2 are crushed on the left of the frequency band:
badly described, it leads to poor inversion.

Back to section 8.1 and equation 7.1, it can be seen that Q is defined by integrating the
product K×n over radius. Now, for increasing radius and decreasing frequency, the amplitudes
of the peaks increase for both K1 and K2. For a given frequency, a small amount of large
bubbles has then the same or even a stronger effect than a large amount of little bubbles.

One must notice that no experiment has been carried out by SiPLAB to confirm or disprove
the previous theory. More, as stated in section 6, this theory must be considered cautiously
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around the resonance radius of the bubbles, and this resonance neighborhood is de facto of a
major significance in the inversion. This theory limit can easily be seen when plotting u for large
bubbles: for instance, a modal distribution centered on 160 µm for a void fraction qv = 8.7 ·10−5

theoretically leads to u(30.8 kHz) = 8.78, which seems absolutely impossible.

Figure 8.3: Kernel K1 for a large radius range

8.3 Inversion processes

It is right now difficult to extract precise results about inverse solutions quality, especially
because it depends on the simulated distribution, the void fraction qv, the parameter M , the
number of frequencies nbF or the different inversion parameters (λ for Tikhonov regularization,
bounds for constraints least-squares...). However, from a certain number of iterations, it seems
that Tikhonov regularization method (TRM) gives the best results. For this reason, tuning the
parameter λ is of importance. As stated in section 7.3, the theoretical way (developed in [13])
to choose this parameter is difficult to understand (= I did not succeed), so an iterative method
is used to do so.

Figure 8.9 shows 3 sets of simulated distribution used to tune λ. They are chosen so that

Figure 8.4: Kernel K2 for a large radius range
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Figure 8.5: Kernel K1 for a radius range centered on the resonating radius, for f = [20−90] kHz

Figure 8.6: Kernel K2 for a radius range centered on the resonating radius, for f = [20−90] kHz

Figure 8.7: Q1 and Q2 shapes for a normal distribution centered on 30 µm
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Figure 8.8: Q1 and Q2 shapes for a normal distribution centered on 140 µm

qv ≈ 2.5·10−6. They are normal distributions of standard deviation 10 µm, centered respectively
on 60, 90 and 120 µm, with amplitudes of 100 · 109, 35 · 109 and 13 · 109 m−4. These sets are
then inversed with TRM for different values of M and λ. As stated earlier, two solutions are
available every time, based on the two kernels K1 and K2 (the mean results is not used in this
case).

To summarize the results quality, Pearson correlation coefficients ρ are used. These coeffi-
cients have a strong limitation, since they only characterize the correlation between the solutions
and the simulated distribution. The amplitude of the solution does not appear in the coefficient.
In our specific case of Tikhonov inversion, no amplitude difference could be seen, but for another
process, the calculation of the amplitudes ratio inversed solution/simulated distribution is of
importance.

Figures 8.10, 8.11 and 8.12 show the evolution of correlation coefficient ρ for the three distri-
butions, the two kernels processes, without noise and offset, for 40 frequencies and λ between
10−15 and 10−10. It can be seen that whichever M is used between 0.5 × nbF and 2 × nbF , λ
between 10−15 and 10−13 leads to good inversion. Of course, a smaller step for λ can be chosen
for a finer tuning.

Figure 8.9: Set of distributions for inversion
The 3 distributions lead to qv ≈ 2.5 · 10−6
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Figure 8.10: Correlation coefficients ρ over M for distribution of case 1

Figure 8.11: Correlation coefficients ρ over M for distribution of case 2

Figure 8.12: Correlation coefficients ρ over M for distribution of case 3
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Figure 8.13: Correlation coefficients ρ over M for distribution of case 1, with noise

Figure 8.14: Correlation coefficients ρ over M for distribution of case 2, with noise

Figures 8.13, 8.14 and 8.15 show the evolution of correlation coefficient ρ for the three dis-
tributions, the two kernels processes, without offset but with noise, for 40 frequencies and λ
between 10−15 and 10−10. Since the noise is added “randomly” in the simulation script (normal
noise up to 1% on u and and up to 20% on v), 100 iterations are operated, and the ρ values
are averaged. The results are given for what they are worth, since 100 iterations are not proved
to be better than twice or ten times more. Furthermore, the time needed to run these simula-
tions is roughly 80 minutes each, which is long enough. Further simulations can be runned if
necessary. Assuming the following results make sense, it allows anyway to observe some points:

• The couple (nbF,M) has a strong influence on the solution accuracy. In particular, the
parity of M for kernel 2 inversion, case 2, for λ = 10−14 or 10−15 plays as strong part in
the correlation coefficient.

