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The scenario
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The passive case
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The active case
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The physical model-based case
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Plane-wave or full-field ?
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One source - one receiver

The data model

x(θo) = H(θo)s

y(θo) = x(θo) + w(θo)

with

xT = [x(0), x(1), . . . , x(N − 1)]

H =


h(0) 0 . . . 0
h(1) h(0) 0

...
...

. . .
...

h(N − 1) h(N − 2) . . . h(0)


sT = [s(0), s(1), . . . , s(N − 1)], deterministic or N (0,Cs)

wT = [w(0), w(1), . . . , w(N − 1)], N (0,Cw)
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Classical matched filter (CMF)

The CMF is given by the NP-detector or max SNR
matched-filter1

x̂(θ) = C−1w Ĥ(θ)s

z(n) = x̂T (θo)y(θo)

= sT ĤT (θ)C−1w y(θo)

= sT ĤT (θ)C−1w x(θo) + sTHT (θo)C
−1
w w

= xo(n) + wo(n)

Signal-to-noise-ratio (SNR) at filter output

ρ(n) =
|xo(n)|2

E[|wo(n)|2]

1
S.M. Kay, Fundamentals of Statistical Signal Processing: Detection Theory, Prentice-Hall, New

Jersey(USA), 1998
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Filter performance and GMF

ρ(n) =
|sT ĤT (θ)C−1w H(θo)s|2

sT ĤT (θ)C−1w Ĥ(θ)s

Optimal case Ĥ(θ) = H(θo) and

ρmax = sTHT (θo)C
−1
w H(θo)s

|R(θ,θo)|2 =
ρ(n)

ρmax

Generalized matched-filter (GMF), physical model-based channel,
performance (for white noise)

|RGMF(θ,θo)|2 =
|sT ĤT (θ)H(θo)s|2

sT ĤT (θ)Ĥ(θ)ssTHT (θo)H(θo)s

for optimally tuned GMF R(θo,θo) = 1.

S.M. Jesus Matched-field in ocean acoustic monitoring



Sub-optimal cases: CIMF and TRMF

Channel independent matched-filter (CIMF), no channel knowledge

x̂(θ) = C−1w s

and performance (for white noise)

|RCIMF(θ,θo)|2 =
|sTH(θo)s|2

σ2ss
THT (θo)H(θo)s

Data-based/time-reversal matched-filter (TRMF), θ′ at time t′,

x̂(θ′) = H(θ′)s + w′

and performance (for white noise)

|RTRMF(θ′,θo)|2 =

|sTHT (θ′)H(θo)s|2

sT [HT (θ′)H(θ′) + HT (θo)H(θo)]ssTHT (θo)H(θo)s
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A simulation example: active case (1)

INTIMATE’96 scenario
(off Nazaré, Portugal)

Bandwidth:
50 - 150 Hz (50 bins / ∆ =2Hz)
Mismatch:
5m in water depth
Model: SNAP

S.M. Jesus Matched-field in ocean acoustic monitoring



A simulation example: active case (2)

Gain GMF / CIMF Gain GMF / TRMF
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A simulation example: active case (3)

INTIMATE’96 scenario
(off Nazaré, Portugal)

Bandwidth:
50 - 150 Hz (50 bins / ∆ =2Hz)
Mismatch:
Csed=1700m/s, αsed=1db/λ,
ρ = 2 Kg/cm3

Model: SNAP
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Passive acoustics

Three classes according to assumptions on emitted signal s:

1 Possibly random: wind, waves, rainfall, shipping, some fish

2 Possibly deterministic: marine mammals and all ”man-made”
noise

3 Possibly either random / deterministic: ice, earthquakes,
snapping shrimp and invertebrates

Address case 1 assuming

s : N (0,Cs), uncorrelated with noise

where Cs may be: (1) generic, (2) uncorrelated flat σ2sI or (3)
uncorrelated fluctuating with diag(σ2s1, σ

2
s2, . . . , σ

2
sN ).
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Gaussian signal in Gaussian noise

Wiener filter estimate-based2

x̂(θ) = ĈxĈ
−1
y y(θo)

where

Cx = E[xxT ] = HCsH
T

Cy = E[yyT ] = HCsH
T + σ2wI

and the filter output matched to the Wiener-estimate

z(n) = x̂T (θ)y(θo)

which is a quadratic form on the observation y. The output SNR is

ρ(n) =
Tr{Ĉ−1y ĈxHCsH

T }
Nσ2w Tr{Ĉ−1y Ĉx}

2
Davenport and Root, An Introduction to the Theory of Random Signals and Noise, IEEE Press, New York,

1987
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Gaussian signal in Gaussian noise (2)

Generalized Wiener-filter (GWF)-based performance ratio

RGWF(θ,θo) =
Tr{C−1y Cx}
Tr{Ĉ−1y Ĉx}

Tr{Ĉ−1y ĈxHCsH
T }

Tr{C−1y CxHCsHT }
.

