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Abstract

The Marine Strategy Framework Directive (MSFD) of the European Union
currently requires meaningful noise level-based indicators to be obtained either
through field data observations or computer modeling. Acoustic recordings in the
20–1000 Hz frequency band were performed 6 h a day during June 2018 in three
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moorings to the southwest of the Islands of Faial and Pico (Azores). Anthropo-
genic noise was modeled due to ship traffic drawn from AIS data, and environ-
mental sound was attributed to wind. Comparing field and model data at these
three locations allowed to introduce a field calibration procedure based on the
linear transformation of sample distribution probability density functions in the
sound pressure-level domain. The broadband version of the excess noise level
(ENL) appears as the sum of the 1/3-octave bands transformed power over the
data recording frequency band. The results show that field-calibrated broadband
ENL sound maps are in line with the main shipping routes, fishing activity, and
leisure paths in the area revealing; however a significant noise spread due to
sound propagation conditions to the east and the southwest of the Faial-Pico
Islands. Field-calibrated broadband ENL may be seen as a reliable quantity for
establishing continuous anthropogenic noise pollution MSFD indicators.

Keywords

Ocean soundscape · Shipping noise · Excess noise level · Field calibration

Introduction

Ocean noise level worldwide was found to be increasing at an estimated rate of
3 dB/decade between 1950 and 2010, in line with the increase in shipping and GDP
growth (Frisk 2012). The full impact of this ocean noise increase is still unknown,
but evidence is piling up toward a deterioration of the marine habitat, the disruption
of the life cycle of a number of endangered species, and biodiversity loss
(Hildebrand 2009; Hawkins and Popper 2014; Williams et al. 2015; Erbe et al.
2019; Duarte et al. 2021).

Until recently, the focus of ambient noise studies was on its spatial correlation,
coherence, and directivity, with the scope of reduction or elimination. The rising
concern of impacts of ocean noise on marine species shifted the focus of ambient
noise studies to the ocean sound level, classically defined as the sound pressure level
(SPL) mapped into geographical coordinates, time, and frequency – the so-called
sound maps. In practice, sound maps are obtained through computer modeling, in
order to cope with the required time-space resolution for a meaningful representa-
tion, impossible to obtain otherwise by direct observation. Sound maps are, there-
fore, a fundamental tool for marine policies development/enforcement, identifying
areas impacted with high sound levels when compared to others relatively protected,
and to follow sound stress dynamical changes along time. Ocean sound was recently
declared as an essential ocean variable by the Global Ocean Observation System
(GOOS). In the recently published United Nations World Ocean Assessment report,
a new full chapter was dedicated to trends on anthropogenic noise inputs into the
marine environment (Sirovic et al. 2021).

Conceptually, there are at least two approaches for estimating ocean noise: one is
by summing all the individual anthropogenic source contributions in any given point
in space, and the other is by measuring ocean sound and “subtracting” the natural
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background sound level. As we will see, both approaches have their own difficulties,
flaws, advantages, and drawbacks.

The Marine Strategy Framework Directive (MSFD) is the European Union’s
main policy for marine life protection and conservation, aiming at achieving the
good environmental status and its monitoring, along with protection policies which
require identifiable and meaningful indicators (European Commission 2010).
Descriptor 11 of the MSFD defines two indicators: one for impulsive noise and
another for continuous noise. Depending on the context, these two components are
often difficult to separate, which is a requirement for building suitable MSFD
indicators. A recent proposal defines the excess noise level (ENL) which is the
anthropogenic noise in excess of the natural background ambient sound as a possible
basis for continuous noise indicator (Farcas et al. 2020). The idea behind ENL is that
of determining the anthropogenic noise on top of the natural ocean sound normally
present in the ocean. This, of course, requires a measurement (or an estimate) of the
reference or baseline sound level without noise contamination which, nowadays, is
practically impossible. This is particularly difficult in north Atlantic, which is the
basin size region with the most intense and constant ship traffic in the world (Sirovic
et al. 2021).