• The best results are obtained for λ around 10−12. The simulation could be done again
with a smaller step on λ to get a more precise value. One can also notices that choosing
λ in this situation would be a trade off between the three cases 1, 2 and 3.

• A limit for M appears in cases 2 and 3 for K2 inversion method.
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Figure 8.15: Correlation coefficients ρ over M for distribution of case 3, with noise
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Conclusion on low frequency
methods

In this part has been developed the theory related to attenuation and sound speed modifica-
tion of acoustic wave by bubbly medium, and its use as a tool to access the bubble population
according to bubble size and void fraction.

Even though this inversion theory is well explained in paper and correctly implemented by
simulation, experiments must be carried out in order to confirm or disprove the feasibility and
accuracy of such a method. In particular, the high values of sound speed predicted by the theory
seems rather unrealistic. The experimental setup, as well as the raw data (u and v) processing
needs to be taken care of. One should go through [1] and [11] for this purpose.

Another limitations of this method lies on the available frequencies: the bubbles radius range
is not known yet, and the current devices available for the experiment are limited between
20 and 90 kHz, which lead to a radius range between 30 µm to 0.3 mm maximum, while an
experiment conducted by our biologists teammates show bubbles that were visible to the naked
eye. For the moment, nothing proves that such big bubbles can lead to usable inversion with
this set of frequencies.

No inverse solutions are plotted in this document, since they highly depend on the distribu-
tion, the couple nbF,M , the set of frequencies, the noise, the offset and the methods used to
inverse the problem, and so the usefulness of such plots would be only aesthetic. It is strongly
recommended to play with simulationScript.m as the same time as reading the current report
in order to fully understand all the above.
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Part III

Appendix, notations, Matlab files
and bibliography
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Appendix

Mathematical justification of the integration

This section aims to justify the following equivalence:

R+L
2∫

ρ=R−L
2

1

ρ4
ρ2dρ ∼

R�L
2

1

R4

R+L
2∫

ρ=R−L
2

ρ2dρ (8.1)

Let be, for better visibility, L
2 = h. For the left part of equation 8.1 we have:

R+h∫
ρ=R−h

1

ρ2
dρ =

1

R− h
− 1

R+ h

=
2h

R2 − h2

=
1

R2

2h

1− ( hR)
2

∼
R�h

2h

R2

(8.2)

And for the right part of equation 8.1 we have:

1

R4

R+h∫
ρ=R−h

ρ2dρ =
1

3R4

(
(R+ h)3 − (R− h)3

)

=
1

3R4

(
2h3 + 6R2h

)
=

2h

R2

(
1

3
(
h

R
)
2

+ 1

)

∼
R�h

2h

R2

(8.3)
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Equations 8.2 and 8.3 justify the integration method in section 1.1. This equivalence has also
been verified with Matlab.

Equations proposed by AQUAtec and near-range correction

The AQUAtec device follows equations for calibration and inversion method provided by [14],
in particular equation 8.4:

Vrms =
KsKt

√
M

Rξ
e−Rα

′
(8.4)

where Vrms is the backscattered signal, Ks contains the sediment backscattering properties,
M is the sediment concentration, ξ is the near-field correction and Kt is the system constant,
taking into account the characteristics of the device. The near field correction factor ξ is
calculated as shown in equations 8.7 and 8.8, according to [8] or AQUAtec respectively. In both
equations are used the parameters Rn and Z, defined in equations 8.5 and 8.6. The ξ factor is
plotted in figure 8.16 with both approaches from [8] and AQUAtec as a function of Z.

Rn =
πA2

t

λ
(8.5)

Z =
R

Rn
(8.6)

According to [8]: ξ =
1 + 1.35Z + (2.5Z)3.2

1.35Z + (2.5Z)3.2
(8.7)

According to AQUAtec: ξ =


1 if Z > 2

1

3
(2 +

2

Z
) if Z < 2

(8.8)

Equation 8.4 is actually equivalent to equation 1.30 (both are from the propagation equation).
The squared version of equation 8.4 is

V 2
rms =

K2
sK

2
tM

(Rξ)2
e−2Rα

′
(8.9)

with V 2
rms equivalent to v2r , M equivalent to Mv,

1
(Rξ)2

the spherical propagation and e−2Rα
′

the range dependent attenuation equivalent to 10−
2α(R−R0)

10 (please note α and α′ coefficients
are different).
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Figure 8.16: Near range factor ξ from AQUAtec and from [8]
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Notations

Symbol Unit Description

α dB m−1 Total attenuation coefficient

αw dB m−1 Attenuation coefficient from water

αb dB m−1 Attenuation coefficient from bubbly medium ([2])

