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ABSTRACT 
 
Model-based correlators are in nowdays widely used in disciplines such as 
communications and underwater acoustics. These class of methods generally make strong 
assumptions on the data underlying physical model and develop dedicated processors that 
fully exploit the model structure. When the assumed model is a good description of the 
data, these methods achieve very high quality results since, in the mismatch free case, they 
are optimal for the single signal in white noise scenario. However, in presence of model 
mismatch this result is degraded. This paper presents a theoretical study that addresses the 
optimality of model-based correlators when compared with straight correlators in a model 
mismatch situation. It is shown that model-based correlators can sufer severe degradation 
in relatively mild mismatch scenarios and - more importantly - in that case model-based 
correlators are outperformed by simple signal correlators. The theory is supported by a few 
realistic examples drawn from underwater acoustics. 
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1. INTRODUCTION 
 

In the early days of signal processing, reasoning and methodologies were 
essentially information based. Most of the methods were based on assumed statistical 
properties of the data, like for instance, signal coherence, decorrelation between signal and 
noise, noise distribution, etc...These methods were generally called as 'data driven' 
methods. In order to give an example, let's say that the signal x(t) was observed through 
the equation 
 
                                                    y(t) = x(t) + n(t)                                                          (1)  
 
where n(t) is an additive noise. At this point one would normally make use of a priori 
knowledge to assume whether the signal x(t) is deterministic or stochastic, broadband or 
narrowband and, in case, assume its bandwidth and the usual statistical properties on the 
noise process like uncorrelation with the signal and eventually its distribution. These 
assumptions were suficient to derive methods for estimation, filtering or detection 
depending on the objective sought. The work done by well known names like Wiener [1], 
Shannon [2] and Bartlett [3], to cite only a few, in time series analysis are in nowadays part 
of most text books. In the 60s a new idea, based on the parametric representation of the 
signal part of the data model, was introduced. The basics of this approach steam from the 
representation of the signal as a generic model depending on a number of abstract 
parameters. Well known and widely used models are for example auto-regressive (AR), 
auto-regressive moving-average (ARMA) and weighted sum of exponentials. The problem 
of signal estimation is transformed into the problem of estimating the parameters of the 
parametric model. The works of Capon [5] and Burg [6] in spectrum estimation and that of 
Kalman and Bucy in optimal estimation from time series are well known. The underlying 
ideia is that those methods would have a superior performance than previous plain time 
series analysis by restricting the signal search space to that space defined by a given model 
structure. In other words, intuitively is easier to search for a signal belonging to a class 
representable by a given model than for a signal of any kind. 
 

In this context, the methods based on subspace decomposition - noise and signal 
subspace -play a mixed role, since they allow for restricting the search space by confining 
the signal to a reduced class, without explicitely introducing any parametric model. We 
would consider these methods in the class of 'data-driven' methods even if they only 
appeared in the 70s with the parallel work of Bienvenu [7] and Schmidt [8], without 
forgetting the percursor work of Prony [9] and Pisarenko[10]. More recently, in the 80s, 
and possibly due to the easy access to computers with high computing power, appeared the 
methods based on physical models of the signal. Thus, with these models, the signal is no 
longer described by parametric models with abstract parameters but instead they can be 
directly linked to models with parameters having a physical meaning. Signal x(t) in 
equation 1 becomes the output of a system represented by a set of differential equations 
that describe the modifications of the input signal between the emitting location and the 
point of observation. Finding this set of differential equations generally depends on a 
process of numerical integration of some kind of wave equation in the media of 
propagation with the respective boundary conditions. These are the so called 'model-based' 
methods. Compared with the parametric models the model-based methods are more 
restrictive and therefore supposed to yield, in principle, better results. Another reason why 
the 'model-based' methods are supposed to yield better results is that they include a higher 
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amount of a priori information. The question that is the focus of this paper is to determine 
whether and, in case, in which conditions do the 'model-based' methods perform better 
than classical methods. This question will be answered first with a theoretical study and 
then with some simulated examples drawn from realistic cases in shallow water 
underwater acoustics. 
 