In the channel independent Wiener-filter (CIWF)-based case

x̂(θ) = Cs(Cs + σ2wI)
−1y(θo)

RCIWF(θo) =
Tr{C−1y Cx}

Tr{(Cs + σ2wI)
−1Cs}

Tr{(Cs + σ2wI)
−1CsHCsH

T }
Tr{C−1y CxHCsHT }

.
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Gaussian signal in Gaussian noise (3)

And in the data-based/time-reversal Wiener-filter case, estimates
at time t′ ≤ t

Ĉy =
1

N

∑
yny

T
n

σ̂2w =
1

N
wTw

and possibly
Ĉx = Ĉy − σ̂2wI

finally...

RTRWF(θ′,θo) =
Tr{C−1y Cx}

Tr{I− σ̂2wĈ−1y }
Tr{(I− σ̂2wĈ−1y )HCsH

T }
Tr{C−1y CxHCsHT }

.
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A simulation example: passive case

INTIMATE’96 scenario, N=100 snapshots, SNR = 20 dB.
Cosine-shaped fluctuating power in the band 50-150 Hz

Gain GWF / CIWF
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One source - many receivers

Augmented data model

xa(θo) = Ha(θo)s

ya(θo) = xa(θo) + wa

with

temporal ord. xT
a = [xT (0),xT (2), . . . ,x(N − 1)T ],

spatial ord. xT
a = [xT

1 ,x
T
2 , . . . ,x

T
K ],

same applies to y and w, and with

HT
a = [H1H2 · · ·HK ]

If observation vector is jointly Gaussian,
⇒ estimators are identical (notation changed accordingly).
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Common particular cases (1)

Spatial combining

z(n) =

K∑
k=1

x̂T
k (θ)yk(θo)

planewave beamforming: θ is solid angle; time delays depend
on array geometry; single arrival assumption; SNR gain = K.

spatial matched-filter: uses channel reciprocity and
linearity/superposition, to transmit s = Ĥk(θo)s

′, pre-steered
for location θo,

y(θ) =
∑
k

HT
k (θo)Ĥk(θo)s

′ + w

similar to the multiple source case, produces a peak when
θ = θo. SNR gain = K.
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Common particular cases (2)

secondary sources: cross correlation between receivers

zk(n) = yT
m(θo)yk(θo), m 6= k

for the estimate Ĥmk(θ), the CIR between sensors m and k.

vector sensors: pressure gradient composed matched-filter
vector

x̂k(θ) =

[
1

u(θ)

]
Ĥk(θ)s

with appropriate definition for u3

3
P. Santos et al. Seabed geoacoustic characterization with a vector sensor array, JASA, 128, No.5,

pp.2652-2663, 2010.
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Underwater communications: one to many

Mismatch: source range
Scenario: INT96, VLA 16 receivers
Model: SNAP
INTIFANTE’2000, Setúbal, Portugala

Comms: DPSK, 1.45-1.75 kHz
Data: 20s packets, 150 bits/s
Station 4: 1.5km, depth 92m

a
S.M.Jesus and A.J.Silva, Time reversal and spatial diversity: issues

in a time varying geometry test,HFA Conf., pp.530-538, La Jolla(USA), 2004.
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Multiple sources - multiple receivers

Define the modified data model

xa(θo) = HA(θo)sA

ya(θo) = xa(θo) + wa

where HA is now dim KN × LN , N time samples, K receivers, L
sources with the L-source signal vector

sTA = [sT1 , s
T
2 , . . . , s

T
L].

No changes on the optimum receivers, but possible lth-source
steering (for sensor k)

x̂k(θl) = Ĥkl(θ)sl
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Underwater acoustic barriers: many to many

Scenario: UAB’07 experiment Sletvik
(Norway)a

Mismatch: 1.5m cylinder mid water
depth-range
Geometry: 4 sources, 16 receivers
Model: rays (TRACEO)
Signals: LFM 3.5 - 6.5 kHz

a
S.M. Jesus and O. Rodŕıguez, A time-reversal suboptimal detector

for underwater acoustic barriers, Oceans 2008, Quebec (Canada), 2008.
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Conclusions

1 a common workframe for all matched-field applications

2 a tool for absolute performance and comparison

3 method characterization and sub-optimal identification

4 processing gains for a priori vs. non-a priori information
methods

5 examples on realistic simulated data
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Merci

It is preferable to have an approximate answer for the right question

than the exact answer for the wrong question

A. Einstein
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