∆σBS m2 Differential cross-section

δ / Total damping constant

δr / Scattering damping constant

δt / Thermal damping constant

δv / Viscous damping constant

δtv / (Notations) δt + δv

Γ m4 rad−2 Matrix of integrated discretized kernel

ω rad s−1 Pulsation

λ / Tikhonov regularization parameter

ωR rad s−1 Resonance pulsation

φ rad Azimuth (polar coordinates)

ρ / Pearson correlation coefficient

ϕ / Hat function

ψBP sr Ideal beam pattern

ψ sr Integrated beam pattern according to [2]

σBS m2 Backscattering cross-section

σe m2 Extinction cross-section

τ s Profile length

Θ ◦C Water temperature

θ rad Elevation (polar coordinates)

θmx rad Opening angle, define the insonified volume

ξ / Near field correction

a m Bubble radius

aR m Bubble resonance radius

alw, ahg m Bubbles radius limits (to frame the range)

att dB Total attenuation from water and bubbly medium

At m Transducer radius

Bt m−2 Attenuation from bubbly medium
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Symbol Unit Description

c m s−1 Free bubble water sound speed

cm m s−1 Complex sound speed

C2
0 V2 m3 Device constant defined as C2

0 = v2sH
2
sr
R2

0
4πψL

Dt / Source directivity

Dr / Receiver directivity

d3V m3 Spherical elementary volume

E(x) [x]2 Energy of signal x

f Hz Frequency

fR Hz Resonance frequency

fprof Hz Profile rate (device)

Gs Pa V−1 Voltage to pressure gain of the source

Hsr / Product of gains Gs and Kr

hw m Water height (from tank bottom)

Is W Incident sound wave intensity

J1 / First order first kind Bessel function

k m−1 Wave number

km m−1 Complex wave number

Kr V Pa−1 Pressure to voltage gain of the receiver

K m3 rad−2 Kernel function

K1 m3 rad−2 Kernel function, real part

K2 m3 rad−2 Kernel function, imaginary part

L mm Bin size or resolution

|Ls| m Bacskcattering length

Mv m−1 Backscattering cross-section per unit volume

M / Number of points for the interpolation of N

mprof / Number of stored profiles (device)

m(a) / Number of bubbles of radius a

n(a) m−3 or m−4 Number of bubbles of radius a per unit volume

nbF / Number of frequencies

n m−3 or m−4 Matrix of bubble population for specific radius aj

N / Number of bins (device)

N0 / Start bin (device)

NL / Number of bins (device)

P0 Pa Reference pressure from the source at R0

P1, P2 Pa Pressure recorded at receivers 1 and 2 (section 6)

Ps Pa Incident pressure from the source

Pscat Pa Scattered pressure

Pr Pa Pressure received by the transducer

dPr Pa Elementary pressure received by the transducer

qv / Void fraction
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Symbol Unit Description

Q rad−2 Integrated population-weighted kernel

Q1 rad−2 Real integrated population-weighted kernel

Q2 rad−2 Imaginary integrated population-weighted kernel

Q rad−2 Matrix of Q1 or Q2

R m Range

r m Range (polar coordinates)

R0 m Reference range for the pressure

R1, R2 m ranges of receivers 1 and 2 (section 6)

Rref m Reference range for the calibration

Rmax m Maximum range (from transducers)

Rmin m Minimum range (from transducers)

∆Reff m Effective measured range

RdBx dB Gain relative to default(device)

RL dB Receiver level (sonar equation)

SL dB Source level (sonar equation)

Se m−1 Extinction cross-section per unit volum

SNR / Signal to noise ratio

Tburst s Burst length (device)

Tint s Burst interval (device)

T dBx dB Transmit power (device)

TL dB Transmission losses (sonar equation)

TS dB Target strength (sonar equation)

VG m3 Volume defined as 1
3

(
(R+ L

2 )3 − (R− L
2 )3
)

Vins m3 Insonified volume (usually defined at range R)

Vbubbles m3 Total volume of bubbles

vs V Input voltage transducer

vr V Output voltage transducer

z m Depth from water surface

(x)dB dB Refers to decibel version of object (x)

(x)ref [x] Refers to reference experiment for calibration

||(x)|| [x] Refers to amplitude of object (x)

(x)|bubbles, (x)|fresh [x] Refer to presence or absence of bubbles

(X)† / Refers to Moore-Penrose pseudo-inverse of matrix X
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Matlab files

Scripts

Name Description In the report

ABSinversion.m This script processes the ABS raw data
from long-time experiment (for this re-
port, 2016, July 26 experiment) and try
to invert the problem.

