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Abstract: An efficient algorithm been developed for solving the
depth-separated wive equation in general fizid/solid horisontally stratified
media. The algorithn: has been built {nto a general-puipose package of com-
putezr codes called SAFARI. The package consists of three modules provid-
ing plane weve reflection coefficients, pwitransmission losses, and broadband
pulse response. This document $irst>describes the mathematical model for
seismo-acoustic propagation in stratified medis. Then the numerical solu-
tion technique is outliued followed by a description of the three different
SAFARI modules and their implementation. Pinally;>the actual use of the
differen: modules is described, including a detailed discussion or. the numeri-
cal considerations that are crucial for successful use of this type of numerical
model. SAFARI is applicable to a wide range of problems in many disci-
plines, from seismology to ultrasounics. Here its use is illustrated by a s.ries
of examples from underwater acoustics. >
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SACLANTOCEN SR-113 1 - Introduction

1. Introduction

The seismo-acoustic environments ercountered in nature are in general very com-
plex. Sound velocity in the ocean varies with both range and depth due to changes
in temperature, salinity and deasity, induced by solar heating, gravity, currcnts and
eddies. The water depth can vary significantly, in particular near the shore and at
the continental rise. In addition, the bottom will often be charucterizsed by irreg-
ular stratification. and anisotropy. Since the seismo-acoustic propagation is highly
dependent on the material properties, an exact computer modelling would require
exact knowledge of the environmental properties to the smallest detail, which is
of course prohibitive. Some kind of approximation therefore has to be applied in
order to obtain a physical model of the environment for which the wave equation
can be solved numerically. Solution techniques such as the finite-difference tech-
nique [1] and the finite-element method (2] require only a few approximations of the
environment. These techniques are therefore the most general, but the computa-
tional requirements are extensive, in reality prohibiting their application to large
scale propagation modelling. None of the more efficient techniques are applicable
to the general problem since they are based on » ific assumptious concerning the
environment. The parabolic equation technique |3) can treat propagation in a range-
dependent environment, but the shear properties of the ocean bottom ars ignored
and the results are only accurate for moderate grazing angies. One class of solution
techniques requires the environment to be described by a physical model for which
the wave equation is separable. This class includes the normal mode (4] technique,
which, however, in most implementations ignores shear and is limited to propagation
at grazing angles less than critical (by means of mode coupling, the normal mode
technique may be applied to non-seperable problems as well [6]). Another solution
technique requising the wave equation to be separable is the Fast Field (FFP) or
full wavefield technique applied in SAFARI. This technique yields - at least in prin-
ciple - an exact solution to the wave equation in a horizontally stratified fluid/solid
environment.

The principle of wave equation separation for horisontally stra.ified media was in-
troduced in underwater acoustics by Pekeris [6], who treat=d t!.: problem of acoustic
propagation in plane layeced waveguides using simple two- and three-layered envi-
ronmental models. Later, Jardetsky (7] and Ewing, Jardetsky and Press 8] used the
same technique to investigate seismic propagation in few-layered waveguides. The
technique was to apply a series of integral transforms to the Helmholtz wave equa-
tion to reduce the original four-dimensional partial differential equatioa (3 space
dimensions and 1 of time) to a series of ordinary differential equations in the depth
coordinate. These differential equations were then solved analytically within each
layer in terms of unknown amplitudes which were determined by matching of the
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boundary conditions at the interfaces. The displacement and stress quantities were
finally determined by evaluation of the inverse integral transforins.

For the few-layered cases originally presented, the linear systein of equations in
the unknown wavefield amplitudes, expressing the boundary conditions, can easily
be solved analytically. For more complicated environmental models, however, this
procedure is inconvenient and has to be replaced by a numerical technique.

Traditionally, computation of the depth dependence of the field has been per-
formed by means of propagator matrix methods as introduced by Thomson [9] and
Haskell [10]. The propagator matrix approach has the computational advantage that
it only requires a small amount of computer memory due to its recursive nature.
However, it was realized quite early that special numerical treatment is required in
order to ensure numerical stability, and several modified propagator matrix schemes
have been proposed. In general, however, these have resulted in much more time
consuming codes. Further, the propagator technique is not well suited to problems
where the field aas to be determined at more than a single receiver depth. A review
of the propagator approaches is given by Kenneth {11] who himself introduced the el-
egant invariant embedding formulation (12] which has the interpretational advantage
that arrivals resulting from reflections from a single interface can be isolated.

The propagator matrix approach has formed the basis of several application codes in
both underwater acoustics [13] and seisinoiogy {14]. The so-called Fast Field program
developed by DiNapoli [15] applies a very elegant recursive technique to determine
the depth-dependent solution for many horisontal wavenumbers simultaneously, and
is therefore extremely efficient. In contrast to the other techniques, however, the
depth-dependent solution is approximate, and the technique is only applicable to a
limited class of fluid problems.

In SAFAR! a direct, global matrix approach is taken to determine the depth de-
pendence of the field solution, known as the depth-dependent Green's function.
The SAFARI technique is in fact a general numerical implementation of the original
solution technique of Ewing et al. [8], but implemented using efficient numerical
technigues adopted from modern finite-element programs.

In what might be termed a direct global matrix or ‘finite wave element’ approach,
the wavefield in each layer is considered as a superpositior. of the field produced by
an arbitrary number of sources and an unknowe field satisfying homogeneous wave
equations. These unknown fields are then determined from the boundary condi-
tions to be satisfied simultaneously at all interfaces. The local boundary coaditions
at each interface lead to a linear system of equations in the Hankel transforms of
the potentials in the adjacent layers. These local systems of equations are then
straightforwardly assembled in a global system of equations expressing the bound-
ary conditions at all interfaces simultaneously. The resulting global coeflicient ma-
trix is organised to be block-bidiagonal and diagonally dominant in close analogy



SACLANTOEN SR-113 1 - Introduction

to the global stiffness matrix arising in the finite-element method. Uuncondition-
slly numerically-stable solutions are determined efficiently by gaussian elimination,
yielding the field in all layers simultaneously.

Despite the analytical equivelence of the propagator and global matrix solutione for
the depth-dependent Green's function, there are a number of important advantages
of the latter technique for application to general wave propagation probiems in
underwater acoustics and seismology as well as in ultrasonics:

o The field produced by multiple sources, e.g. in phased arrays, is easily deter-
mined since the fields produced by the individual sources within a layer are
simply superimposed, and no dummy interfaces are required at the source
depths.

o The field can be determinred at any number of receiver depths in a single solu-
tion pass, since the wavefield potentials are found in all layers siinultaneously.

e In contrast to the situation for techniques based on propagator matrices,
mixed problems with fluid, solid and vacurm layers are readily treated in an
efficient manner, as the global system of equations is set up to involve only
non-vanishing potential functions.

o Time consuming stability assurance problems do not arise, because they are
removed automatically by choosing an appropriate coordinate system within
each layer together with a specific organization of the global system of equa-
tions.

o The solution is unconditionally numerically-stable for any number of layers.

e Due to the global nature, many operation: can be vectorised, making the
code efficient on modern array and vector processors, in particular in cases
with many layers.

These properties make the global matrix approach well suited for implementation
in a general applications program like SAFARI, rendering it applicable to a large
range of seismo-acoustic propagation problems in underwater acoustics, seismology
and ultrasonics.

Although the solution for the depth-dependence of the field is exact to within ma-
chine accuracy, it is a common characteristic of all numerical models of the fuil
wavefield type that they are not vasy to use. They are what might be termed ‘sci-
entific’ numerical models which require the user to possess a significant knowledge
of the physics involved in wave propagation phenomena in stratified waveguides and
at the same time be confident with numerical analysis. This is due to the fact that
the evaluation of the inverse integxral transforms has to be made numerically, which
requires both truncation and discretisation of the integration interval, both of which
introduce errors and numerical artifacts which have to be reduced to insignificance.
There are no general rules to follow, because the necessary sampling depends on the
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characteristics of the actual problem. This is particularly true in cases where unly
selected parts of the solution are of interest. The numerical integration therefore
cannot be fully automated, but has to be controlled by the user.

The present document is not intended for teaching waveguide propagation and nu-
merical analysis to the new SAFARI user. Those topics are treated in many different
textbooks. Thus the intention is solely to present a self-contained user’s guide which
should introduce the new user to the SAFARI model and at the same time act as a
reference manual for the experienced user.

In order to describe the basic assumptions underlying the SAFARI codes, the math-
ematical model for wave propagation in stratified media is first outlined. Secondly,
the numerical implementation of the mathematical model is discussed in detail, pre-
senting first the global matrix solution techuique particular to SAFARI and then the
different numerical integration schemes available for evaluating the total field. In
the third part, the implementation of the three basic SAFARI modules is discussed
in general terms; the precise pr- -edure of course depends on the actual installation.
Finally, the last and most imp.ctant part treats the prccess of running the codes,
including preparation of input files and the necessary numerical considerations con-
cerning the numerical integrations in particular. The actual use is illustrated by
a series of characieristic numerical examples from underwater acoustics. Applica-
tions of SAFARI to other problems, both from seismology and ultrasonics, are given
in [16-27].
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2. The environmental model

TY%e mathematical description of the seismo-acoustic propagation used in SAFARI
rzquires the environment to be represented as a horisontally stratified medium as
illustrated in Fig. 1. All interfaces are plane and parallel, and the layer properties
are range-independent. The layers, including the upper and lower halfspaces, may
be either viscoelastic solids or fluids, or they may be empty space, i.e. vacuum.

Layer 1: Upper

halfspacec
Interface 1 2
Layer
Interface 2
N Layer m
Interface m — . : Layer m+1
Interfacs N-1 —= i
1 Layer N: Lower
! halfspace

Fig. 1. Horisontally stratifiea environment.

" The solid layers are required to be homogeneous and isotropic with Lamé constants
A and u and density p. The corresponding compressional wave speed is

€ = V('\’*‘z-i:‘T/—Pv (1)

and the shear speed is

co = \/‘T/; ' (2)

In order for the solid medium to have positive compressibility, it is required that the
bulk modulus, K = X + §u, be positive. A physically realistic matecial therefore
requires

¢, < V0.75 c.. (3)

—_— . A4 et e —— —
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In the fluid layers the density p must be constant, whereas the nonvanishing Lamé
constant ) is allowed to vary with depth according to the linear law:

1
m—dl"‘b (4)

which corresponds to the following depth dependence for the sound speed; Eq. (1),

ce(z) = v1/(p(az + b)). (5)

The special case of a homogeneous fluid medium corresponds to a = 0.
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3. The mathematical model

Only two-dimensional propagation problems can be treated by the standard SAFARI
package, although a special three-dimensional version has been developed [28]. Thus
the seismo-acoustic field has to be either plane or axisymmetric, restziciing the
sources to be either line sources perpendicular to the plane of propagation or omni-
directional point sources placed on a comm~2a vertical axis. In underwater acoustics
the last type is the most common, and therefore we here describe the mathematical
model for the axisymmetric case. The corresponding model for the plane case is
described in [21].

The full wavefield solution technique is based on the fact that for a horizontally
stratified environment, it is possible to obtain exact integral representations for the
field within each layer in terms of a set of unknown coefficients. These coeflicients
are found by matching the boundary conditions simultaneuosly at all interfaces, and
the total field is determined by evaluation of the integral representations. In this
section the basic principle of the solution of the wave equation by depth-separation
is first described. Then the resulting field representations will be given for both fluid
and solid media, and finally the pertinent boundary conditions are discussed. The
actual numerical impleruentation is discussed in Sect. 4. -

3.1. THE DEPTH-SEPARATED WAVE EQUATION

A cylindrical coordinate system {r, 0, z} is introduced, Fig. 1, with the z-axis pass-
ing through the sources, making the field independent of asimuthal angle 6. For
the isotropic media considered here, the seismo-acoustic wavefield can then be ex-
- pressed in terms of scalar wavefield potentials ¥(r, z, t), which satisfy the linear wave

equation

(V’ .-:-(—r%—-)?i,)\li(r,z t) = F,(r, 2,t). (6)

Here c(r,z) is a wave speed and F,(r, z,t) a forcing term which in the present case
L is due to the seismo-acoustic sources. We now utilize the Fourier transform pair

fw) = -21; [ : F(t)e~™" at, (1

Foy= [ flw)e™ dw. (8)

-0
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By applying the forward transform, Eq. (7), to the wave equation, Eq. (6), the
frequency domain wave equation is obtained:

(V7 + k4(r, 2)) ¥(r, 2,0) = fu(r,2,0), (9)
where w is the angular frequency and kn(r, z) is the medium wavenumber,
kp(r,z) = w/c(r, 2). (10)

Since the environment is range independent and the sources are confined te the
vertical axis, Fiq. (9) can be rewritten as

f,(z,w)ﬁ(r).

2, L2 =
(V2 + k3(2)) ¥(r, z,0) = 225222 (1)
In the following the w dependence will be generally suppressed.
Next, we employ the Hankel transform pair
oo
g(k) = / G(r)Jo(kr)rdr, (12)
°
00
G(r) = / g(k)Jo(kr)k dk, (13)
0

where k is the horizontal wavenumber, and apply the forward transform, Eq. (12),
to Eq. (11), obtaining the depth-separated wave equation

2
(_d‘l; - (k- kf,,(z))) W(k,z) = %(f-) (14)

i.e. an ordinary differential equation in depth. The solution is the sum of a particular
solution ¥(k,z) to Eq. (14) and any linear combination of the two independent
solutions ¥~ (k, z) and ¥1(k, z) to the homogeneous equation

"_5’. - (k- k,’,,(z))) ¥(k,z) = 0. (15)

The total : ;lution for the depth dependence of the field, the so-called depth-depen-
dent Green's function, is therefore

(k,z) = B(k,z) + A~ (k)R (k,z) + A* (k)2 (k, z), (16)
where A~ (k) and A* (k) are arbitrary coefficients to be determined from the bound-

ary conaitions. The particular solution to Eq. (14) is most conveniently chosen to
be the field produced by the sources in the absence of boundaries.