It is commonly assumed that the two main contributions to ocean sound in the
band 20–1000 Hz are shipping noise and the sound generated by wind on the ocean
surface. Therefore, sound maps use computer models to generate realistic approxi-
mations of these two sound fields taking as input environmental information such as
bathymetry, water column temperature and salinity profiles, bottom characterization
and wind speed estimates, as well as ship traffic information drawn from the
Automatic Identification System (AIS). Acoustic propagation models have been
used for obtaining three-dimensional (actually better described as N � 2D) deter-
ministic representations of the shipping noise field (Colin et al. 2015; Soares et al.
2015; Skarsoulis et al. 2016). This is a very computation-demanding task, in
particular for large areas with intense traffic, so an alternative was devised to
represent ship location through a statistical distribution and thus reduce the compu-
tational burden (Kinda et al. 2017).

Sound maps obtained through numerical modeling are error prone due to inherent
parameter uncertainties, model mismatch, and environmental/AIS data dropouts.
Any direct acoustic observation should be a valuable resource, first for sound map
validation and then for an eventual model adjustment. The process of integrating
model and field data for sound maps’ correction is known as “field calibration.” The
most common approach for field calibration assumes that environmental data used in
acoustic propagation models is erroneous or incomplete and its adjustment allows
for matching data and model (Farcas et al. 2020). Another alternative is to consider
that the mismatch comes from the source level assumed for the ships cruising in the
area and its estimation from the data itself would allow for a better match, as
proposed in a simulation exercise in Jesus et al. (2017). Recently, the third approach
directly calibrates the statistical distributions of the modeled field as proposed in
Jesus et al. (2022). The validation of the gain provided by each field calibration
approach, and how this gain extends for time periods and locations where there are
no ground truth observations is a challenging task.

Broadband Excess Noise Estimation via Sample Distribution Field Calibration 3



The objectives of this study are as follows: one is to provide evidence for
broadband ENL estimation methodology and explore the possibility of its usage to
support building a continuous noise indicator, and the other to propose a sample field
calibration method to integrate measurements and modeled data, for extending a
localized observation into a wider area, where there were no observations.

This work is supported on acoustic recordings performed in the 20–1000 Hz
frequency band, 6 h a day during June 2018 at three locations close to the Faial-Pico
Islands, in the Azores archipelago, a well-known habitat for over 20 cetacean species
(Silva et al. 2014). This data set was evaluated and found to be biased in some
frequency bands, so its usage for model calibration is questionable and only made
possible after filtering and conditioning. Ocean sound modeling was performed for
ship traffic and surface wind action. The linear probability density functions’ sample
field calibration procedure presented in Jesus et al. (2022) was used and applied to
this data set, extending the results with complimentary material in the following
aspects: time and spatial evolution of water column; field calibration procedure is
detailed; statistics for the worst-case recorder (MG) are shown; non-calibrated and
calibrated model data detailed for all bands; and distribution means and variance
before and after calibration.

Methods

Environmental Data

The Azores archipelago is formed by a total of nine islands in three groups: the
western group of two islands, the eastern group of also two islands, and the central
group composed of five islands, four of which are shown in Fig. 1 with the island of
Graciosa to the north (not shown). The bathymetry data was obtained from the
GEBCO (General Bathymetric Chart of the Oceans, www.gebco.net) database
(Group, G.B.C 2020). The horizontal lines and the star symbol denote the locus
for water column temperature and salinity information as shown in Fig. 2. The star