2. THEORETICAL BACKGROUND 
 

Equation 1 is a representation of the observation of signal x(t) in presence of an 
additive noise n(t). The inclusion of the physical model concept steams from the idea of 
considering that x(t) is the output of an linear system, thus one can write 
 

x(t; r) = g(t; r) * s(t)                  (2) 
 
where g(t, r) is the impulse response of the system characterized, in this case, by the 
ensemble of parameters jointly represented under the form of vector r, and where s(t) is the 
emitted signal or the system input. There are a number of hypothesis that can be made 
regarding the quantities in 2. First, the input signal s(t) maybe considered either 
deterministic or stochastic and in the later it can be considered as correlated or uncorrelated 
with the observation noise n(t) of 1. Similarly, even if the system function g(t; r) is 
generally assumed as deterministic it may depend on a parameter vector r that itself maybe 
deterministic or stochastic with a known or partially known or even completely unknown 
statistical distribution. In general, whether depending on s(t) or r, the signal x(t) is 
considered of random nature. Based on practical grounds it makes in general sense to 
consider that the signal x(t) and the noise n(t) to be statistically uncorrelated. 
 

Let us point out that the fact of considering a physical dependence for x(t), not only 
may allow for a better estimation/detection of the signal x(t) itself, but also opens up the 
possibility for identifying physical parameters of the environment of propagation between 
the emitter and the receiver. That fact, completely changes the interest of the approach in 
other fields such as ocean and biomedical tomography, environmental monitoring, 
geoacoustic exploration, etc...Therefore 'model-based' methods may lead to one of two 
main objectives: estimating the source signal - generally called deconvolution - that we 
will not follow here, or identifying g(t; r) or r also termed as channel identification. This 
double problem may be analized through a unique approach from a generalized notion of 
matched-filter (MF) that in that case takes the name of generalized matched-filter (GMF). 
 
 
2.1. The generalized matched-filter 
 

Let 
 
                          x(t; r) = g(t; r) *s(t);                        (3) 
 
and 
 
                                               y(t; r) = x(t; r) + n(t);                                                        (4) 
 
be the model equations for the signal and the  observation,  respectively.  In this model, 
onewants to estimate x(t; r) conditioned in the function g(t; .) and in the parameter vector. 
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 This is a classical problem in signal theory, which most celebrated solution is given 
by the Wiener filter [1], that minimizes the mean square error between the filtered signal 
plus noise and the expected signal. That is equivalent to the minimization of the noise 
power at the output of the filter or even - equivalentely - the maximization of the signal to 
noise ratio (SNR). Such a filter is well known to be the matched-filter. Its derivation is 
shown in almost every textbook in signal theory. We will follow here the approximation of 
Davenport [4] with the generalization that takes into account the dependence on the 
parameter vector r. 
 

The problem can be stated as to determine the filter h(t; r) given by  
 

 
 
such that the ratio between the signal energy and the mean energy of the noise (SNR), 
defined as 
 

 
 
is maximum. Replacing 3 and 4 in 5 gives 
 

 
 
where  H(ω; r), G(ω; r)  and S(ω)  are  the  Fourier  Transforms  (FT) of h(t; r), g(t; r) and  
the signal s(t) respectively. We can  also write, using  some  basic  properties of the 
correlation function, that the mean energy of the noise at the filter output is 
 

 
 

where is the autocorrelation function of the filtered noise no(t) and Pnn(ω) is the 
power spectral density of the noise n(t) at the input of the filter. Replacing now 7 and 8 in 6 
and reducing the integration interval to the portion of the spectra of interest ω∈  Ω, gives 
 

 
It can be shown (appendix A) that the maximum of the output SNR, equation 9, is 

attained. When 
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where H0 is a  constant of proportionality and τ represents  an  arbitrary  phase shift. The 
maximum attainable SNR is obviously given by replacing 10 in 9 and by searching for the 
value of t that maximizes the correlation on the numerator, giving 
  

 
Starting from the expression of the generalized matched-filter (GMF), equation 10, 

a number of estimators can be derived depending if one wants to determine the channel 
response g(t;r), or the parameter vector r, or the emitted signal s(t), conditioning each case 
in the a priori knowledge of the others. In all cases it is assumed that the power spectral 
density of the noise Pnn(ω), is known or can be estimated. In practice the observation noise 
is often considered to be white and of zero mean, which, as will be seen in the sequel, will 
signi_cantly simplify the expressions of the performance of the GMF. 
 