S e e
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When the unknown coeficients are found, the total field at the angular frequency w
is found at any range r by carrying out the inverse Hankel transform, Eq. (13). Sim-
ilarly, the time response is determined by evaluating the inverse Fourier tracsform,

Eq. (8).

The basic property of the full wavefield solution technique is to restrict the depth
dependence of k3,(z) to cases where Eqs. (14) and (15) can be solved analytically,
limiting the numerical effort to determining the unknown coefficients 4~(k) and
At (k) from the boundary conditions and to evaluating the inverse integral trans-
forms.

In the following, the analytical field representations will be given for the media
included in the SAFARI model, followed by ». discussion of the boundary conditions
to be satisfied at the interfaces.

3.2. HOMOGENEOUS FLUID MEDIUM

For an ideal fluid, the equation of motion for angular frequency w is easily shown
to be satisfied if the displacements are expressed in terms of a scalar displacement
potentiai as

ik 3

Y= (17)
2%
v= o (18)

where u and w are the radial and vertical components, respectively, and the potential
¥(r, z) satisfies the wave equation, Eq. (9). The depth dependence of the fieid is
therefore of the form given by Eq. (16).

In the case of a homngeneous fluid layer, the medium waveaumber is
km(2) = B, (19)

i.e. the compressional velocity c. is constant not only in range but also in depth, and
the homogeneous soiutions obtained from Eq. (15) are simply exponential functions,

&*(k, z) = €%, (20)
®\k,2)= e, (21)

where

alk) = \/kf —hZ. (22)

T W TV R T
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If no sources are present in the layer, the total field then follows directly from Eq. (i3)
as

B(r,2) = -/o T [Ame 4 A*eos] Jo(kr)kdk. (23)

In physical terms, Eq. (23) is a decomposition of the total wavefield in upgoing (e®*)
and downgoing (¢~**) conical waves with horizontal vavenumber k.

The boundary conditions for fluid layers , discussed in Sect. 3.5, involve the vertical
displacement w and the normal stress o,, (equivalent to negative pressure in a fluid
medium). The vertical displacement follows frora Eq. (18),

o0
wir,z)= / [~aA~e " + aAte™] Jy(kr)k dk, (24)
0
whereas the normal stress follow fromn Hooke’s law,

Caz(r,2) = AV?&(r, .V = —pw? &(r, 2) = —pu’ / [A=e=* + A% e™?] Jo(kr)k dk.
0
(26)

If a source i3 present in the layer, the particular solutior to Eq. (14) has to added.
In the case of an omnidirectional point source, the term f,(z,w) in Eq. (11) takes
the form

fo(z,w) = =8,8(z - 2,), (26)

where S, is the source strength and z, is the source depth. It can be shown [30),
that in this case the particular solution to Eq. (14) is

- S., e—alz-zl|
®(k,z) = ﬁ—;—, (27)

and the corresponding source contribution to the total field again follows from
Eq. (13),
Su 0 p—ajz-z,]

a("v“’) = "4'; o

Jo(kr)k dk. (28)
If more sources are present in the layer their contributions are simply superimposed.
The displacements and stresses are derived analogously to Eqs. (24) and (25) and
become

20
w(r,z) = —%"i/o sign(z — z,)e~ %121 Jo(kr)k dk, (29)
= So 2 00 ,—a|z-2,|
au("v z) = - 4,:‘) Z Jo(kr)k dk. (30)

~-10 -
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3.3. INHOMOGENEOUS FLUID MEDIUM

Ia a real ocean environment the sound velocity varies with depth, and it is well
krown that this variatior us significant impact on the acoustic propagation. The
ocean waveguide can therefore not in general be represented by a single homogeneous
fluid layer. It can be shown, however, that if the range-independent ocean waveguide

is represented by an increasing number of homogeneous layers, a numerical solution-

based on the field representation for homogeneous layers will converge towards the
correct solution. However, a satisfactory convergence requires the layers to be less
than one quarter of a wavelength thick. Such a technique is therefore only convenient
for low frequency propagation in skallow water, and modelling of deep water or high
frequency propagation does require some sort of velocity urofile to be incorporated.

Since it is still necessary thai Eq. (14) can be solved annlytically it is obvious that the
ocean cannot in general be represented by & single layer, but has to be approximated
by a series of layers, within which the depth dependence of the field has an analytic
representation. A few examples of sound speed interpolation functions for which this
is possible are given in [15]. However, the actual choice of interpolation function is
not very critical since the profile is usually measured at discrete depths with a finite
uncertainty. In the SAFARI code the solution correspozding to the sound-speed
variation given in Eq. (5) has been implemented. In this case the homogeneous
depth-separated wave equation, Eq. (156), becomes

d’
(sz? - (k¥ - pwi(az + b))) $(k,z) = 0. (31)

By introducing the variable transformation,

¢=c¢3cz+4d)
= (;w?a) 3 (k? — pwP(az + 1)), (32)

the following equation is obtained:

(E‘% - () &(¢) =0. (33)

This is a special form of the Besse! differential equation, for which two independent
solutions are the Airy functions Ai(() and Bi({), [29]). Independent homogeneous
solutions to Eq. (31) are therefore

@t(k,z) = Ai(c™(k - (cz + d)), (34)
&~ (k, 2) = Bi(c~*(k? - (cz + d)). (35)

-11-
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The total field at angular frequency w is again obtained by evaluation of the inverse
Hankel transform, Eq. (13),

B(r,z) = /o " (A% Ai(¢) + A= Di(C)]Jo(kr)k dk, (36)

with the corresponding displacement and stress given by
w(r,z) = —clf? /o A* 4¢'(C) + A~ Bi'{()Jo(kr)k dk, (37)
Oua(r. 2) = —pu? /o m[A"A.i(() + A™ Bi(¢))Jo(kr)k dk, (38)

where a prime denotes the derivative with respect to the argument.

When a source is present in the layer the corresponding particular solution to
Eq. (14) again has to be added. However, even in the case of a point source it is
not straightforward to find such a particular solution. We will apply a small ‘trick’
to obtain analytical representations for the depth dependence of the field produced
by a point source at depth 2, in an infinite medium with the sound velocity given
by Eq. (). A thin homogeneous layer of thickness ¢ with sound speed c. = ¢.(z2,)
is introduced containing the source, Fig. 2. In the limit ¢ — 0, the solution of this
layered problem converges to the solution of the original problem.

L / Je
] i
c(z)

VZ

Fig. 2. Point source in inhomogeneous fluid medium.
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This 3-laves probiem is solved in exactly the same way in which the general multi-
layered problem is solved in SAFARI. As an illustration of this solution technique,
we shall here go through the details. In Fig. 2 the scund speed variation is shown
for the case in which a > 0, i.e. lim, .0 ¢c(#) = 0 and lim,_,_y/q cc(2) = c0. The
argument { to the Airy functions, Eq. (32), thereforc has the limits

(= oo, (%9)
(= oo (40)

Since no sources are present in the two halfspaces, the fiald in both is given by
Eq. (36). The field, however, must satisfy the radiation condition for z — oo,
which immediately reduces the number of unknown coeflicients. Since the field

must be limited and lim¢_, ., Bi({) = o0, the depth dependence of the field in the
upper halfspace must be of the form

&, (k, z) = A Ai((). (41)

Similarly, the radiation condition requires that only downgoing waves exist for z —
0o. Because of the asymptotic behaviour of the Airy functions for { — —oo [29), it
is required that the field in the lower halfspace be

P3(k, 2) = Ay (4¥(() +iBi(())- (42)

For the intermediate isovelocity layer, the depth dependence of the field is directly
obtained from Eqs. (20), (21) and (27) as

S e‘“l“i’)'
oA

e A p—aX + as
B3(k,z) = Aye ™" + Afe +41r =

(43)

The pext step is to satisfy the boundary conditions of continuous vertical displace-
ment and stress at the two interfaces, whick are so -lose together that they can both
be considered to be at depth z,, leading to the following system of equations:

AF (=2 48(0) - a-47 + AF) = 2, (44
ATANC) + (A7 FAD) = -2, ()

Ca(-A7 + Af) - A7 (=<'} (A(C) +iBI(G)) = %, (46)
~(45 + AF) + 47 (A¥(G) 4 9BiG) = o (41)

-18 -
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All terms involving the coefficients A; and A] are easily eliminated by pairwise
addition, and the rosulting two equations give the following solutions:

Af = Sw 2¢-1/3( Ai((,) + iBi(,)) (48)
~4x AV(G)(A(C,) +iBi((.)) - Ai(G)(A(C) + iBi'(())
Ay =S 211 4i(G,) (49)

~ax AP((,)(AN(C,) +iBi(()) ~ Ai(G)(49(C) + B ()

The source field representations for the case where the sound speed increases with
depth, i.e. a < 0, can of course be determined i the same way, but it can also be
determined right away by symmetry considerations. The choice of depth axis z is
arbitrary, and we can therefore perform the variable transformation z — —z. This
will also change the sign of a in Eq. (5), and, as can be observed from Eq. (32), € is
then invariant to this transformation, and the results above are therefore still valid;
they just have to be interchanged between the two halfspaces. The field produced
by a source in an inhomogeneous fluid layer therefore has the integral representation

$(r,z) = - % /o " Jo(kr)k dk

( 2713 Ai() + iBi(6))4i(¢)
AP(C)(ANC,) +iBi(C,)) — Ai(C)(A(C) +iBV((,))’
a(z - Z.) < 0»
X 4 (50)
2¢~1/3 Ai( ¢, )(A(¢) + $Bi(())
AV(C)(AIC) + $Bi((,)) — A(C)(ANC) +3Bi((L))’

| a(z - z,)2>0.

The resulting stresses and displacements are denved as they are for the homogeneous
case. Note that, as was the case for a source "1 a homogeneous layer, the kernel
in the integral reprosentation for i(r, z) is continuous at the source depth, but the
depth derivative is discontinuous. If more sources are present, their contributions
are simply superimposed.

-14-
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3.4. HOMOGBNEOUS SCLID MBDIUM

For a Lomogsneous and isotropic elastic solid, it can be shown [8), that the equation
of motion is satisfied if the displacements are expressed in terins of scalar potentials
(8,9} s

18

9 9?
u(r, 2) = ai(r, z)+ m\!(r, z), (51)
wlr, 2) = -:;i(r,z)— ;l_-%rg:\l(r,z), (52)

where the potential: :n the absence of sources satisfy the uncoupled homogeneous
wave equations

3

(v’ - é%,—) &(r,z,t) = 0, (63)
3

(v' - ;‘?g%) Wr,2,8) = 0, (54)

¢ and ¢, being the compressional and shear vulocities, respectively, ziven in terms of
the Lamé constants in Eqs. (1) and (2). Both these equations are of the same form
as Eq. {6) and can therefore be depth-separated. As in the case of a homogeneous
fluid, the constant wave speeds lend to simple exponential functions in depth, and thLe
potentials therefore have ti.e following integral representations for anguiar frequency

w:
&(r,2) = /:O[A"e"“' + At e®*|Jo(kr)k dk, (55)
¥r,z) = / C1Bm =% 4 Bt eP*)Jy(kr) dk, (56)
0
where
a(k) = /EF —hL., (57)
Blk) = /I - &3, (58)

The mediura wiverumbers A,, and k,, are for compressional and shear waves, re-
spectively. By means of Egs. (51) and [52), the following integval reprcsentations
are obtained “or the dispiacaients,

o0
u(r,z) = /° {_SATe™ — kA*e™ 4 PR e~P* — BB P¥) I (hr)kdk, (59)

13(1'. 3) = !/.“ [—-GA"C-‘" + GA+¢‘" + hB_C_“ + bB+¢p.] Jl(h')bdkv (60)

-15 -
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anc the normal otress o,, and tangentinl stress o,, follow from Hooke's law,
8u

Tulrz)= (V4 2 ge + AT

= ,u/ [(2&’ —k)[A7e ™ 4+ Ate™)
0

~ 2kB[B-e P _ 3+eﬁ']] Ju(kr)k dk, (61)

du  Ow
Ors(r,z) = pb (5; + E)

—u / [2kafa-e=s - a*e=

_ (2K — k3)[Be~P* 4 B+eﬂ']] Jy(kr)k dk. (62)

In a solid medium, integral representations for several types of sources can be de-
rived, including point forces and force couples. A number of examples are given by
Ha krider [31). In the SAFARI code, two source types are available for solid media.
One is a compressional point source equivalent to the one used in fluid media. The
compressional point source involves the compressional potential & on'y, with the
integral representution

oo -all -z,
B(r,z) = ¥ /o S Jo(krk dk. (63)

The corresponding displacement and stresses again ‘ollow from Eqgs. (51),(52) and
Hooke's law:

Sy [ ke cls=2l

B(r,2) = - 3= | i)k, (64)
(r,z) = —i‘i / ” sign(z — z,)e~5= 211y (kr}k dk, (65)
3,,(0',:)— / (2k? — k) IJo(kr)chlc, (66)
Frs(r,2) = %‘;—" A 2ksign(z — z,)e "%l gy (kr)k dk. (67)

The second implemented source type is a vertical point force, with the following
integral representations for the potentials [8]:

&(r,z) = % /o sign(z — z,)e~ %1 Jo (kr)k dk, (68)

-16 -
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. o0 -fSlz—1,)
%,;):%;- /o : ,:G Jo(kr)k dk. (69)

Integral representations for the displacoments and stresses are again obtained from
Eqs. (51),(62) and Hooke's law:

i(r, 2) = -f—: /o ~ sign(z — 2,)k [e"’""" - e"’"""] Ji(kr)kdk,  (70)
B(r,z) = —%— /o ” [oemete=ret — k39t e=Ple=sal] Jo(kr)k dk, (1)

ualr, )= 52 [ il - 2)
X [(zk' k2 )eolsmnl L gpte-rle-a l] Jo(kr)kdk, (72)

Fralr, 2) = -S-f;‘i /o > [2kae"°‘|‘""| - (k387! +kﬂ)e"""‘"] Jy(kr)kdk. (73)

3.5. BOUNDARY CONDITIONS

The field at each interface now has two distinct integral representations, one from
the layer above and one from the layer below. Depending on the type of interface,
a certain set of boundary conditions has to be satisfied.

o If thu interface is separating two fluid layers, the vertical displacement w and
the normal stress ¢,, have to be continuous. If one of the media is a vacuum,
the normal stress ¢,, must vanish.

o If one of the lavers is solid and the other is a vacuum, both o,, and o,,
must vanish, whereas the fluid/solid interface requires that w and o,, must
be continuous and o,, must vanish.

o At a welded interface between two solid medis, w, u,0,, and o,, all have to
be continuous.