Fig. 1 Central group of islands of the Azores archipelago. The horizontal lines and black star
indicate positions for extracting water column information as shown in Fig. 2 (Adapted from Jesus
et al. 2022). Bathymetry data credits: GEBCO database (Group, G.B.C 2020)
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symbol is in the vicinity of the acoustic recorders’ location (see Fig. 5 for a close-up).
The area under study is characterized by deep water with two main features: the
shallow channel between Faial and Pico islands, with an average depth of approx-
imately 80 m, and the shallow banks (<200 m depth) to the southwest of Faial
Island, known as an important fishing area. Figure 2 shows computed sound speed
using the temperature and salinity profiles extracted from the CMEMS (Copernicus
Marine Environment Monitoring Service) (www.copernicus.eu) database, along
constant latitude lines 38.2, 38.4, and 38.8, upper left, right, and bottom left plots,
respectively, and for the sound speed evolution through time (bottom right plot) at
the position indicated with the star symbol. Water column sound velocity variation
with range is mild, as well as throughout the month of the study.

Figure 3 shows the wind speed over the month of June 2018 as predicted by the
ECMWF (European Centre for Medium-Range Weather Forecasts, www.ecmwf.int)
(Hersbach et al. 2018) for the mean (a) and the standard deviation (b). There is a
significant deviation of more than 2 km/h from south to north of the considered area,
while the standard deviation slightly decreases from west to east.

Fig. 2 Depth-longitude sound speed for latitudes of 38.2�, 38.4�, and 38.8� North calculated from
temperature and salinity profiles, upper left, right, and bottom left plots, respectively, and sound
speed time evolution through the month of June 2018 at location [�28.62 W – 38.44 N] (bottom
right). (Source: CMEMS-Copernicus Marine Service)

Broadband Excess Noise Estimation via Sample Distribution Field Calibration 5
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Ship Traffic

Figure 4 shows the cumulative ship distribution as recorded on the community-
shared platform AISHub (ship Automatic Identification System data exchange,
www.aishub.net) for the study area during the whole month of June 2018. The

Fig. 3 Azores wind speed for June 2018: mean (a) and standard deviation (b) (Source: ECMFW
(Hersbach et al. 2018). Plot (a) reprinted from (Jesus et al. 2022))

Fig. 4 Cumulative ship density for the month of June 2018 (Source: AISHub. Figure reprinted
from Jesus et al. (2022))
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month of June was chosen since it approximately coincides with a period of high
probability of the presence of cetaceans in the area. Data is shown as logarithm base
10 of ship density evaluated in ship x hour per square arc minute. That is, two ships
for half an hour each on a square of approximately 1 nautical mile side will give rise
to a ship density of 1 and will therefore appear as 0 in this figure.

Acoustic Recordings

Three ecological acoustic recorders (EARs) (Lammers et al. 2008) were positioned
at the locations CA, IN, and MG shown in Fig. 5. The EARs are deep water-rated
recorders for long-term deployment with a sensitivity between �193 and �194 dB
re 1 V/μPa over the band 20–1000 Hz. During this experiment the data was
sampled at 2000 Hz, with a 16-bit resolution and a 47.5 dB total chain gain.
Antialiasing was achieved thanks to the usual low-pass filter to avoid out-of-
band energy contamination. A high-pass filter was set at 20 Hz to attenuate static
pressure low-frequency oscillations. SPL was estimated from 1 s duration Hann-
windowed intervals with 50% overlap using the PAMGuide tool (Merchant et al.
2015) running under MATLAB® which is commonly used in the soundscape
community. (See (Merchant et al. 2015) supplementary information with
MATLAB® and R codes.) The three recorders at locations CA, IN, and MG were
moored at depths of 484, 200, and 200 m, respectively. The received data was
averaged in 10-min intervals and integrated over 1/3-octave (base 10) sub-bands in
the 40–1000 Hz frequency band.