 
2.2. Performance of the generalized matched-fillter 
 

In order to allow a simpler analysis of the performance of the GMF, the SNR 
relation 9 may be written as a function of the correlation product and its maximum 
attainable value 
 

 
 
where the filter H(ω; r) was replaced by its estimate  Ĥ (ω; r), 
 

 
In this expression the estimator  Ĥ , of H, was introduced as dependent on the 

estimator G of G conditioned in vector r. However, we could as well have written ˆ Ĥ  as a 
function of the model G(ω; rr ), now as a function of the estimator r̂  of r, conditioned on 
function G, 
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In other words, equation 13 can be viewed as an estimator, maximizing SNR (or 
minimizing the mean least square error [1]), of r as well as of G, depending on the problem 
at hand. Multiplying and dividing 12 by ρmax(r) we get 
  

 
with 

 

 
 
that is  nothing  else  than  the  normalized ratio  of  the  correlation  between  the  
estimator (ω; r) and its true value G(ω; r). In that case we have that 0 ≤ Λ(t; r) ≤ 1. In 
order to make it clear let us present a few examples and some particular and common 
cases. 

Ĝ

 
2.2.1 The white noise case 
 

In the case that the observation noise allows for a correlation function of the type 

 
we have Pnn(ω) = N0/2 and the maximum of the attainable SNR is 

 
where cx is the energy of the signal x(t) given by 

 
In this simple case the ratio  Λ is 

 

 
 
without loss of generality the observation noise will be considered white in the sequel. 
 
2.2.2 Signal with a flat spectrum 
 



Selected Topics of the New Acoustics                                                                                         139 

Another case that often arises in practice is when the emitted signal s(t) has a flat 
spectrum within the bandwidth of interest, i.e., 
 

 
 

In this case we have that 
 

 
 
 
2.2.3 Optimal filter 
 

The optimal filter is obtained when the channel is completely known or can be 
perfectly estimated. In that case 
 

  
 
and therefore Λ(t; r) = 1 and 
 

  
 

Therefore we can say that the optimal filter is the one that reaches the maximum 
attainable output SNR, and that filter is the GMF or the model-based matched filter. Note 
that assumption 23 (inserted in 16 or 20) does not imply equality for all values of ω but 
only that the impulse response of the channel should be known up to an arbitrary coeficient 
(≠ 0) in amplitude H0 and a phase delay τ 
 
2.3. Matched-filter (MF) 
 

On the other hand if the channel impulse response is completely unknown we have 

that  and in that case,  
 

 
 
 
where α(r) represents the maximum of the correlation function Λ when (ω; r) = 1, Ĝ
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In this case we obtain the well known conventional matched-filter or simply 
matche-filter (MF), that has only into account the emitted signal s(t) and not the impulse 
response of the channel g(tr), i.e., 
  

 
 
2.4. Relative performance GMF vs MF 
 
In the more frequent intermediate case when the channel impulse response is partially 
known, the degree of similarity between the estimated impulse response and the true 
impulse response is given by  
 

 
 
On the other hand, the reduction of the output SNR is due to the time spreading of the 
signal energy and can be quantified   by  the  value of α(r) ≤1. Thus, the gain oferred by the 
model-based processor relative to the matched-filter can be quantified by the ratio 
 

 
 
 
 
3. SIMULATION RESULTS 
 

A typical area of application of estimation   theory is underwater acoustic signal 
processing. This section gives a number of examples drawn from realistic cases to 
illustrate the theoretical assessment made in the previous section. Let us consider the case 
of a multitone signal with 50 frequencies between 50 and 150 Hz every 2 Hz. The signal is 
transmitted in a 135 m depth waveguide with a slightly downward refracting sound speed 
profile (table I) over a sandy bottom characterized by a 1750 m/s sound speed, a density of 
1.9 g/cm3 and a compressional attenuation of 0.8 dB/λ, (figure 1). 
 