The boundary conditions for the different types of interfaces are summarised in
Table 1.

Since the boundary conditions have to be satisfied at all ranges r, it is obvious that
they must be satisfied by the kernels in the integral representations as well. The
radiation conditions for z — +oo together with the conditions to be satisfied at all
interfaces simultaneously, lead to a linear system of equations in the unknown kernel
coeficients A~, A1, B~ and B*. In principle, this system has to be solved for all

-17 -
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Table 1
Boundaty conditinns®
Type Field parameter

w 1) O3 Oas
fluid/vacuum - - 0 -
fluid /filuid = = -
fluid/solid = - = ]
solid/vacuum - - ] 0
solid / solid = = = =

¢ Symbols used: =, continuous; 0, vanishing; -, not in-
volved.

values of the horizxontal wavenumber k, and the total field can then be determined
by evaluating the inverse transforms. Except for a few trivial cases, however, both
the solution of the linear system of equations and tke evaluation of the inverse
transforms have to be done numerically, requiring truncation and discretisation of
the horisontal wavenumber axis.

3.6. ATTENUATION

It is well known that sound propagating in the ocean bottom undergoes a significant
attenuation due to the dissipation of seismo-acoustic energy into heat. It is there-
fore crucial to a realistic prediction of the propagation characteristics that volume
attenuation be taken into account. In the present full wavefield solution technique
this is straightforwardly done as shown below.

Assume a plane harmonic wave of angular frequency w propagating in a homogensous
medium along the positive z-axis of a cartesian coordinate system. With the present
choice of time-frequency transform pair, Eqs. (7),(8), such a wave has the form

F(z,t) = AciWt-tma) (14)

where k,, is the medium wavenumber for either compressional or shear waves and
A is the amplitude. If k,, is real, this wave has constant amplitude for all ranges =.
It can be shown (82}, however, that viscoelastic attenuation can be accounted for by
letting the medium wavenumber k,, be complex, i.e.

-~

Em = kn(1-i8), §>0. (76)
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T . the wavefield becomes

F(z,t) = Ae~Shmeci(vt-hme) (78)

Now the amplitude is decaying exponentially in range as is required for linear vis-
coelastic fluid and solid media. Since the full wavefield solution technique is based
on plane-wave decomposition as described above, it is obvious that a viscoelastic
attenuation is taken into account by letting the medium wavenumbers and therefore
also the Lamé constants be complex:

A= A+i), (1)
b=p+ip. (78)

It has been experimentally observed 8,32}, that most solid media exhibit an atten-
uation that increases linearly with frequency, i.e. § = const. For these solids,
Al + 2 pl _l_
A+2p Q'
1

(79)

pl
LA 80

b Q (80)
where Q. and Q, are constants. By inserting the complex Lamé constants in Egs. (1)
and (2), we get from Eqgs. (10) and (75) the following value of § for compressional
and shear waves respectively, assuming Q.,Q, » 1:

1

6¢ = ia, (81)
1

b= 50 (82)

In vaderwater acoustics it is more common to express the linear frequency-dependent
attenuotion in dB/A (where A is the wavelength):

F(z+ At)
F(z,t)

27.29

v = —30log = ~20log [e~¥*4] = 40xsloge ~ (83)

Although the solution technique is valid for any value of the attenuations, these
must be physically meaningful. Thus it is required that a pure dilatation of a solid
medium does not produce energy. Therefore the bulk modulus, K = A + #pu, must
have a positive imaginary part, which is easily shown to require

Ye €,

-19 -
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The linear-elastic fluid media are merely limiting cases of solids with 4 — 0, and
the sttenuation is therefore introduced accordingly.

In addition to the volume attenuation described above, scattering at rough inter-
faces also attenuates the stress waves in stratified environments. Since the depth-
separation solution technique requires all interfaces to be plaue and parallel, a deter-
ministic treatment of rough surface scattering is not possible by means of the present
method. Such a deterministic treatment is, however, only of academic interest, since
the roughness appearing in nature is cither rapidly changing (as in the case of ocean
surface waves) or is not sufficiently well described to permit direct modelling. The
statistical roughness characteristics, on the contrary, are relatively slowly varying
and can be more easily determined even for the ocean bottom.

If the roughness iz small compared to the acoustic wavelength involved and the
roughness characteristics are stationary in both space and time, it is possible by
means of a perturbational approach to modify the boundary conditions in such a
way that the effect of the roughness on the coherent (mean) part of the field can be
taken into account by the present solution technique. Such a technique, originally
developed for fluid media only, has been generalized to interfaces between solid
media and implemented in the SAFARI code [25]). The actual perturbation theory is
not of importance to the general use of the code, and therefore only the underlying
assumptions concerning the roughness characteristics will be given here. For details
reference is made to [25).

The interface elevation at a point with the horisontal coordinates giver: by the vector
r is y(r). This function is only determined in terms of its correlation function N(R),
defined by

NR)=(y(r1)r(r2)), R=r-nr (85)

or in terms of the two-dimensional Fourier transform of the interface-rou hness
power spectrum P(s),

N(R) = ()5; [ Eap@)esn, (86)

where (7?) is the ;ms value of the roughnees. In SAFARI only isotropic roughness
can be treated, i.e. the interface correlation depends only on the horizontal distance
| R} between two points, not the direction. Further, the spectrum - of course also
isotropic — is assumed to be gaussian:

P(s) = L’e'}l‘,"'i, (87)
where L is & characteristic correlation length for the interface roughness. The inter-
face roughness statistics are therefore described entirely by the rms roughness (y?)

and the correlation length L. These parameters may, of course, vary from interface
to interface. For the perturbation expansion to be valid, it is required that v/L < 1.

-920 -
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4. Numerical solution technique

The numerical solution of the full wavefield problem divides naturally into three

parts. First the depth-dependent Green’s function is found at a discrete number of
horisontal wavenumbers for the selected receiver depths. Secondly, the wavenumber
integral, Eq. (13), is evaluated, yielding the transfer function at the selected depths
and ranges. Finally, upon repetition of the first two steps at selected frequencies,
the frequency integration, Eq. (8), is performed to yield the total response in time.

It is clear that the three steps are not independent. In particular, the frequency and
wavenumber sampling cannot be chosen arbitrarily, but have to satisfy the require-
ments of the sampling theorem. The frequency interval depends on the bandwidth
of the source and the time window must be sufficiently large to contain the whole
signal in order to avoid wrap-around, which again imposes requirements on the fre-
quency sampling. Similarly, the wavenumber sampling must be sufficiently large to
allow accurate integration of the often rapidly varying and oscillating integrand in

Eq. (13).

Depending on the time/frequency and range/depth requirements, the determination
of the depth-dependent Green's function may have to be performed a substantial
number of times. The efficiency of the code is therefore highly dependent on this
part, and it is precisely here - in the global matrix approach - that the SAFARI code
differs in computational approach from recursive propagator matrix techniques used
in earlier codes of the same type.

The global matrix solution technique forms the basis for all three SAFARI modules.
SAFARI-FIPR calculates plane-wave reflection coefficients for an arbitrarily strati-
- fied halfspace. SAFARI-FIP first calculates the depth-dependent Green’s furction
and then evaluates the wavenumber integrals to obtain the single-frequency seismo-
acoustic field at selected receiver depths and ranges. The last module, SAFARI-FIPP,
performs the same operation for a number of frequencies, and after weighting with
a source spectrum it determines the pulse response at any receiver by evaluating
the frequency integrals. In this section we will describe in detail the numerical
techniques applied in all three program modules.

-21-
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4.1. DEPTH-DEPENDENT GREEN'S FUNCTION

The use of digital computers for numerically solving field problems in continuous
media in general requires some kind of discretization. One possibility is to set up
the exact field equations for the continuum and subsequently find an approximate
solution by discretization of the equations. This is the approach taken in finite
difference techniques. The other possibility is to discretize the medium itself and
then in effect let the computer numerically determine an exact solution to this now
approximate problem. The best-known example of this latter approach is the fi-
nite element method [2]. This technique is based on the division of the continuum
into finite blocks or elements connected to each other at a finite number of discrete
nodes. Exact local solutions for the single elements, together with the continuity
between the elements, concentrated in the nodes, lead directly to an exact solu-
tion for the approximated global problem. This, however, requires the solution of
very large linear systems of equations in the unknown degrees of freedom (typically
node displacements). The unavailability of sufficient computing power until the last
decade delayed the widespread use of this powerful technique, which today is the
most widely employed methodology in structural and fluid mechanics, for example.

In this regard, it is easily observed [19,23] that the integral transform soiution of
the wave equation for horizontally stratified environments is of the ‘finite element’
category. The local expressions for the depth-dependent Green’s function are exact
within each layer (element), and thus an exact global solution can be obtained
directly from the boundary conditions to be satisfied at all interfaces (nodes). It
is therefore not surprising that the numerical implementation can be performed in
close analogy with the finite element method using efficient numerical tools created
within the last decades.

In order to develop this analogy formally, the basic properties of the finite element
method will be briefly outlined at this point. For details reference is made to the
pertinent literature [2].

The simple static element in Fig. 3s is chosen as a representative example. It has
four degrees of freedom, here the four independent node displacements {u},, =
{rt1,u3,us,w}. The corresponding node forces {p},m = {P1,P2,Ps,p4} are then
given by '

{P}m = [klm{u}m, m=12...N, (88)
where [k],, is the local element stiffness matrix and the subscript refers to the actual
elemient number. N is the total numwber of elements. As the nodes are in general

common to more elements, it is here convenient to introduce a global degree-of-
freedom vector {U} defined by

{u}m = [L}m{U}, m=1,2...N, (89)

where [L]m, 8 topology or connectivity matrix for element m, is an extremely sparse
matrix with only four non-venishing elementz equal to unity. The mapping de-
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Fig. 3. Analogy to finite element method: (a) finite element with four
degrees of freedom; (b) finite wave element with four degrees of freedom.

fined by Eq. (89) directly reflects the connectivity conditions governing the globally
assembled element system in question.

At this point & variational principle, often Hamilton’s principle of stationary energy,
together with Eqs. (58),(89) leads to the following linear system of equations having

u | to be satisfied:
[K{U} = {R}, (20)
! where [K| is the global stiffness matrix
~ N
(K) = 3" (L]R[Elm[L]m, (91)
m=1

and {R} is the globai external force vector

{R} = Y [LIn{r}m. (92)

m=1

The local vector {r},, represents the external forces acting on element number m,
again concentrated in the nodes.
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It is not necessary here to go into details concerning the actual implementation of
the finite element equations, but it is important to note the structure of the global
system of equations, Eq. (90). Since the topology matrices contain only seros and
ones, the matrix multiplications in Eqs. (90) and (91) never need to be performed,
but can be replaced by a set of indices (pointers) indicating the row and column of
the global stiffness matrix where each element of the local ones have to be added.
The actual generation of the global stiffness matrix can therefore be performed very
efficiently once the local ones have been determined.

Returning to the determination of the depth-dependent Green’s function in stratified

siedia, the fact that the horizontal range dependence has been removed by the
depth-separation yields the possibility of effectively representing each layer as a
one dimensional ‘finite wave element’, as shown in Fig. 3b, in formal analogy to the
standard finite element discussed above. The degrees of freedom for this element are
simply the amplitudes A, A}, B, and B}, of the corical waves in Jayer number m.
These are conveniently collected in a local degree-of-freedom veviur {a(k)}m, where
k is the horisontal wavenumber:

An(k)

(alk)}m = ﬂg:; . m=12...N. (93)

BL(%)

If the kernuls for the field parameters involved in the boundary conditions are ex-
preseed in vector form as

w(k,z)
(k=] WD U 2., (94)

0s:(k, z)
cn(ka z)

the following matrix relation is obtained for the homogeneous part of the sclution
in layer number m

{v(k, z)}m = [e(k, 2)lm{a(k)}m. m=1,2...N. (95)
The local coefficient matrix {c(k, 2)] is a function of the horisontal wavenumber k

and the depth z. For the homogeneous layers the depth is involved in the exponential
functions only, and in these cases the coefficient matrix can be factorized as

le(k, 2)lm = [d(k)Im[e(k, 2)lm, (96)

where [d(k)}m is & depth-independent matrix containing only simple functions of k,
and fe(k, s} is & diagonal matrix containing the exporentials.
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The kernels for the source field {V(k, z)},, are now superimposed with the kernels
for the homogeneous solution, and the continuity of the field parameters at interface
number m separating the layers m and m 4 1 can then be expressed as

{v(k)}m + {¥(k)}m = {v(k)}mss + (W(B)kmyy, m=12..N-1, (97)

where the depth z of the interface has been removed and replaced by a superscript

indicating the interface number. If Eq. (97) is rewritten as

{v(k)}m — {v(k)}msr = {¥(E)}msr — {O(k)}m, m=12..N-1, (98)

it expresses the cancellation of the discontinuity in the source field by the discon-
tinuity in the homogeneous solution. The interface discontinuity vector {v(k)}™ is
therefore introduced as

{v(k)}™ = {v(k)}7 - {v(k)}myy, m=1,2..N-1, (99)
and similarly for the source field discontinuity vector {v(k)}™.
In order to assemble the local equations, Eq. (98), into a global system, the global

degree-of-freedom vector { A(k)} in the upgoing and downgoing wavefield amplitudes
is first introduced, defined by the unique local-to-global mapping

{a(E)}m = [S]lm{A(k)}, m=1,2...N. (100)

After insertion of Egs. (95) and (100), the discontinuity vector, Eq. (99), takes the
form

{v(k)}™ = ([e(B)JR[SIm = [e(E)ImiSlme1) {A(K)}, m=1,2...N-1. (101)

We now introduce a second unique mapping, collecting the local field discontinuity

vectors {v(k)}™ into one global discontinuity vector {V(k)},

N-1
{V(k)} = Y [TI™{v(k)}™, (102)

m=1

which after insertion of Eq. (101) becomes

N-1
(V(E)} = D ITI™ ({e(R)ImISIm = [c(k))ms[STms1) {A(R)}. (103)

m=1

Similarly the global source-field discontinuity vector {¥’(k)} is

N-1
V(1)) = Y (11 ((3(k)}m - {(()}msa) - (104)

m=1
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Fig. 4. Mapping between local and global coeflicient
matrices by means of row and colur=n pointers.