Fig. 5 Detailed bathymetry with recorders’ location on the Pico side (CA), in the channel (IN), and
on the Faial side (MG). Recorder’s depths are 484 m for CA and 200 m for IN and MG

Broadband Excess Noise Estimation via Sample Distribution Field Calibration 7



Ocean Sound Modeling

Ocean sound modeling was performed for the shipping noise and wind sound
components in the frequency band 40–1000 Hz. Thus, model sound-level output
Lm may be written as

Lm t, f , rð Þ ¼ 10 log 10

XQt

q¼1

10 LHq t, f ,r; rqð ÞþLSq fð Þ½ �=10 þ 10Lw t, f ,rð Þ=10
" #

, ð1Þ

where the first term represents the noise level due to a distribution of Qt contributing
ship sources of the individual level LSq( f ) (in dB) propagated from the qth source
with a propagation loss LHq(t, f, r; rq) (also in dB) between source location rq and
receiver location r and Lw is the surface wind-generated sound level also in dB, all
for time t, frequency f, and location r (latitude, longitude, and depth). Note that in
this formulation LHq is taken as negative, since it represents the sound loss along the
propagation path. Even acknowledging that the RANDI model is now widely used
for source-level modeling (Breeding et al. 1996; MacGillivray and de Jong 2021) for
a matter of simplification a lookup table-style source-level model for coefficient LSq
was used, deduced from historical measurements according to ship type from
(McKenna et al. 2012). A high number of contacts of sailing vessels was found in
the AIS data, and the adopted procedure was that of assigning them to a source level
of 1% of that of cargos ≈ 20 dB (see Soares et al. (2020) for details). Source depth for
the various ship types was set according to Scrimger and Heitmeyer (1991). Trans-
mission loss is estimated with the Kraken normal mode model (Porter 1991) using
the environmental information described in section “Environmental Data.” Due to
the typical deep water propagation conditions of the area, bottom properties are
expected to play a minor role. Therefore, a generic bottom composed of a 10-m-thick
sediment layer over a semi-finite hard rock half space was used (see Soares et al.
(2015) for detailed properties).

The wind sound model was deduced from the ECMWF database (Hersbach et al.
2018) using the data set shown in the previous section, and the method proposed by
Kewley et al. (1990) assumes that the sound generated at the sea surface results from
a two regime mechanism: below 8–10 km of wind speed at low sea state and one
above that speed involving the formation of white caps. The laborious step of
estimating the wind source level is described in detail in the companion paper
(Jesus et al. 2022).

Sample Field Calibration

According to the sound model constraints and simplifications set above, the standard
procedure for field calibration follows by estimating sound maps in 1/3-octave (base
10) frequency bands, represented by their center frequencies. At each center
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frequency, the SPL time samples over the whole month are sorted into 1 dB bins to
form histograms for both data observations and model predictions.

The sample field calibration procedure proposed in Jesus et al. (2022) is based on
a linear variable transformation from the model to the data distribution, as described
in more detail as follows. Let us assume that p(Lm) and p(Ld) are the model and the
data distributions, with means and variances, respectively, given by μm, σ

2
m

� �
and

μd, σ
2
d

� �
: We seek to determine a model-calibrated distribution p(Lmc) drawn from

the model samples, but with the same mean and variance than p(Ld), by the linear
scale transformation

Lmc ¼ ALm þ B: ð2Þ
It can be easily found, from the identification between means and variances of

p(Lmc) and p(Ld), that A
2 ¼ σ2d=σ

2
m and that B ¼ μd – Aμd which when inserted in (2)

allow to determine the change scale of Lmc and therefore the calibrated distribution
p(Lmc). Calibration coefficients will be determined for each 1/3-octave band, so that
the full calibration map will be obtained through the coefficient set {A( fk), B( fk);
k ¼ 1, . . ., K}, where K is the number of frequency bands. However, as we will see
below, it is not sufficient to have the calibrated distributions, since in order to obtain
a broadband estimate, the actual sample pressure power field needs to be summed
across band. Replacing the levels in (2) by their respective pressure power defini-
tions L⁎ ¼ 10 log10P⁎ and solving for the calibrated power Pmc give

Pmc ¼ PA
m10

B=10, ð3Þ
which allows to transform power samples according to the calibration mapping.