Section 5.2

attenuationScript.m Calculations and plots of attenuation
and sound speed according to [5]

Equation 6.5

calibration150218.m This script processes the ABS data
from the first calibration experiment
(2018,February 15)

Chapter 4

crossSectionCalc.m Calculations and plots of cross-sections
σBS and σe according to [2], [9] and [10]

Figures of chapter 5

cyclesNumber.m Automate the calculation of maximum
number of cycles for the low-frequency
setup presented in [1]. Not used in this
report, but allows to save time when
preparing the experiment.

/

directivity.m Computes and plots the device directiv-
ity and the values of θmx

Chapter 2 and table 1.1

exportConvertABS.m To convert ABS data from *.aqa to
*.mat. Used if AQUAtec toolkit
does not work. Based on function
ReadAquaScat1000.m

Chapter 3

misc calculations.m Miscellaneous calculations: near range
modification factor, resonance radius
and water attenuation coefficient.

Figurea 1.4, 3.6 and 8.16

plotData 2D.m To plot ABS data from ’one-shot’ exper-
iment, i.e with no time-continuity (e.g
calibration). It has not been used for
this work.

/
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Name Description In the report

plotData 3D.m To plot ABS data from ’time-
continuous’ experiment. It has been
essentially used to plot data from
experiment of 2016, July 26.

Figures 3.1 to 3.4

simulationIter.m This script calls function
simuInversion.m in loops, in or-
der to tune Tikhonov parameter
λ

Figures 8.13 to 8.15

simulationScript.m Simulation of the low-frequency theory
presented in [11]. It creates a bubbles
distribution, simulates the experimen-
tal data and use different processes to
invert the problem.

Chapters 7 and 8

Functions

The informations in column Associated script(s) are non-exhaustive.

Name Description Associated script(s)

attenuationFctCP.m Compute attenuation terms due to
bubbly medium from different theories.

attenuationScript.m
attenuationFctMC.m

crossSectionAinslie.m
These functions compute cross-sections
according to different theories

crossSectionCalc.mcrossSectionMedwin.m

crossSectionStanton.m

DampingCste.m Computes damping constants
δ, δr, δv, δt according to [2]

crossSectionCalc.m

Directiv.m Computes ABS directivity Dt accord-
ing to [2]

directivity.m

InitialAttenuation.m (ABS data) Computes attenuation
term @ surface range, taking the whole
working range into account.

ABSinversion.m

InsonifiedVolume.m Computes ABS insonified volume Vins
according to equation 1.25

ABSinversion.m

IntBeamPatt.m Computes ABS integrated beam pat-
tern ψ according to equation 2.2

ABSinversion.m

loadABS Data.m Loads and adapts ABS data for a long
time experiment. Unadapted for cali-
bration experiment

Many

loadAquatecData.m Loads the usual characteristics of
AQUAtec backscattering device (ABS)

Many
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Name Description Associated script(s)

RangeFiltering.m (ABS data) Applies a median filter on
the proposed signal along range (see
function TimeFiltering.m)

ABSinversion.m

ReadAquaScat1000.m AQUAtec function, slightly adapted, to
convert ABS data from *.aqa to *.mat.

exportConvertABS.m

RemoveAboveSurface.m (ABS data) Clears signal above surface
range.

ABSinversion.m

resoFreq.m Computes resonance frequency (resp.
radius) for a given radius (resp.
frequency) (equation 5.13)

ManyresoRadius.m

SeparateMvAtt.m (ABS data) Iterative process to
extract Mv and 10−2·att from the dataSeparateMvAtt2.m

ABSinversion.m

simuDisp.m Calculates the values u and v from [5] simulationScript.m

simuDistrib.m Creates an artificial set of bubbles dis-
tribution n

simulationScript.m

simuInterp.m This function interpolate a given set of
points with hat functions

simulationScript.m

simuInversion.m To tune Tikhonov parameter λ (Func-
tion version of simulationScript.m)

simulationIter.m

simuKernel.m Computes the kernel complex function
K

simulationIter.m

simuKPhi.m Computes the integrated product∫
aK ϕ (see equation 7.6)

simulationIter.m

simuPhi.m Computes the hat functions ϕ (see
equation 7.5)

simulationIter.m

SurfaceRangeIndex.m (ABS data) Finds surface range index ABSinversion.m

TimeFiltering.m (ABS data) Applies a median filter on
the proposed signal along time (see
function RangeFiltering.m)

ABSinversion.m

VolumeG.m Computes volume VG according to
equation 1.11

ABSinversion.m

Xi.m Near range factor from [8] and [4]
respectively

misc calculations.m
XiAquatec.m

Data

Name Description In the report

aqABS chara.mat Contains characteristics of ABS provided by AQUAtec.
Loaded by loadAquatecData.m

Table 3.1
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