The giobal cancellation of Eq. (103) by Eq. (104) therefore requires the following
linear system of equations to be satisfied:

[C(){A(R)} = -{V(k)}, (106)
where [C(k)] is the global coefficient matrix

N-1
[C(B)] = 3 (T ([e(RNm[S)m ~ [e(k)mi [STms1) - (106)

m=1

As can be observed, the global system, Eq. (105), is very similar to the finite element
systom, Eq. (90). The mapping matrices [T'|™ and [S),, are equivalent to the topol-
ogy matrices [L]n, defined for the finite element method in E/|. (89). However, due
to the fact that the governing boundary conditions for the wave equiation are not set
up in the unknowns directly, but in derived quantities, two sets of topology matri-
ces are needed here: one for the local-to-global mapping of the degrees of freedom,
i.e. the wavefield amplitudes, and one for the physical parameters, i.e. displacement
and stresses involved in the boundary conditions.
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The matrices [S]m and [T|™ are extremely sparse, containing oaly seros and ones.
Since the mappings of Eqs. (100) and (102) are unique, the correspording sum-

. mations and matrix multiplications in Eqs. (104) and (106) need never actually be

performed but can be replaced by a unique set of pointers, connecting the elements
of the local systems with those of the global system, as illustrated in Fig. 4. As is
the case in finite element programs, the topology matrices are therefore never set up
in the actual computer code. Their formal use in Eqs. (104) and (106) is, however,
very convenient in the general fluid/solid/vacuum case. The topology matrix [S]m
is set up to include only the non-vanishing wavefield amplitudes, e.g. in the upper
and lower halfspaces only those corresponding to upgoing (A*, B*) and downgoing
(A, B~) waves respectively, and in fluid media only A~ and At. Similarly, [T]™
is set up to include only the actual number of boundary conditions at interface m,
as deacribed in Sect. 3.5. This ensures that the global coefficient matrix is a square
matrix and also reduces the total number of equations and unknowns compared to
the purely solid case.

The pointer indices defined by the mappings of Eqs. (100) and (102) depend solely
on the number of unknowns within each layer and the boundary conditions at each
interface. They are therefore both frequency and wavenumber independent and can
be determined a priort.

In this notation, the set-up of the global coefficient matrix requires only the calcula-
tion of the elements of the local coefficient matrices [¢(k)]m, followed by the indexed
move defined by the mappings given in Fig. 4. The subsequent solution of Eq. (105)
then yields the unknown wavefield amplitudes in ail layers simultaneously.

Although the global system of equations, Eq. (105), is analytically well conditioned,
apurt from poles corresponding to normal modes and interface waves, its numerical
solution is not necessarily stable. However, by choosing the mappings such that
the coefficient matrix becomes block-diagonally dominant it is possible to ensure
unconditionally stable solutions using gaussian eliminution with partial pivoting.

. This important feature will be discussed in the following,

The difference in absolute dimension between the displacements and stresses can
yield a difference of several orders of magnitude between the coefficients in the cor-
responding rows for both the local and global systems. As is well known in such
cases, simple gaussian elimination, with or without partial pivoting, will not guaran-
tee unconditional numerical stability. In the SAFARI| implementation, the coefficient
matricer are therefore scaled to make all elements physically dimensionless.

Although from a theoretical point of view the origin of the depth axis can be chosen
arbitrarily, its choice is quite critical for the numerical stability. The Airy function
solutions for the inhomogeneous fluid layers are invariant to the choice of origin,
but this is obviously not the case for the isovelocity layers. First of all, a common

origin for all layers is inconvenient due to the limited allowed arguments to the
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exponential functions. A local origin is therefore used for each layer, but this still
does not ensure numerical stability for large layer thicknesses and large horisontal
wavenumbers where the real parts of arguments to the exponential functions become
significant (the evanescent regime). In these cases argument overflow may of course
appear, but even before this happens numerical instability may appear due to the
fact that the difference between the growing and decaying exponentials exceeds the
machine precision. This problem can be avoided by factorizing out the exponential
functions growing in depth [33], but unconditional stability can also be obtained
by very simple means not requiring any additional computational effort, just by
observing the physical significance of the problem and adopting a numerical ‘trick’
from the finite element technique. This is the key to the efficiency of the SAFARI
code and will therefore be discussed at this point.

The physical significance of the evanescent regime for a certain layer is that the
wavefield in the absence of a source is a superposition of two exponentially decaying
fields, one arising from a noa-vanishing field at the interface above, the other from
the interface below. Now assume that sources are only present above the actual
layer. Then the field decuying away from the lower interface (¢®*) can only be due
to ‘reflection’ from this interface of the field decaying away from the upper interface
(e~2*). If, however, the layer is very thick or the horizontal wavenumber is large,
the amplitude at the lower interface of the downwards decaying field is insignificant,
and the upwards decaying field will be practically non-existent. In other words, the
layer containing the evanescent field will behave exactly like an infinite halfspace.

It is obvious that numerical stability can be obtained in these cases if th« environ-
mental model is truncated by replacing the thick layer by an infinite halfspace. This
would, however, introduce significant book-keeping problems and rearrangements of
the global system of equations, seriously affecting the computation time.

Instead it is possible to take advantage of the knowledge about the vanishing up-
wards decaying wavefield in another way, simply adopting a numerical trick from
implementations of the finite element technique. If a certain node displacement is
known to vanish it is not removed from the degrees of freedom; instead the corre-
sponding diagonal element in the global stiffness matrix is set to a very large number.
This automatically ensures that the node displacement obtained by the solution will
vanish numerically.

_In the present case we know that the amplitude of the upward-decaying field must

vanish. This cou'd be accomplished by placing a large number in the correspond-
ing diagonal element in the global coefficient matrix. Again, however, complicated
book-keeping is involved. The same result can be obtained almost free of charge
in the following way. First the interface above the layer is selected as the Jocal
origin for the depth axis. This removes the exponential functions from the local
coeflicient matrix at this interface. Then the argument to the exponential func-
tion is truncated at a value close to the maximum allowed for the actual computer.

-928 -
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This avoids overflow problems and at the same time yields very large numbers in the
cclumns of the global coefficient matrix corresponding to the upward-decaying fields.
It can now be shown [20,21], that gaussian elimination with pivoting by columns
will automatically force the corresponding amplitudes to vanish numerically if the
mappings of Eq. (100) and (102) are chosen such that the global coefficient matrix
becomes block-diagonally dominant. In essence this is obtained by assembling the
local systems in consecutive order and placing the coefficients involving the large ex-
ponential functions close to the diagonal of the global matrix. When the amplitude
of the upward-decaying field is thus forced to vanish, the solution obiained for all
wavefield amplitudes in the other layers is indistinguishable from the one obtained
if the thick layer had been replaced by a halfspace.

Similar arguments can be used to show that also in the case of sources below or
within the thick layer the SAFARI technique is unconditionally numerically stable.
Concerning the inhomogeneous fluid Iayers, the two independent soluticns Ai(({) and
Bi({) exponentially decay and grow respectively for { — oco. The stability in cases
where these are involved is therefore ensured in exactly the same way as described
above.

In summary, unconditionally stable solutions are obtained simply by choosing a
proper local coordinate system and a proper local-to-global mapping in connection
with gaussian elimination with partial pivoting. The solution technique is stable
for any machine precision. Double precision is therefore not required for stability
purpose, but the dynamic range is of course limited to the number of mantissa digits
available, due to the global nature of the solution. For most purposes, however, the
6-7 orders of magnitude offered by single precision is more than enough.

When the global system of equations, Eq. (105), has been solved, the kernels in
the integral representations can readily be evaluated at any depth. The present
technique is therefore highly efficient in cases where the total wavefield is to be
determined at many depths, e.g. for depth-range contouring of single frequency
transmission loss and for synthetic vertical seismic profiling (VSP).
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4.2. REBFLECTION COEFFICIENTS

The determination of plane-wave reflection coeflicients of a stratified halfspace is of
great interest in both underwater acoustics and seismology for several reasons. It is
required as input to the widespread ray-tracing codes and it forms the basis of the
synthetic reflectivity seismograms commonly used in crustal seismology [23]. Fur-
ther, the nplane-wave reflection coefficients are often used for ocean bottom-property
inversion schemes.

The full wavefield solution technique is based on a decompusition of the total wave-
field in conical waves for cylindrical geometry and plane waves for plane cartesian
geometry. We have here given the field representations in cylindrical geometry, but
the similar plane-geometry representatiors are obtained simply by replacing the
Hankel transform with the Fourier transform; the kerneis are identical in the two
cases [21]. The relation between the horizontal wavenumber k and the grazing angle
0 of propagation for an isovelocity layer is

k= kycosd, (107)

where the medium wavenumber k,,, may correspond to either compressional or shear
waves. As can be observed, only wavenumbers k < k,, correspond to real angles.

We shall now demonstrate that the plane-wave relection coefficient R(8) for a wave
incident from above at angle & on a certain interface is straightforwardly found by the
present solution technique. The layer above the interface is replaced by an infinite
halfspace. By letting the source field be a plane wave incident at angle § and with
amplitude A~ (k) = A~ (km cos 8) at the interface, the solution of the global system
of equations for this new layered problem will directly yield the complex amplitude
of the reflected plane wave A+ (k) = At (k,, cos8), and the reflection coefficient can
be determined by

A*(kp, cos 8)
A-(kmcos8)’

Both the incident and reflected waves may of course in general be either compres-
sional or shear waves. As the global solution is exact to within machine accuracy,
the same is the case for the reflection coefficients, i.e. no approximation except for
the environmental model is involved.

R(6) = (108)

The SAFARI-FIPR module computes the plane-wave reflection coefficients for inci-
dent compressional waves only, since a standard SAFARI compressional line source -
placed just above the interface - is used to produce the incident plane wave; however
the calculated reflection coefficient may be sither for reflected compressional waves
or for reflected shear waves.

It should be pointed out that the reflection coefficients calculated in this way are
for true plane waves. Plane-wave reflection coefficients are difficult to determine

A cnanshaas I Sl S 4

-y
e

P unliy




g-—————T—v——— ST T I N S T A e A
t»_
-
2
]

DACLANTOEN SR-113 4 — Numerical solution technique

experimentally [22], which should be kept in mind when comparing synthetic and
experimental reflection data.

4.3. WAVENUMBER INTEGRATION

The horizontal wavenumbers at which the depth-dependent Green's functions have
to ba determined are controlled by the numerical integration scheme used for evalu-
ating the integral representations for the displacements and stresses. These Hankel
transform integrals are of the form

©0
G(r, ) = / 9(k, 2)Jm(kr )k dE, (109)
°
where m = 0 except for the horisontal displacement and shear stress where m = 1.

To evaluate these integrals numerically, a truncation of the infinite integration in-
terval is required. Due to the exponentially decaying kernels for k — oo this can be
done to any degree of accuracy. In most cases a truncation point 10 to 20% higher
than the maximum medium wavenumber in the problem will include everything.
There are, however, exceptions when solid layers are present. In these cases poles
may exist due to evanescent surface, interface or plate modes. Especially in the case
of thin plates, very large wavenumbers are involved. It is therefore important to be
aware of the behaviour and significance of these waves in order to choose a proper
integration interval.

Even with a proper truncation there are two factors complicating the numerical
evaluation of the Hankel transforms. One is the kernel, which in the case of guided
propagation in lossless media is known to have poles on the real axis corresponding
0o normal modes and interface waves [6]. In the more realistic cases where vol-
ume attenuation is included, these poles will move out into the complex plane, in
principle making real axis integration possible, but the kernel will in most cases re-
main rapidly varying. The second complicating factor is the Bessel function Jo,(kr),
which especially for long ranges r oscillates very rapidly in k. Therefore an accurate
evaluation of the Hankel transform will usually require a very fine sampling in the
wavenumber k.

There are algorithms available for directly evaluating the Hankel transform. The one
developed by Tsang [34], however, requires the evaluation of an FFT for every range
selected, but even more importantly it requires a numerical separation parameter
which is not easily selected. The so-called Fast Hankel transform [35] is very efficient
for relatively smooth kernels, but not well suited for the rapidly varying kernels of
the waveguide problems.