When the acquired data is hardware calibrated, validated, and free of interfer-
ences and self-noise, the proposed sample field calibration may be useful for
correcting model systematic biases through the adjustment of the model data distri-
bution mean and variance. This applies to the time intervals and recording locations
where the data is gathered, which gives no guarantees for the validity of the
correction coefficients for other areas or time frames. The domain of validity of
the calibration set depends on a number of factors and, in particular, on the origin of
the data-model mismatch.

Broadband Excess Noise Level

ENL is defined as the difference (in dB) between the measured and the baseline SPL
for a given time, frequency, and space coordinates, expressed as

LE t, f , rð Þ ¼ LT t, f , rð Þ � Lb t, f , rð Þ, ð4Þ

Broadband Excess Noise Estimation via Sample Distribution Field Calibration 9



¼ 10 log 10

PT t, f , rð Þ
Pb t, f , rð Þ , ð5Þ

where in (4), LE is the ENL, LT is the total sound level, and Lb is the baseline ocean
sound level without anthropogenic pressures. Relation (5) is readily obtained by
replacing sound levels LT and Lb by its respective pressure power counterparts PT and
Pb, using L⁎ ¼ 10 log10P⁎. The total sound level LT is drawn either directly from
observation or as the modeled sound level Lm given in (1). The baseline
(or background) ocean sound level is normally obtained from the modeled wind
sound level Lw (or the Pw pressure power). Thus, replacing PT ¼ PS þ Pw, where PS

is the shipping term power, and Pb ¼ Pw in (5) allows to rewrite ENL as

LE t, f , rð Þ ¼ 10 log 10 1þ Ps t, f , rð Þ
Pw t, f , rð Þ

� �
: ð6Þ

Under these assumptions, the instantaneous ENL given by (6) will be always �0,
as expected, and takes into account noise and baseline estimates modeled at a given
time and location. Alternatively, the baseline level could be defined as a mean over
time, in which case Pw(t, f, r) in (6) would be replaced by the mean Pw f , rð Þ:Even in
that case LE remains always �0.

The expression above denotes ENL for a single frequency or for a narrow 1/3-
octave band around a center frequency fk. Extending this to the broadband case
implies power summing (and not power averaging as was proposed in Farcas et al.
(2020)) over the required bands so, in that case, the definition for broadband ENL
would be given by Jesus et al. (2022)

LE t, rð Þ ¼ 10 log 10

PK
k¼1PT t, f k, rð ÞPK
k¼1Pb t, f k, rð Þ

" #
, ð7Þ

where K was already defined as the number of frequencies or bands. This definition
allows to take into account a ratio of energies which are the preferred quantities for
determining indicators of harm to marine life.

Results and Discussion

The Acoustic Data Set

Figure 6 shows the spectral probability densities for the received data at the three
locations CA, IN, and MG in plots (a) to (c), respectively. Each vertical line is a
normalized sample count color-coded image of a data histogram in 1 dB slots, for
1 Hz bin. Each frequency bin is obtained as the sample power spectrum (without
averaging) of 1 s duration intervals with 50% overlap throughout the whole month.
With this setting, clear colors denote most probable levels and dark colors the least
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probable, across the frequency band. This figure shows a clear cut-off frequency at
20 Hz for the three recorders, followed by a slight and progressive SPL increase with
frequency until approximately 300 Hz. This is the most relevant frequency band for
shipping noise. The few spurious high-level peaks present in recorders CA (a) and
IN (b) and in large number in recorder MG (c) are believed to be associated to
recorders’ self-noise. The origin of these peaks is actually unknown but believed to
be related to some defecting amplifier or other components in the signal chain. This
is clearly an issue on the quality of this particular data set and suggests precautions
before its usage for field calibration. Therefore, the focus of this paper is not so much
on the final calibrated field result but on showing and detailing the methodology
employed for obtaining the result. Nevertheless, the impact of these peaks may be
mitigated by filtering the frequency bands clearly off the mean level. The following
procedures were adopted: (1) first detect the two highest peaks and (2) filter out the
bins of the surrounding frequency band for each recorder of Fig. 6, leading to the