Selected Topics of the New Acoustics                                                                                         141 

 
 

Figure 1. Environmental scenario used for simulation 
 

The source was located at 92 m depth and the receiver was located at 115 m depth. 
Source-receiver range was variable between 0 and 5 km. Figure 2 shows the results 
obtained for ratios Λ (eq.16), α (eq.26) and GMF/MF performance (eq.28) in case of a 
water depth mismatch of 1 m. This means that the difference between G and G was 
created by an environmental diference of water depth of 1/135 < 1%. What can be 
observed in this figure is that the normalized correlation ratio is close to 1 for ranges up to, 
say 1 km, and then slowly decreases for larger distances. Signal dispersion coeficient α 
strongly oscillates at all ranges. The net result of the ratio between the two gives a gain 
curve that is well above one for ranges ≤ 2 km. For ranges between 2 and 5 km, the gain of 
GMF over MF is not always above one and sometimes is well below for some quite large 
range intervals. 

ˆ

 
Table 1. Sound speed profile used in the simulartion example 

 
The next test is  an  extension  of the  precedent  one  for a two dimensional 

parameter with source range and  depth, r = (z; r). Therefore Λ, α and the GMF/MF gain 
are now ambiguity surfaces showed in figure 3. It can be observed that the variation with 
depth is small compared to the previous case, i.e., high correlation at short range with some 
gain of the GMF over the MF processor while after, say 2.5 km, the gain actually drops 
well below one with the conventional MF processor performing better than the GMF. 
 

In a third example, we address  a different case which is  geoacoustic inversion 
problem: we want to estimate, for example, the compressional  velocity csec in the 
sediment layer, while knowing the source position with a small error in depth of 5m. The 
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three ambiguity surfaces are shown in figure 4 for Λ, α and GMF/MF gain as a function of 
sediment C-speed versus source range. Here the behaviour is quite different since 
decorrelation does not nearly monotonically decrease with source-receiver range but 
oscillates beetween low and high values, even at long ranges, giving rise to some high 
GMF/MF gains (up to 8) at ranges of 4.5 km. 

 

 
 

Figure 2. Water depth mismatch of 1m: quantities Λ, α and GMF/MF ratio versus source-receiver range 
 
 
4. CONCLUSION 
 

Easy and inexpensive access to computational means have lead, in the last 10 - 15 
years, to a ever increasing usage of physical models in signal processing. These methods - 
so called model-based methods - make fully coherent use of a priori information about the 
physical process andenvironment of signal transmission to retrieve the maximum amount 
of information about boththe emitting source and the transmission channel. 
 

Model-based methods can be very rewarding since they allow for theoretically 
perfect matched-filter implementations when the physical model perfectly fits the real 
channel. Also, when the channel of propagation is not known but the source signal is under 
experimental control the process can be reversed to estimate the channel of propagation 
and identify the physical parameters, with clear advantages in many applications. What has 
been observed in practice is that even if model-based methods have been in "the market" 
for over 20 years now, its acceptance in  real-world applications  has been slow. The 
reason for that is known: model-based methods are superior to simple data driven methods 
only if the information fed in the models is accurate enough. In this paper we have 
attempted to quantify and theoretically explain where does that lack of superiority comes 
from and also give some practical simulated examples drawn from underwater acoustics to 
illustrate the comparative methods in play. 
 

The bottom line is  that  conventional  matched-filtering  (without any knowledge 
about the environment) can have higher  SNR output than generalized matched filtering 
depending on signal time spread at the receiver and on the degree of mismatch on the 
environmental characteristics. The simulated examples show that for relatively mild - and 
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fairly realistic – degrees of mismatch the gain provided by the model-based methods over 
the conventional methods can drop well below one in practical situations both of source 
localization and geoacoustic inversion - which have been two areas of intense activity and 
usage of model based methods in the last years. 
 

 
 

Figure 3. Water depth mismatch of 5m: quantities Λ, α and GMF/MF ratio versus source range and depth 
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Figure 4. Source depth mismatch of 5m: quantities Λ, α and GMF/MF ratio versus sediment  com pressional 

velocity and source-receiver range 
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5. APPENDIX 
 
 Matched-filter derivation 
 

Starting from equation 9 and assuming that the power spectral density of the noise 
is different from zero in the considered frequency band, one can multiply and divide the 

numerator by   giving 
 

 
 

On the other hand, from the Schwartz inequality, one can say that 
 

 
 
and write for 29, 
 

 
 

From 30 one can ee that the identity is only reached when f(x) = g(x) or that, for 
our case, when 
 

 
 
and that in this case simplifying 31 by 
 

 
 
one obtains the maximum value of ρ that is 
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