Nevertheless it has been shown [15] that except for ranges shorter than a few wave-
lengths and very steep propagation angles, accurate evaluation can be obtained by
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an asymptotic approximation. First the Bessel function is expressed in terms of two
Hankel functions
Im(kr) = } (H,(,})(kr) + H,(,:)(kr)) . (110)

With the present choice of time/frequency transform the term H O )(kr) corresponds
te incoming waves which are only important for representing the standing wavefield
at very short ranges. This term is therefore neglected, and HQ )(kr) is replaced by

its asymptotic approximation

2 ,
. (2) = - ~|(kr—(m+})}l)
Jim, B = e ~ o
The inverse Hankel transform then takes the form
G(r,z) = ,/ L i(med)de / g(k, z)VEe="* dk. (112)
2xr o

Due to the desire for generality, which excludes the use of dedicated quadrature
schemes, the truncated wavenumber space is discretised equidistantly in SAFARI as
follows:

ki = ki + AR, 1=0,1...(M-1), (113)

where M is the total number of sampling points.

The value of the field is often required at a large number of ranges r, in particular
in connection with the common underwater acoustics problem of determining trans-
mission loss as function of range. In these cases the Fourier integral in Eq. (112)
is very efficiently evaluated by means of the so-called ‘Fast Field’ approach [15].
This technique is therefore applied in the single-frequency transmission-loss pro-
gram SAFARI-FIP. The range axis r is discretised as

P5 = Foin + jAr, i=0,1...(M-1), (114)
where the range step Ar is determined by the relation
ArAk =2x /M, (115)

and M is an integral power of 2. The following discrete approximation of Eq. (112)
is then obtained:

Ak, _ M . .
G(rj, z) = e~ (hminri ~(m+ $)}v) g(ky, z)e~srmintab ) o= ianii/iM)
( J Ftr,- g; [ l 1]
(116)

where the summation can be performed by means of an FFT yielding the field at
all M ranges, Eq. (114), simultaneously.
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It is well known from the use of the FFT for time/frequency transformations that
undersampling in one domain causes aliasing (wrap-around) in the other domaijn.
This is also the case here, where the kernel is often rapidly varying due to poles and
branch points close to the integration axis. The reason is [36) that the evaluation of
Eq. (116) does not yield G(r, z) but instead 372 _ ., G(r+nR, 1), where R = 23x/Ak,
i.e. a sum of the signals in all range windows of width R = M Ar. As can be observed,
wrap-around will happen from both sides of the actual interval and therefore also
from ranges smaller than ry,,. The negative range axis does not give any significant
wrap-around due to the fact that only waves travelling in the positive range direction
are included. However if rp,y > 0 the signals in the interval (0, r,,,] are wrapped
into the interval (R, rmis + R]). Consequently the mazimum useable range is always
R = MAr, independent of the choice of Pmyin.

In the case of lossy media, the aliasing from ranges larger than rp,i, + R can be
reduced by choosing R 30 large that the signal is known to die out within the range
window. Huwever, we see from Eq. (115) that a long range may require a substantial
number of wavenumber samples, especially when the wavenumber interval is fixed.

A
Keie -
Voo
c— Y I [T
~ N
Poles
\ Brench cut for Vik*-k’,

Fig. 5. Complex integration contour.

The aliming problem can, however, be solved by moving the integration contour
away from the poles, i.e. by smoothing the kernels. According to Cauchy’s theorem
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the integrals in the complex plane between two points is invariant to a change in the
integration contour. Therefore Eq. (112) can be replaced by

G(r,2) = ‘/2—:;e'.('"+”*'/cg(k,z)\/;e""" dk, (117)

where C is the contour shown in Fig. 5. The contour consists of three linear sections
Ci, C; and Cs, where the vertical sections of length ¢ are chosen at the points
where the wavenumber axis wouid in any case be truncated. If these points are
chosen where the kernels are small, i.e g(kmin» 2)vEmin, 9(Emex; 2)vEmaz = 0, and
€ € kmax—Emin then the contributions from the vertical sections become insignificant
compared io the integral along the horizontal section defined by k = k + ie. By
inserting k in Eq. (117), we obtain

hll\.l
G(r,z)e " ~ \/ 5:.—re"("‘+§)}' / g(k + ie, 2)Vk + iee " dk. (118) -

kmin

This integral can again be determined by means of an FFT, with the result

00
Z G(rj, z)e~(ri+nR)

n=-—oo

Ak ¢ i(kmin i —(m+ )4 )

V2rr;
M-1 .
X Z [g(k; + i€, z)e” minlak Jp 4 iej e~ i3mN/M (119)

1=0

or, after multiplication with ¢,

G(r,-, Z) ~ Ty e’ —i(k_hr, —(m+ }_\}r)
i
M-1 .
X Z [9(kz + i€, z)e " minldh, fp Ty ie] e—i(2Lj/M)
i=0
- Z G(r; + nR,z)e "R, (120)
n#o0

It is now clear that all signals wrapped around from ranges larger than r;, + R will
be attenuated by at least e=*R. On the other hand signals wrapped around from
ranges smaller than rp,;, will be amplified by at least e*R. As was the case for the
real axis integration the maximum range is therefore r,.; = R alsc for the offset
contour integration.
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The actual value of ¢ is not extremely critical. However, if it is chosen too large
the contributions from the two vertical parts of the contour may become significant.
On the other hand a too small value will require a very large number of sampling
points. For most practical purposes an attenuation of the wrap-around by 60 dB is
more than enough. The corresponding value of the contour offset is

3 3
~ Rloge ~ 2x(M - 1)loge

€ (kmu - kmln) (121)‘

which even for a relatively small number of .sampling points M will ensure that
€ € kmax — kmin, and thus yield insignificant contributions from the vertical con-
tours.

Whereas the Fast Field integration technique is highly efficient for single-frequency
transmission-loss calculations, its use is inconvenient in the case of wideband pulse
calculations. If the pulse response is required at more than a single range, the
wavenumber sampling distance Ak would have to be frequency independent in order
to satisfy Eq. (115). Furthermore, the pulse response will usually only be required
for a relatively small number of ranges, so that direct numerical integration for
each individual range is feasible. This is therefore the approach taken in the pulse
program SAFARI-FIPP.

There is an optional choice of two different quadrature schemes. The first, which
is the default scheme, performs a standard trapesoidal rule evaluation of the inte-
gral in Eq. (112), still with equidistant wavenumber sampling. The trapezoidal rule
integration approximates the integrand by a function varying linearly between the
sampling points. It is therefore obvious that tl.s technique is only applicable out
to ranges where the product of the kernel and the exponential function is well rep-
resented by a linear function. The kernel can be smoothed by moving the contour
out into the complex plane as described above, but the exponential function varies
rapidly at lorg ranges. To ensure that the exponential function alone is well rep-
resented by a linear function, the wavenumber sampling must satisfy the following
inequality [36]

~ AR < b, (122)

which by comparison with Eq. (115) translates into a maximum range which is
much shorter than the one obtained by the Fast Field technique. Here it should be
pointed out, however, that the FFT technique has a degraded accuracy at longer
ranges, which is insignificant on the logarithmic scale -1sed for representation of
transmission loss but which definitely is important in connection with wideband
pulse calculations. For accurate pulse calculations the maximum ranges for the two
techniques are almost identical and determined by Eq. (122).

It is possible, however, to obtain accurate solutions at much larger ranges by applying
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the generalised Filon integration scheme [37]:
Ak AfA[e
., 28 [a - Sy
JRCEE (123)

& [fayeer + f(b)es""’] . Ag=0,

where Af = f(b) — f(a) and similarly for the other functions. This quadrature
scheme is exact for linear variations of f(k) and g(k). In the present case S = —ir
and g(k) = &, i.e. a linear function of k. The Filon scheme is therefore applicable
to any range provided that the kernels are well represented by linear interpoiation
between the sample points. On the other hand the error due to the ‘nonlinearity’ of
the kernel will increase with range, and the Filon scheme therefore also has a finite
range of applicability. Since this range of applicability depends on the smoo*hness
of the kernel, it is not possible to give any specific value. Mallick and Fraser [36]
have found that whereas the wavenumber sampling required for the trapesoidal rule
of integration is inversely proportional to wr, the Filon scheme requires a sampling
which is approximately inversely proportional to \/wr. The additional computations
involved in the Filon scheme are insignificant compared to the total calculation time
involving the determination of the depth-dependence of the field. It is clear that this
scheme has significant computational advantages due to the reduction in the required
sampling, in particular if combined with the kernel-smoothing contour offset.

For all the numerical integration schemes described above the kernels must vary
smoothly between the sampling points. One of the effects of a too rapidly vary-
ing kernel is the wrap-around, but as demonstrated, this problem can be overcome
by choosing a complex integration contour, which in effect smooths the kernels by
moving the contour away from the poles and branch points. If, however, the in-
tegration interval is truncated at points where the kernel amplitude is significant,
the discontinuities so introduced will also give rise to wrap-around. In broadband
calculations, in particular, this will cause artificial arrivals which will often be indis-
tinguishable from true arrivals. These discontinuities therefore must be smoothed.
In SAFARI-FIP and SAFARI-FIPP this is done by extrapolating the kernels by a first-
order Hermite polynomial, where the coeflicients are chosen such that the kernel and
its first derivative become continuous at the truncation points.

In summary, it should be stressed that the evaluation of the wavenumber integrals
is by far the most critical part of the full-wavefield solution technique. Wheresas the
depth-dependent Green’s function is exact to within the computer accuracy once the
environmental model has been chosen, the integration requires both truncation and
discretisation of the wavenumber intezval, a procedure which is not easily automated
since the significance of the errors introduced is highly dependent on the character-
istics of the actual problem. As described above there are remedies available for
reducing the errors to insignificance, but these tools have to be selected carefully,
involving a significant portion of physical knowledge and experience. The best rule
of thumb that can be given for the uce of this type of model is therefore:
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Never be satisfied with the first result - check the convergence!

4.4. FREQUENCY INTEGRATION

The last step involved in determining the full pulse response is the evaluation of the
inverse Fourier transform, Eq. (8). This integral has to be evaluated for all field
parameters, ranges, and depths of interest, i.e.

F(r, z,t) = /_ : G(r, z,w)e* duw. (124)

Due to the fact that the frequency interval is predetermined by the source spectrum,
i.e. the frequency dependence of S, the frequency axis is easily truncated and the
Fourier integral is therefore most conveniently evaluated by means of an FFT, i.e.

. N-1
F(r,z,t) ~ Awe'“mint; Z [G(r, z,w,)e“““m"’] e*3%i/N) (125)
=0
where the frequency and time axes have been discretized as follows,
tj = tmin + JA, lj=01...(N- 1), (126)
W = Wnin + (Aw, 1=0,1.. (N - 1), (127)

and the samplings satisfy the relation

AtAw = 2x/N. (128)

Due to the symmetry relation G(r,z,-w) = G(r, z,w) it is clear that the time
function F(r,z,t) determined by Eq. (124) is real. In order for the discrete form,
Eq. (125), to yield a real time series it is required that the frequency discretisation,
Eq. (127), be symmetric around w = 0. There are algorithms available, the so-called
real FFT's (RFFT), which take advantage of the symmetry relation of the kernel
and therefore only require input of G(r, z,w) at the N/2 discrete frequencies

w = lAw, l=0,1...N/2-1, (129)

and still yield the time series at all N times, Fq. (126). Due to the computational
savings, the RFFT is always used to evaluate the time series in SAFARI-FIPP.
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The discretisation of the frequency axis again introduces wrap-around due to the
limited time window T', which is related to the angular frequency sampling Aw by

T =NAt=2x/Aw. (130)

As was the case for the wavenumber integration, the wrap-around can be eliminated
- or at least reduced - in two ways. One way is to smooth the kernel G(r, z,w) by
moving the integration contour, which is the technique called complex frequency in-
tegration [36]. The other way is to choose T so large that the whole signal is included
in the time window. Although the first approach definitely has computational ad-
vantages, the latter is the one chosen in SAFARI-FIFP. Thir is due to the transient
nature of wideband signals which makes it much easier to perform a truncation of
the time window than of the range window. No signal can arrive to a receiver at
a higher speed than the fastest wave speed in the problem. This therefore deter-
mines the beginning of the time window for which no wrap-around will happen from
earlier times. The length T of the time window is more difficult to determine, but
with some experience in conjunction with convergence tests it becomes relatively
straightforward. One approach is to make an initial calculation with a very long
time window but with a narrow source spectrum. This will of course yield relatively
wide pulses, but the overall arrival structure can be determined; the time window
can then be reduced and the full source spectrum included.

In SAFARI-7IPP it is possible to calculate the pulse responses for many receiver
ranges and depths through a single solution pass, and a fixed start of the time
window is therefore inconvenient. Instead one can choose a ‘running’ window defined
by

tmin(r) = r/cn (131)
where r is the range and c, is a constant called the reduction velocity. This constant
has to be large enough that tmiy(r) is smaller than the arrival time of the fastest

signal in order to avoid wrap-around. In most applications ¢, is conveniently chosen
to be equal to the fastest wave speed in the problem.
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5. Installation of SAFARI

The SAFARI package consists of the three main programs SAFARI-FIPR, SAFARI-FiP

and SAFARI-FIPP and a number of subroutines, most of which are common for the
three main programs.

All output from the SAFARI modules is produced in graphics form, either as standard
curve plc:: or three-dimensional contour plots. The plotting is performed by two
main programs, FIPPLOT and CONTUR, which have to be called after execution of
the calculating programs.

At SACLANTCEN the programs are implemented on an FPS164 Attached Processor
linked to a VAX 8600. The programs are therefore highly vectorised, and a number of
FPS164 library subroutines are used. Apart from these and a few critical subroutines
used for generating the kernel of the Green’s function written in APAL64 assembler
plus special subroutines for asynchronous I/0O, the codes are written entirely in
FORTRAN 77. A special FORTRAN 77 library with simulations of these special
subroutines is available, however. The codes for the FPS164 and the VAX are
therefore basically identical. The fact that standard FORTRAN 77 has been used
makes installation possible on any computer satisfying the hardware requirements.