Fig. 6 Spectral power distribution with 1 s, 50% overlap time slots between 14:00 and 20:00 UTC
in June 2018 for recorders at sites CA (a), IN (b), and MG (c) (Figure reprinted from Jesus et al.
2022)

Table 1 Recorder’s self-
noise filtered bands

Recorder sites Bands [Hz]

CA [188–197], [374–393]

IN [184–192], [357–387]

MG [267–274], [528–553]

Broadband Excess Noise Estimation via Sample Distribution Field Calibration 11



result in Table 1. The proposed filtering is not a definitive response to the self-noise
impairments found in the data and just attempts to mitigate its effects without
compromising the field calibration broadband ENL estimation technique.

Experimental Data and Model Statistics

Figure 7 shows histograms of the observed data (red), shipping and surface wind
sound-modeled data (blue), and field-calibrated data (green) for the MG recording
location at the 1/3-octave (base 10) frequency bands between 40 and 1000 Hz. The
corresponding broadband field histograms (bottom right plot) are also shown. The
MG recorder corresponds to the worst-case self-noise according to the spectral
power distributions of Fig. 6. Similar results were obtained for locations CA and
IN (not shown). The field-calibrated distributions (in green) were obtained with the
proposed method (see section “Sample Field Calibration”) with a modification
explained as follows. For this case, the data adjustment coefficients {A, B} were
calculated not independently for the data sets gathered at each location but, instead,
from the data samples merged from all three data sets at locations CA, IN, and MG

Fig. 7 SPL histograms for 1/3-octave bands (base 10) and broadband (bottom right), using 1 s time
slots with 50% overlap, between 14:00 and 20:00 UTC in June 2018 for recorder location MG
positioned at 200 m depth: recorded data (red), shipping and wind model-generated data (blue), and
field-calibrated model (green) [axes: probability density (y) in 1 dB re 1 μPa, SPL bins (x)]

12 S. M. Jesus et al.



pulled together. This allows for the inclusion of all the observed data in the
calibration method, thus providing a higher spatial and temporal robustness than
by using sensors individually. This procedure also solves the problem of deciding
which area or time interval to calibrate with each sensor. The data merging is also
justified by the fact that the three sensor’s location may be seen as a single point in
the full study area (Fig. 1). The direct result of this merging is that the calibrated
distributions are not exactly matched (mean and variance) to any of the data sets.
This is illustrated in Fig. 7, for the case of MG, as a slight mismatch between green
and red curves. That mismatch is also clear in the broadband case (bottom right plot).
Note that in that case, the calibrated broadband distribution is obtained as the
sample’s sum over frequency and not from a direct calibration between the (broad-
band) model and data histograms.

The observed data statistical SPL distributions for the 1/3-octave (base 10) bands
(Fig. 7 red curves) show a relatively narrow probability density function with a
variable mean in frequency and self-noise limited low levels, either due to insuffi-
cient gain or poor resolution. As mentioned above, these histograms were obtained
after filtering the frequency bands of the two main peaks of the spectral probability
densities for each recorder of Fig. 6. Empirical probability density functions for the
modeled ocean sound field were obtained for the same setup parameters as the data,
i.e., for the recorder coordinates (latitude, longitude, and depth) and for the same
time frames (Fig. 7 blue curves). In general, the model SPL distributions tend to
overestimate the data in the low-frequency band until roughly 150 Hz, while a better
model data fit is obtained above that frequency. In some cases, the model data
distribution is bimodal or multimodal, which is also found in the observed data,
but with a much larger variance in the model than in the data. Whether that
multimodality comes from ship traffic at different times, distances, or ship types is
unclear. No apparent low-level threshold is found in the modeled data. The high
probability peaks larger in the data than in the model are simply due to probability
density surface normalization. The differences between data and model were used as
the basis for the proposed field calibration method for the wider area even if the real
data recording conditions were not ideal.

The next step is to enlarge the modeling area to the four Islands shown in Fig. 1. A
sampling interval of 10 min and a spatial grid of square size of 500 m were chosen
for computing the wide area sound map. There is no consensus regarding receiver
depth for sound models, so 10 m was chosen to represent a depth near the surface at
which large whales spend a significant amount of time, and it was also noticed that,
for this data set, this depth generally corresponded to the worst-case depth (highest
level in general) among the various tests performed. Figure 8 shows the model’s
estimated mean SPL field for each 1/3-octave band (base 10) in 40–1000 Hz and the
broadband case (bottom right plot) for the whole area. The same color scale is used
for all frequency bands, including the broadband plot (bottom right). As expected,
levels are lower for the lower bands and tend to increase with frequency. Noise peaks
up to over 120 dB can be noticed in the channel between Faial and Pico and out of
the port of Terceira. Shipping routes are apparent between Faial or Pico to S. Jorge
and Terceira Islands, as well as other paths to other islands (out of the area). High
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SPL areas spreading out from these routes can be seen to the southeast of Faial-Pico-
S. Jorge and in the shallow banks to the southwest, which is possibly due to the
already mentioned fishing activity in the area.

Field Calibration

The sample calibration method outlined in section “Sample Field Calibration” with
the data-dependent modifications set forth in the previous section, illustrated for
the MG location in the distributions of Fig. 7, was applied to the modeled data at the
recorder locations for verification and then extended to the wide area and for the
complete month. Figure 9 shows the frequency evolution of the mean (a) and
standard deviation (b) of the sample distributions averaged over the three recorders
for data (continuous blue), model prediction (continuous brown), and calibrated
separately for CA, IN, and MG (dashed). As expected, there is a clear adjustment in
mean and standard deviation from model to data procured by the calibration method.
This adjustment is slightly better for IN than for MG and CA recorders. Model
predictions overestimate the data over the whole band but more at low frequency
(below 200 Hz). The mean absolute error between model and data is in the order of
6.8 dB for the whole data reduced, after calibration, to 3.9 dB.

Applying the calibration to the wider area allows to obtain the mean SPL results
shown in Fig. 10 for the 1/3-octave band center frequencies and the whole month of

Fig. 8 Mean SPL for the 1/3-octave band’s (base 10) center frequencies in 40–1000 Hz and
broadband field (bottom right plot), at 10 m depth for June 2018 [axes: latitude (y), longitude
(x) both in decimal arc degrees] (Figure reprinted from Jesus et al. 2022)
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Fig. 9 Sample distribution’s SPL mean (a) and standard deviation (b) averaged over the three
recorders for data (continuous blue), model prediction (continuous brown), and calibration sepa-
rately shown for CA, IN, and MG (dashed) versus 1/3-octave band (base 10) center frequencies
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June 2018. As expected, levels are overall lower than before calibration, and surfaces
are flatter, because variance has, in general, been reduced.

ENL Estimation

The wind model is used as baseline for estimating the instantaneous ENL using
definition (6) and in its broadband form using (7). Figure 11 shows the 95, 75, and
50 percentiles of the broadband instantaneous ENL field at 10 m depth before

Fig. 10 Field-calibrated mean SPL for the 1/3-octave band (base 10) center frequencies in
40–1000 Hz using (6) and broadband using (7) (bottom right plot), at 10 m depth for June 2018
[axes: latitude (y), longitude (x) both in decimal arc degrees]

Fig. 11 Model predicted instantaneous broadband excess noise level (ENL) 95, 75, and 50 per-
centiles in the 40–1000 Hz band at 10 m depth for the whole area, in June 2018 with a spatial and
time resolution of 500 m and 10 min, respectively [axes: latitude (y), longitude (x) both in decimal
arc degrees] (Figure partially reprinted from Jesus et al. 2022)
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calibration. ENL values up to 35 dB re 1 μPa2 were estimated in the channel between
Faial and Pico Islands and from 15 to 25 dB in extensive regions away from the
islands but only for 5% of the time.