5.1. PRECISION REQUIREMENTS

The solution algorithm is stable for any machine precision, but the argument of the
exponential function has to be truncated accordingly, in order to avoid arithmetic

~ overflow. The maximmm argument is set in each of the main programs through the

variable AN. For VAX single precision a value of 65 is used, whereas 300 is used for
64-bit machines such as the FPS164 and the CRAY.

Although the actual precision has no influence on the stability, it affects the dynamic
range of the results, but double precision will only be required in very special cases.
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8.2. MEMORY REQUIREMENTS

The codes will run in their default version on any machine with more than 250 k
words of memory, where one word corresponds to a real number in the actual pre-
cision. It is, however, possible to reduce the array siszes to allow installation on
machines with less memory. The array sizes are basically controlled by three pa-
rameters defined in most subroutines. If changes are made, they therefore must be
made in all source files. The parameters are:

NLA: Maximum number of layers in environmental model, including the upper and
lower halfspaces. The default is NLA = 24,

NP: Maximum number of wavenumber samples. In SAFARI-FIPP NP is also the
maximum allowed number of frequency samples. Due to the use of an RFFT
for the frequency/time transform, the corresponding maximum number of
time samples is 2NP. The default is NP = 4096.

NRD: Maximum number of source and receiver depths. The default is NRD = 1001.

It is obvious that the array sizes may also be increased by any amount allowed by
the available hardware.

5.3. SOURCE FILES

The main programs are placed in separate source files, but the subroutines have
been grouped together in a few relatively large files according to their use. In the
following the source files and their contents are described.

SJEFIPR30.FOR  The reflection coefficient program SAFARI-FIPR version 3.0,
which uses the SAFARI solution technique to determine the reflection coefficients
of any horizontally stratified fluid/solid halfspace. The implemented output options
are

¢ Modulus and phase as function of grazing angle for a selected number of
frequencies.

¢ Modulus and phase as function of frequency for a selected number of grasing

angles.
¢ Modulus contoured vs frequency and grazing angle.

e There is a choice between calculation of the P-P reflection coefficient and the
P-8V reflection coefficient. The last, of course, only have meaning for a salid
upper halfspace.

- 40 -
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SJEFIP30.FOR The transmission loss program SAFARI-FIP version 3.0, which for
a single frequency solves the wave :quation for a horisontally stratified environment.
The output is controlled by a number of options. Some of the features are

o Solid, liquid or vacuum isovelocity layers and half spaces. Variable velocity
allowed in fluid layers.

¢ Interface roughness (all interface types).

¢ Cylindrical or plane geometry.

o Multiple sources (vertical line arrays). '

¢ Multiple receivers.

¢ Calculation of normal stress (pressure in fluids).
¢ Calculation of vertical particle velocities.

¢ Calculation of horizontal particle velocities.

e Degih averaging of calculated field properties.

¢ Range/depth contouring of field properties.

¢ Complex integration contour for use in lossless cases.

SJEFIPP30.FOR The pulse program SAFARI-FIPP version 3.0, which solves the

wave equation for a horizontally stratified environment at a selected number of
frequencies. Some of the features are

¢ Solid, liquid or vacuum isovelocity layers and half spaces. Variable velocity
allowed in fluid layers.

iterface roughness.
¢ Cylindrical or plane geometry.
o Multiple sources (vertical line arrays).
e Mulitiple receivers.
o Several choices of source pulse shapes.
o Synthetic hydrophone signals.

o Synthet:- “rismograms. These can be plotted szparately for each receiver or
..acke”. 2 stacking can be performed in either range or depth.

¢ Dispersion curves for normal modes.
¢ Dispersion curves for seismic interface waves.

o Complex -~ ration contour.
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FIPPLOT.FOR The main program FIPPLOT, which performs all plotting of results
except for contour plots. FIPPLOT is based on the DISSPLA plotting system. The
plot data are transfered through two files. One file contain titles, labels, axir limits
etc. This file is & formatted file and the default values can be changed by the user.
The other file is a formatted file waich contains the data for plotting.

CONTUR.FOR The main program and associated subroutines, which perform the
contour plotting optionally using a DISSPLA compatible plotting package or the
raster package UNIF.AS. The two-file interface to the calculating programs is also
used here.

FIPPSJE30.FOR High-level subroutines used by all programs.
FIPTSJE30.FOR High-level subroutines used by SAFARI-FIP.
FIPRSJE30.FOR Subroutines used only by SAFARI-FIPR.

FIPSSJE30.FOR Lower-level subroutines used by all programs, i.e. basically all
subroutines involved in determining the depth-dependent Green's functions.

FIPUSJE30.FOR Subroutines used by all programs for generation of printout and
plot files.

APMATHSIM.FOR  Subroutines simulating the APMATHG64 library of the FPS164
Attached Processor. Also contains FORTRAN equivalents to those subroutines,
which in the FPS164-version are written in APALG64 assembler.

5.4. COMPILING THE SAFARI CODES

The compilation is straightforward, since no special option: are needed. Thus for
VAX/VMS,

$ FOR/LIST SJEFIP30
$ FOR/LIST SIRFIPP30
$ FOR/LIST SJRFIPR3O
$ FOR/LIST FIPPLOT

$ FOR/LIST CONTUR

$ FOR/LIST FIPPSJIE30
$ FOR/LIST FIPSSJIE30
$ FOR/LIST FIPRSJE30
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$ FOR/LIST FIPTSJEJO
$ FOR/LIST FIPUSJIE30
$ FOR/LIST APNATHASIN

For convenience the subroutines are placed in two libraries:

$ LIBR/CREATE APHATHS4 APNATHSIN
$ LIBR/CREATE SAFLIB FIPPSJE30,FIPSSJR30,FIPTSJESO,~
FIPUSIE30,FIPRSIE30

The compilation of SAFARI for the FPS164 is described in Appendix A.

5.5. LINKING THE SAFAR! CODES

The linking of the five executable modules is performeda as follows under VAX/VMS:

$ LINK/EXEsVAIFIP30 SJEFIP30,SAFLIB/LIB,APNATRG4/LIB

$ LINK/EXE=VAXFIPP30 SJEFIPP30,SAPLIB/LIB,APNATHG4/LIB

¢ LINK/EXE=VAXFIPR30 SJEFIPR30,SAFLIB/LIB,APNATHS4/LIB

$ LINK FIPPLOT,DISSPLA/LIB ~
$ LINK CONTOR,DISSPLA/LIB,UNIRAS/LIB

where DISSPLA.OLB is a library containing the DISSPLA subroutines; UNIRAS.OLB
is the UNIRAS library if available. If UNIRAS is not available, the call to the subrou-
tine MAINRAS in the main program included in CONTUR.FOR must be removed.
DISSPLA can of course be exchanged with any other plotting system available.

The linking of SAFARI for the FPS164 is described in Appendix A.

5.6. RUNNING THE SAFARI CODES

The programs are now ready to run. On the VAX it is most convenient to make one
command file with parameter input for each program:

FIPR.COM

§ ASSIGN/USER ’P1°’.DAT FOROO1  |INPUT DATA FILE

§ ASSIGN/USER °'P1’.PLP FORO19  !PLOT PARANBTERS (PIPPLCT)
§ ASSIGN/USER °P1’.PLT POR020  !PLOT DATA FILE (FIPPLOY)
$ ASSIGN/USER ’P1’.CDR FOR028  !CONTOWR PLOT PARANETERS

|
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$ ASSIGN/USER ’P1’.BDR FOR029  (CONTOUR DATA FILE
$ RUN VAIFIPRSO 'EXECUTR SAFARI-FIPR
$ ASSIGN/USER ’P1’.PLP FORO19  1ASSIGN PLOT FILES TO
$ ASSIGN/USER °'P1’°.PLT FOR020  !LOGICAL NANES USED BY FIPPLOT
$ RUN FIPPLOT {EXECUTE FIPPLOT
$ ASSIGN/USER ’'P1°.CDR FORO5E  !ASSIGN CONTOUR FILES TO
§ ASSIGN/USER *P1’.BDR FORO17  !LOGICAL NANES USED BY CONTUR
$ RUN CONTUR 'EXECUTE CONTUR
FIP.COM
$ ASSIGN/USER °’P1’.DAT FOROO1  !'INPUT DATA FILE
$ ASSIGN/USER 'Pi’.PLP FORO19  !PLOT PARAMETERS (FIPPLOT)
$ ASSIGN/USER °'P1’.PLT FOR0O20  !PLOT DATA FILE (FIPPLOT)
8 ASSIGN/USER °’P1’.CDR FOR028  !CONTOUR PLOT PARANETERS
$ ASSIGN/USER ’P1’.BDR FOR029  !7ONTOUR DATA FILE
$ RUN YAXFIP30 YEXECUTE SAFARI-FIP
$ ASSIGN/USER 'P1’.PLP FORO19®  !ASSIGN PLOT FILES TO
$ ASSIGN/USER °’P1’.PLT FORO20  !LOGICAL NAMES USED BY FIPPLOT
$ RUN FIPPLOT {EXECUTE FIPPLOT
$ ASSIGN/USER °’P1°.CDR FOROS6  !'ASSIGN CONTOUR FILES TO
$ ASSIGN/USER ’P1’.BDR FORO17  !LOGICAL NAMES USED BY CONTUR
$ RUN CONTUR {EXECUTE CONTUR
FIPP.COM
¢ ASSIGN/USER ’P1’.DAT FOROO1  !XNPUT DATA FILE
$ ASSIGN/USER °'P1°.PLP FORO19  !PLOT PARAMETERS (FIPPLOT)
$ ASSIGN/USER °’P1’.PLT FOR020  !PLOT DATA FILE (FIPPLOT)
$ ASSIGN/USER ’P1’.CDR FORO28 !CONTOUR PLOT PARAMETERS
$ ASSIGN/USER ’'P1’.BDR FOR0O29 !CONTOUR DATA FILE
$ RUN VAXFIPP3O tEXECUTE SAFARI-FIPP
¢ ASSIGN/USER ’'Pi’.PLP FORO18  !ASSIGN PLOT FILES TO
$ ASSIGN/USER ’'P1’.PLT FOR020 !LOGICAL NAMES USED BY FIPPLOT
$ RUN FIPPLOT 'EXECUTE FIPPLOT

The command files shown here of course have to be extended with the definition
of the proper directories. However, this is installation dependent and therefore not
included here. The preparation of command files for running SAFARI on the FPS164
is described in Appendix A. Details on running FIPPLOT and CONTUR are given
in Appendixes B and C respectively .
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Assume that a file INPUT.DAT has been prepared for SAFARI-FIP. The user then
only needs to give the command

$ OFIP INPUT

and the program will run. All files related to the actual run will have the same

names except for the extensions. Similarly in batch:

$ SUBNIT FIP/PARANSINPUT

The preparation of input files is described separately for the different SAFARI mod-
ules in the following sections.
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8. Running SAFARI-FIPR

The SAFARI-FIPR module calculates the plane-wave reflection coefficients for an ar-
bitrarily stratified fluid/solid halfspace. The layer above the interface of interest
should be replaced by an infinite halfspace with the properties existing just above
the interface. The code will then automatically place a compressional line source
in the upper halfspace and, for each selected grasing angle and frequency, use the
global matrix technique to calculate the complex amplitude of the resulting upgoing
plane wave in the upper halfspace. The complex reflection coefficient then follows di-
rectly by division with the complex amplitude at the interface of the incoming wave
produced by the source. The complex reflection coefficient R¢ is most conveniently
displayed as modulus | Rc| and phase tan™! (Im{R¢]/Re[R¢]). In underwater acous-
tics it is common, however, to represent the modulus by the corresponding reflection
loss defined by
Rap = —20log|Rc|

and this is the parameter displayed in the graphic output produced by SAFARI-FIPR.

The results are presented in graphic form as curve plots showing the dependence of
the reflection loss and phase shift as function of either grasing angle or frequency.
Further, there is an optional choice of reflection loss contours vs grasing angle and
frequency.

Al inputs to SAFARI-FIPR are read from the file currently assigned to the logical file
FOR001. Before running the program the user has to assign the file containing the
input data to this logical name. It is most convenient to include this assignment in
a general command file also assigning file names to the logical names of the output
files, as described in Subsect. 5.6.

In the following the preparation of the input files will be discussed in detail followed
by an outline of the necessary numerical considerations.
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¢.1. INPUT FILES FOR SAFARI-FIPR

The input data are structured in 9 blocks. The first 5 blocks, shown in Table 2,
specify the title, options, environmental parameters, together with the desired gras-
ing angle and frequency sampling. The last 4 blocks, outlined in Table 3, contain
axis specifications for the graphical output. Some of these blocks should always be
included and others only if certain options have been specified. The single blocks
and parameters are described in detail in the following.

Table 2
Parameters of SAFARI-FIPR input files: Calculation and environmental parameters
Block Parameter Units Limits
1 TITLE: title of run - < 80 char.
n opti opt2 ...: output options - < 40 char.
I NL: number of layers, incl. haifspaces - NL 2> 2
D: depth of interface m -
CC: compressional speed m/s cc>0
€S: shear speed m/s -
AC:  compressional attenuation dB/A AC20
AS: shear attenuation dB/A A8 20
R0: density g/cm’ 020
16: rms value of interface roughness m -
CL: correlation length of roughness m CL>0
Iv FNIN: minimum frequency Hs I >0
FEAY: maximum frequency Hs X >0
NRFR: number of frequencies - ~Fmn > 1
NFOU: plot output increment - Nrgu >0
\ ANIN: minimum grasing angle deg ANIN 20
AHAX: maximum grasing angle deg ANAX 2 0
NRAN: number of grasing angles - MRAN 2 1
NAOVU: plot output increment - NAOD > 0
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Table 3
Parameters of SAFARI-FIPR input files: Plot parameters
Block Parameter Units Limits
v ALEF: left border of angle axis deg -
ARIG: right border of angle axis deg -
ALEN: length of angle axis cm ALEN >0
AINC: distance between tick marks deg AINC >0
RALO: lower border of R-loss uxis dB -
RAUP: upper border of R-loss axis dB -
RFLN: length of loss and phase axes cm RFLN > 0
RFIN: R-loss axis tick mark interval dB RFIN > 0
vie FLEF: left border of frequency axis Hs -
FRIG: right border of frequency axis Hs -
FLEN: length of frequency axis cm FLEN > 0
FINC: distauce between tick marks Hs FINC > 0
RFLO: lower border of R-loss axis dB -
RFUP: upper border of R-loss axis dB -
RFLN: length of loss and phase axes cm RFLN > 0
RFIN: R-loss axis tick mark interval dB RFIN >0
vip ALEF: left border of angle axis deg -
ARIG: right border of angle axis deg -
ALEN: length of angle axis cm ALEN >0
AINC: distance between tick marks deg AINC >0
FRLO: lower border of frequency axis He FRLO > 0
FROP: upper border of {requency axis Hz FRUP > 0
OCLN: length of one octave cm OCLN >0
NTKN: number of tick marks per octave - NTKK > 0
ZMIN: minimum contour level dB -
ZMAX: maximum contour level dB -
ZINC: contour level increment dB ZINC >0
Ix* VLEF: wave speed at left border m/s -
YRIG: wave speed at right border m/s -
VLEN: length of wave speed axis cm VLEN > 0
VIKC: wave speed tick mark distance m/s VINC >0
DVUP: depth at upper border m -
DYLO: deptic at lower border m -
DVLN: length of depth axis cm DVLN > 0
" DVIN: depth axis tick mark interval m DVIN > 0

! Only for NFOU > 0. ? Only for NAOU > 0.  Ouly for option C. * Ouly for option 2.
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ENVIRONMENTAL DATA

,;fin(pn)CC(NL)cs(NL)AC(NL)As(NL)nu(nn)nGgNL)cn(uL)j;

Ly Number of layers, includmg the upper and lower

- halfspaces. These should always be included, e

-+ -in cases.where they are vacuum. In this: regard

" should be noted that the reflection: coefficient i

.ul'ways calcnlated for the uppermoat intetface: .
AN wave bei

ADepth z m mof upper boundary of hyer' or
‘halfspace. The: reference depth can be c_hoosen

elacity: £ of compresaional wavet yin m/ s I
specified to 0.0, the layer or Tialfspace is vacums
- "Velocity ¢, of ahear wwes in m/s. In ordert
e’ physicaﬂy me.j 1, it is required that -
€ S (¢ speuﬁed t00.0; tae layet
halt'apace is ﬂuid I ¢, <0, then |c,| represent
the compresaicnnl velocity at: the bottom of
sctual layer, which is treated as fluid mth 1/ c(z-).._
varying linearly with depth. :
¢€):. " Attenuation y. of compressional waves in. dB JA.
- . If the layer is fluid, and AG() is specified - as 0.0,
" then an empirical water attenuation is used. -
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T Attenuation Ta of aheat waves in dB/
_ _attenuations to'be phyncnlly meaning
. fequired thst

' "Densxty pin g/cm°

S . dummy. If RG: > 0. the
“is'used for the' scattering

fall scattering theory, but it

- . To:invoke the full non-Kirchhoff
. must be- specified equal to. the negative
R :roughneas, ie. RE< O, -

i . Correlation length of roughneas in m,:
‘parameter is only required if non~1ur

RMS rouglmess of: mtexface in m.i RG(

Thisis ‘computationall

small roughnesses and large ¢q

scattering has been selected ie: RG
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UENCY DATA

IN: Mlmmum frequency in " Hs.
: Maximum frequency in Hz.
Number of frequencies (> 1). If the contour
option C was specified the samples will be placed
. -equidistantly on & logarithmic frequency axis;
. otherwise the aamphng wnll be eqmchstant ona
- ‘linear frequency axis.
FOU:..- If NFOU > -0 & plot of reﬂection loss (and -
o "i""phase sluft if: optxon P was chosen) as function

. ."--i::fx-equency If NPOU ‘= 0 RO plots as function of
‘. grasing angle will be. produced
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AMIN AMAX NRAN NADU
Free

R AHIN;

S AMAX:
.. -NRAN:
f’?saov

‘Minimum grazing angle in:degrees

IfNADU- > 0 a plot of reﬂectw X
shift if option P was chiosen): as function. of
frequency is produced for each’ NAQU angl
- NAQU = 0 no plots of :eﬂe‘t 30

Maximum grazing mgle in degtees
Number of angles. - i

n lose as fu
of frequency are ggt_x_e:gteg, o o
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PLOT DATA / 1.EFLECTION LOSS AND PIIASE vs
RAZING ANGLE RS

" 2
IfNFOU >0
" ALEF ARIG ALEN AING
* RALO RAUP RALN RAIN

K | Gruing angle in degrees correspond.mg to left
* border of plots.
~ Right border of grazing angle axis.

Length of angle axis'in cm. '
Distance.in degrees between tick i:wvkson.

- ‘grasing angle axis. C
AL0:  Reflection loss in dB correspondmg to lower B

~ .. border of plot. For phase shift plots the phase . .
- angle axis will antomatically cover the interval
. ~180°to 180°, This interval can, hovvever. be o
¢+ changed as described in. Appendn: B '

i Uppser border in dB. SR
Length of reﬂectmn loss and phase shift Axes m ’
cm..

N Distance in dB betWeen tick marka for loss ms._
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. Inuou:»o R

. FLER'FRIG FLEN FING

.- RELO. RFUP RFLN amt
' _Free

. ‘FLEF: Frequency in Hz correapondjng to leﬂ' border

i plots. - s
~FRIGs R.xght horder frequency ma‘

'PLEN: Leagth of frequency a.xu in cm.
FINC: . Distance in I-Iz

= angle ma will automatxcslly covér ]
 =180°to 180°, This interval ¢an, |

_ ~ ‘changedas’ desmbed i Apmmdix B B
RRUP: - Upper border of reﬁeuixﬁi loss axis in dB,’

RO L

__RFLH:  Length of 1eﬂectxon loss and, phue} ahift

R?Ilh 'é'Dista.nce in dB between uck mnka on los
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‘Format:
Description:

3

"~ PLOT DATA / ANGLE-FREQUENCY CONTOURS

If option C was specified.
ALEF ARIG ALEN AINC
FRLO FRUP OCLN NTKM
ZMIN ZMAX ZINC

Free

ALEF:

ARIG:

Grazing angle in degrees correspondmg to lefd
border of contour plota

Right border of grazing angle axis on contour
plot. .
Length of grasing angle axis in cm. :
Distance in degrees between tick marks on mgle :
axis.

Frequency in Hs corresponding to lower border of

-plot. Since the frequency axis will be loganthnuc,

FRLO > 0.

i" Frequency corresponding to upper border of plot.-

ize parameter specifying number of cm per-
octave on frequency axis,
Number of tick marks per octave.

“Lower limit in dB of reflection loss interval for

which contour lines are to be plotted.

: - Upper limit in dB of reflection loss mterval for

which contour lines are to be plotted.

: Distance in dB between contour lines.
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"VLEF VRIG. VLEN VING -
- DVUP. DVLO. DVLN. mu

1: Length ofvelocxtyumm cm.

lfz;option z war specxﬁed in Block II .

: Let‘t border vnlue of velodty m m/s

C: Distance between tick marks in’ m/a : B :
] ‘,».Depth at upper border of plcatfm m. ; vy
. of :

3 .
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6.2, NUMERICAL CONSIDERATIONS

Since the determination of plane-wave reflection coefficients does not involve any nu-
merical evaluation of integral transforms, the only numerical problem is related to
the discretization of the environmental model. When modeling real data where only
a few environmental data are known, it is obvious that the model has to be re-run
several times in order to fit a discrete stratified model. On the other hand the accu-
racy requirements are very limited, and there are no purely numeric considerations
involved. This is, however, the case when the SAFARI-FIPR reflection coefficients
have to be compared to those obtained by other numerical models, which is very
common in relation to the verification of new algorithms. Some reflection coefficient
codes, e.g. those based on finite differences, assume a linearly varying sound veloc-
ity profile between the sampling points, whereas SAFARI assumes either isovelocity
layers or a sound speed varying non-linearly between the sampling points, Eq. (5).
It is therefore necessary that the number of profile sampling points is so large that
the differences between the interpolaticn techniques has insignificant effect on the
calculated sound field. It is not possible to giv > any specific rules in this regard since
the effect depends on the frequencies and grazing angles of interest. If isovelocity
layers are used to represent the profile, a layer thickness of }A will usually be suf-
ficient. For the inhomogeneous fluid layers, however, the thickness can be chosen
much larger. In any case the profile discretization should be controlled by checking

the convergence.

6.3. SAFARI-FIFR EXAMPLES

In this section a few characteristic examples will be given of the use of SAFARI-FIPR
for determining plane-wave reflection coefficients. The examples here have been
chosen from underwater acoustics, but problems from seismology and ultrasonics
are treated in an identical manner. Several other examples can be found in [20-27].

The environment considered in the present, and in all foliowing examples for the
transmission loss and pulse models, is characterized by a water depth of 100 m and
a bottom consisting of a silt layer of 20 m thickness overlying & homogeneous sub-
bottom of coarse sand. The material properties of the bottom are given in Table 4.

~ 58 -
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Table 4
Material parameters for ocean bottom
Wave speed Attenuation

Layer  Thickness Density

H Ce C, Ye Y P
(m) (m/s) (m/s) (dB/A) (dB/A) (g/cm’)

Silt 20.0 1600 400 0.2 0.5 1.8

Sand 0o 1800 600 0.1 0.2 2.0

® 6.3.1. SAFARI-FIPR case 1: Reflection coeflicients vs grazing angle

This test case concerns the determination of the plane-wave reflection coefficient of
the ocean bottom as function of grazing angle at a single frequency of 50 Hs. The
data file is given in Table 5.

When running SAFARI-FIPR with the above data file, 3 plots are preduced (Fig. 6).
Figure 6a shows the calculated reflection loss with the velocity profile plot inserted.
Note that the loss is very small for grazing angles less than the critical angle for the
sub-bottom, 8.2 = cos~(15600/1800) = 33.6°. At a frequency of 50 Hs no significant
transition happens at the sediment critical angle, 6.; = cos~!{1500/1600) = 20.4°.
The main effect of the low shear speeds is the non-vanishing reflection loss a¢ grazing
angles smaller than critical. Figure 6b shows the associated phase shift as function
of grasing angle. Again the transition at the sub-bottom critical angle is appar-
ent. Here it should be noted that no phase unwrapping is performed; therefore the
discontinuous behaviour at 33.6° in fact represents a 360° phase change.

m 6.3.2. SAFARI-FIPR case 2: Loss contours vs frequency and angle

In this example we calculate the reflection loss as a function of grazing angle over
4 frequency octaves from 20 to 320 Hz and generate a contour plot. The environment
is the smme as case 1, and the data file is given in Table 6.

The contour plot generated by SAFARI-FIPR for this case is shown in Fig. 7a. Fig-
ure 7b shows the plot obtained when the contour program CONTUR is re-run with
the UNIRAS option, as described in Appendix C. The dark areas indicate high loss,
the light ones low loss. Note that the contour levels have been changed to a spacing
of 2 dB in Fig. 7b.

Note that at the low frequencies the reflection properties are dominated by the
critical angle 8., = 33.6° of the sub-bottom, whereas for the higher frequencies
a series of ‘resonance ridges’ of high loss appear, asymptotically approaching the
sediment critical angle, 8., = 20.4°. This behaviour is typical for layered media.
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Table 5

SAFARI-FIPR case 1 data file
Data file Description Notes
SAFARI-FIPR cace 1 title
| 2 ] options: P — phase plot, Z - velocity profile 1,2
3 number of layers
01600 000 10 layer 1 (upper halfspace, water) 3
0 1600 400 0.2 0.5 1.8 0 layer 2 (sediment) 4
20 1800 600 0.1 0.2 2.0 0  layer 3 (sub-bottom) 4
60 50 1 1 frequency 50 Hs, NFOU = 1 5
090 181 0 angle interval 0 to 90°, 181 samples 5,6
0 90 20 30 angle axis for plots 6
016 12 6 loss axis for plots 6
0 2000 10 1000 velocity axis for profile plot
-20 40 10 20 depth axis for profile plot

1

In order to obtain plots of the phase shift in addition to the default plot of the reflection
loss, option P has been specified.

Option I is specified to get a plot of the velocity profile. This option requires that the
axis specifications are given at the end of the data file. In the present case the profile
is plotted from a depth 20 m above the bottom to 40 m below.

Note that the 100 m thick water column has been replaced by an infinite halfspace
with the properties of the water. For convenience the ocean bottomn has been selected
as origin for the depth axis. This is, however, arbitrary, and 100 m could be added to
all depths without influencing the results.

Since both interfaces are plane the rms roughness is specified as 0 in all cases, and the
correlation lengths have been omitted.

By specifying NFOU = 1, plots of the reflection data as a function of grasing angle will
be produced for each frequency, in this case of course only one. NAOU == O indicates
that no plots of reflection loss as a function of frequency are requested.