Figure 12 shows the predicted ENL statistics for the same parameters as in Fig. 11
but using the {A, B} field calibration coefficients deduced from the observed data
merged for the three recorders, as explained above. The calibration process tends to
approach the model to the data, imposing lower mean levels in the lower-frequency
bands and narrower distributions (smaller variances), which is consistent with the
differences between Figs. 11 and 12. There are a few ENL high peaks reaching over
15 dB at the usual locations (channel between Faial and Pico) and only for small time
periods (5% and 25% of the month). Comparison of figures before and after
calibration shows an ENL mean decrease of approximately 8 dB re 1 μPa. The
validation of the calibration process is not an easy task due to the lack of observa-
tions both in time and space. For example, the area that extends from the channel
between Pico and S. Jorge to the south and northeast shows prevailing noise levels
that are difficult to objectively validate. We may speculate that these levels, which
occur in a small portion of the time, might be associated with the shipping lane to
Terceira that encounters favorable propagation. Thus, it can be put forward that the
proposed calibration methodology provides a balanced adjustment for systematic
modeling errors coherent with patterns of the study area. One of the features of the
proposed calibration method is that it is based on a statistical behavior of the data in
user-defined time lapses of the available data sets and thus perfectly adaptable to
other areas and periods of the year.

Conclusions

The Azores is an important habitat for cetaceans, but it is also a crossroad of several
long-haul shipping routes, and a significant part of its economy is based on marine
traffic around and between islands (ferries, leisure boats, small cargo and fishing).

Fig. 12 Field-calibrated predicted instantaneous broadband excess noise level (ENL) 95, 75, and
50 percentiles in the 40–1000 Hz band at 10 m depth for the whole area, in June 2018 with a spatial
and time resolution of 500 m and 10 min, respectively [axes: latitude (y), longitude (x) both in
decimal arc degrees] (Figure partially reprinted from Jesus et al. 2022)
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The ship traffic density around the islands shows some long well-identified routes
between islands and from the islands to other destinations outside of the study area.
There is also some traffic scattered well away of the islands, probably due to
intercontinental traffic. Local ships connect close by ports for small leisure trips,
ferries, or fishing. Noise propagates away from intense shipping lanes if and when
acoustic propagation conditions are favorable. Marine traffic produces ocean noise
that impacts on marine species. The Azores is also challenging for acoustic moni-
toring because it is a vast deep ocean area with a few islands for supporting
permanent monitoring buoys or platforms.

Acoustic data recordings at the three locations to the southwest of the islands of
Faial and Pico are in general coherent with AIS ship traffic density in the area.
Assuming that model data may be systematically biased, field calibration is extended
to a larger area covering four islands of the Azores archipelago for the full month of
June 2018. The results show that field-calibrated broadband ENL sound maps are
coherent with the ship traffic in the study area, revealing a number of potentially
threatening hotspots due to sound propagation conditions off shipping routes and
vessel traffic patterns between islands.

The validation of the results is an impossible task without the help of additional
direct observations in space and time. However, the proposed broadband ENL
formulation seems to give a good superposition with the estimated marine traffic
activity in and around the central Islands of the Azores archipelago. More surprising
were the vast areas of high ENL to the southeast of the central islands that can be
asserted to sound spreading from the shipping routes from these islands to/from
Terceira. However, intense spreading in this area only occurs for a small portion of
the time, at least during the considered month. The attempt for using localized data
for calibrating model predictions in the wide area produced two effects: one was the
overall ENL reduction and the other a decrease in the dispersion for most of the time.
However, the areas with higher ENL are consistent with direct observation of
shipping. Although there is no other comparable study for this area, excess levels
seem to be relatively low (<10 dB, 50% of the time) during the study period. It is
possible that the wide area might be too large for an effective calibration with only
three recorders relatively close to each other.
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