The reflection coefficient will be calculated in 181 equidistantiy-spaced points in the
angular interval 0 to 90°, and the plots will show the reflection loss and phase shift
over the whole interval. The loss axis is specified to cover the interval 0 to 15 dB.
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Fig. 6. Results for SAFARI-FIPR case 1: (a) reflec-
tion loss as function of grasing angle, with velocity
profile inserted; (b} phase shift as function of gras-
ing angle
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' . Table 6
j‘ SAFARI-FIPR case 2 data file
} Data file Description Notes
[
‘ SAFARI-FIPR case 2 title
r c option € - contour plot of reflection loss 1
| 3 number of layers
\ 01600 0 00 1 0 layer 1 (upper halfspace, water)

0 1600 400 0.2 0.5 1.8 0 layer 2 (sediment)
20 1800 660 0.1 0.2 2.9 0  layer 3 (sub-bottom)

20 320 41 © frequency interval 20 to 320 Hz, 41 samples 2
k 0 90 181 0 angle interval 0 to 90°, 181 samples 2

0 90 20 30 angle axis for contour plot 3

20 320 3 1 frequency axis for contour plot 3
F 1101 contour levels 4
1 1

Option C is specified to create a contour plot of the reflection loss vs angle and fre-
quency.

When option C is selected, the 41 selected frequency samples are placed equidistantly
on a logarithmic frequency axis. The sampling in angle is the same as above, but note
that both NFOU and NAOU have been set to 0 in order to disable the creation of the
normal curve plots produced in case 1.

The parameters for the angle axis are given exactly as for the curve plots in case 1.
However, for the logarithmic frequency axis the total length of the axis is not specified.
Instead the length of one « ctave is given in cm, here 3 cm. The tick marks are controlled
by the last pararieter in the line, in this case one tick mark per octave is ploited.
The last liae in the data file specifies that contour lines are to be plotted for each 1 dB
in the interval 1 to 10 dB.
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Fig. 7. Results for SAFARI-FIPR case 2: (a) contour plot of reflection lossas
function of graving angle and frequency produced by the DISSPLA package;
(b) contour plot produced by UNIRAS.
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® 6.3.3. SAFARI-FIPR case 3: Reflection loss at rough ice layer

The last example of using SAFARI-FIPR concerns the determination of the reflection
loss appearing at a randomly rough ice layer. This problem from arctic acoustics
is included for two purposes. First of all it illustrates how to include the effect of
interface roughness in the calculations. Secondly it is an example of a problem where
the environment has to be turned upside down as SAFARI-FIPR always places the
source in the upper halfspace.

It is assurned that an ice layer of average thickness 3.9 m covers a water column with
a constant sound speed of 1500 m/s. The free surface of the ice layer is stochas*ically
rough with an rms elevation of 0.6 m. The underside of the ice has an rms roughness

Table 7

SAFARI-FIPR case 3a data file
Data file Description Notes
SAFARI-FIPR case 2a title
N option N — normal reflection loss 1
3 number of layers
01500 00010 layer 1 (upper halfspace, water) 2
0 3000 1600 1.0 2.5 0.9 1.9  layer 2 (ice layer) 3
3.00000 0.6 layer 3 (vacuum) 4
150500 frequency interval 1 to 50 Hg, 50 samples 5
10 10 1 % angle interval 10°, 1 sample. 5
0 50 20 10 frequency axis for plot 6
0 0.2 12 0.1 loss axis for plot 6

! Option N mesns that the default reflection loss is to be calculated. This op:ion need

not to be specified, but the option field should always be represented by one line, which
in this case could be empty.

The environment has been turned upside down. Therefore the upper halfspace is water.
Note that the depth and roughness parameters are dummy for the upper halfspace,
the depth of the first interface and its roughness data should be given together with
the material properties of the first real layer, i.e. layer 2.

The roughness of the water/ice interface is specified to be 1.9 m. Since this is a
positive number, the correlation length is assumed to be infinite and has therefore
been omitted. The scattering theory based on the Kirchhoff approximation will be
applied in this case.

The roughness of the free ice surface is specified to be 0.6 m, again the correlation
length is infinite.

The frequency interval is chosen to be 1 to 50 Hz, and since the contour option ¢ was
not selected, the 50 samples will be placed equidistantly on a linear frequency axis.
The calculation is to be performed at only one grazing angle, NANG = 1 and NAOU = 1.
'n contrast to the case for the contour plot, the frequency axis is here linear, and the
parameters are given in the usual way.
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of 1.9 m. Inmitially the correlation length is assumed to be infinite. The ice has a
compressional velocity of c. = 3000 m/s, a shear velocity of ¢, = 1600 m/s and a
density of 0.9 g/cm®. The compressional and shear attenuations are 1.0 dB/A and
2.5 dB/A, respectively. The data file given in Table 7 is set up to calculate the
reflection loss as function of frequency at a fixed grazing angle of 10°.

The resulting plot of the reflection loss as function of frequency is shown in Fig. 8a.
Note the expected increase in the loss with increasing frequency. Now assume that
the correlation length for the roughness of the water/ice interface is 40 m, and not
infinite as above. Then the data file would look as shown in Table 8. As can be
observed, the data file is identical to the one above except for the line stating the
environmental data for the ice layer.

Table 8

SAFARI-FIPR case 3b data file
Data file Description Notes
SAFARI-FIPR cage 3b title
N option N — normal reflection loss
3 number of layers
0150000010 layer 1 (upper halfspace, water)
0 3000 1600 1.0 2.5 0.9 -1.9 40 layer 2 (ice layer) 1
3900000 0.6 layer 3 (vacuum)
160 500 frequency interval 1 to 50 Hz, 50 samples
10 10 1 1 angie interval 10°, 1 sample
0 50 20 10 frequency axis for plot
00.2 12 0.1 loss axis for plot

! By specifying the negative rms value of the roughness, the non-Kirchhoff scattering
theory will be applied, and in this case the correlation length (40 m) has to be given
as a last number in the same line.

The resulting reflection-loss curve is shown in Fig. 8b. There is a significant effect of
the finite correlation length in the actual frequency interval, but at higher frequencies
the non-Kirchhoff result will approach the Kirchhoff result. More examples treating
interface roughness can be found in [24,25].
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SACLANTCEN SR-1193
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Fig. 8. Results for SAFARI-FIPR case 3: (a) reflec-

tion loss at rough ice layer as function of frequency
at grasing angle 10°, correlation length L = oo;
(b) reflection loss at rough ice layer as function of
frequency at grasing angle 10°, correlation length
L =40 m.
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7. Running SAFARI-FIP

The SAFARI-FIP module performs single-frequency calculation of the total wavefield

at any number of depths and ranges for either a single compressional source or a’

vertical phased source array. In both cases the sources may be either point sources
or line sources, yielding axisymmetric and plane fields, respectively.

In the case of a single source in a fluid me:‘ium, the source strength S, is normalized
to yield a pressure of 1 Pa at 1 m distance from the source. For both a compres-
sional source and a point force in a solid medium the source strength is normalized
to yield a normal stress o, of 1 Pa, 1 m below the source. The graphical results
are always given in dB and for the pressure or normal stress they therefcre directly
correspond to the standard definition of the transmission loss. For the phased ar-
rays, the source strength of each individual source is divided by the total number
of sources in o-der to get a maximum level in the generated beams which is inde-
pendent of the number of sources. It is common in both underwater acoustics and
seismology to measure particle velocities by means of geophones, and these param-
eters are therefore included as optional outputs. Since the particle velocities are
vector param:ters depending not only on the receiver position but also on the di-
rection, there is no logical ‘transmission loss’ definition as in the case of the scalar
pressure. In the graphical output these parameters are therefore given directly in
dB relative to 1 m/s for a source strength of 1 Pa at 1 m distance. Thus the dB
values for pressure and particle velocity will in general be offset with respect to each
other. For a plane wave in a fluid with density p and sound speed c., the offset is
determined by the relation between pressure p and particle velocity v, |p| = pec|v],
i.e. approximately 123 dB for water.

For all parameters the output is available both as standard curve plots vs depth or
range and as contour plots showing the field variation in both depth and range.

All inpuis to SAFARI-FIP are read from the file currently assigned to the logical file
FORO001. Before running the program the user has to sssign the file containing the
input data to this logical name. The most convenient approach is to include this
assignment in a general command file which also assigns file names to the logical
names of the output files as described in Subsect. 5.6.

A successful use of SAFARI-FIP is highly dependent on how the parameters are
specified, in particular those related to the truncation and discretization of the
horizontal wavenumber interval. We will therefore in the following first describe the
preparation of the input files in detail and then outline some important numerical
considerations.
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SACLANTCEN SR-113

Table 9
Parameters of SAFARI-FIP input files: Calculation and environmental parameters
Block Parameter Units Limits
1 TITLE : title of run - < 80 char.
IT optl opt2 ...: output options - < 40 char.
I FREQ: source frequency Hs >0
COF¥: integration contour offset dB/A COFF > 0
Iv NL: number of layers, incl. halfspaces - NL > 2
D: depth of interface m -
CC: compressional speed m/s ¢cC2>0
CS: shear speed m/s -
AC: compressional attenuation dB/A AC>0
AS: shear attenuation dB/A AS >0
RO:  density g/cm® RO >0
RG: rms value of interface roughness m -
CL: correlation length of roughness m CL>0
Y SD: source depih {mesn for array) Y -
NS: number of sources in array - NS >0
DS:  vertical scurce spacing m DS >0
AN: grazing angle of beam deg -
IA: array type - 1<IA<S
FD: focal depth of beam m FD #SD
V1 RD1: depth of first receiver m -
RD2: depth of last receiver m RD2 > RD1
NR: number of receivers - NR >0
IR: plot output increment - IR>0
vil CHIN: minimum phase velocity m/s CKIN > 0
CNAX: maximum phase velocity m/s -
Vil N¥: number of wavenumber samples - N =2M
IC1: first sampling point - Ic1 > 1
IC2: last sampling point - IC2 <NV
7.1. INPUT FILES FOR SAFARI-FIP
The input data are structured in 13 blocks. The first eight, shown in Table 9,

specify the title, options, frequency, environmental parameters, source and receiver
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geometry, and finally the wavenumber sampling parameters. The last 5 blocks,
outlined in Table 10, contain axis specifications for the graphical output. Some of
these blocks should always be included and others only if certain options have been
specified. The single blocks and parameters are described in detail in the following.

Table 10
Parameters of SAFARI-FIP input files: Plot parameters
Block Parameter Units Limits
IX RMIN: minimum range on plots km -
RNAX: maximum range on plots km -
RLEN: length of z-axis for all plots cm RLEN > 0
RINC: distance between tick marks km RINC > 0
X! TMIN: minimum transmission loss dB -
THAX: maximum transmission loss dB -
TLEN: length of vertical TL axes cm TLEN > 0
TINC: distance between tick marks dB TINC > 0
X2 DCUP: minimum depth for plots m -
DCLO: maximum depth for plots m -
DCLN: length of depth axis cm DCLN > 0
DCIN: distance between tick marks m DCIN > 0
X ININ: minimum contour level dB -
IMAX: maximum contour level dB -
ZINC: contour level increment dB ZINC > 0
Xt VLEF: wave speed at lett border m/s -
VRIG: wave speed at right border m/s -
VLEN: length of wave : peed axis cm VLEN > 0
VINC: wave speed tick mark distance m/s VINC > 0
DYUP: depth at upper border m -
DYLO: depth at lower border m -
DVLN: length of depth axis cm DVLN > 0
DVIN: depth-axis tick mark interval m DYIN > 0

! Only for options A, D, T and T. ? Only for options C and D. * Only for option C.
* Only for option Z.
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CTITLE
- A80
_ TITLE: Title of run. Maxim - 80 characters.
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o Always
" optl opt2 opt3 .

. Free. Maximum 40 alpha.numeric tharactera
| Series of alphanumeric characters specifying the de:

. A separate. contour plot wil.l be produced fox

“/Hr - Caleulation of horisontal particle velocity.
;" Hankel transform mtegrmda are plotted for eaCh

. Linear vertical source array.

OPTIONS

.pptionn The fdllowing are-implemented at present: f B

¢ Depth- averaged trnnsmunon lou plotted for aa ”
. of the selected field parameters (N, ¥, H). The -
* -averaging is performed yver the speuﬁed number:
~of receivers (Block VI). -
:* Range/depth contour plot for transmission lose

‘Plots of trmmnmnon Toss o8 depth produced
~for the ranges determined by the range axis -
" parameters RMIN, RMAX and RINC (Block IX\‘

of the selecied fieid parameters (N, ¥, ). . A
: - Complex integration contour. The contqm‘_
. is shifted into the upper halfplane by an - - -
" offset controlled by the input parameter COFFi .
~(Block III).

Calculation of normal stress a.. (equal to
_negative pressure in fluids). - _
i Plane geometry. The sources. w;ll be lin
_instead of point sources as md
ylindrical geometry. . o .

- Transmission locs plotted’ as. f‘unctxon of rang
“each of the selected field parameters (N, ¥, H).
- Calculation of vertical particle velocity. «
i -If sources are present in a solid medivm, these
 'will be considered vertical point forces (line forces
in plane geometry) rather than omnidirectional
sources.

Plot of velocity profile.

-71 -

Ponvey SUP S SIS -

" .A -k

— -



7 - Running SAFARI-FIP

SACLANTCEN SR-113%

BLOCK I
; Lines:
Required:

- Syntax:
Format:

Description:

FREQUENCY

1
Always

FREQ, COFF

Free

- FREQ:

COFF:

“Integration contour offset. Specified in dB/A,
- where A is the wavelength at the source depth

result is independent of the choice of COFF, but a -

is specified as 0.0,

Frequency f in Hz, at which calculation has to be
performed. :

SD. Since only the horizontal part of the
integration contour is considered, this parameter -
should not be chosen so large that the amplitudes
at the ends of the integration interval become
significant. In lossless cases too small values will
give sampling problems at the normal modes and
other singularities. For intermediate values; the =

good value to choose is one that gives 60 dB at

‘\ﬂ ‘f\'\” -~

the longest range considered in the FFT, iei
COFF = 60cc(2,)/ frmax
where the maximum FFT range is

Pmax = “/f(cmm ;llu

This value is the default which is applied if GDFF

-T2 -~
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ONMENTAL DATA .

b1 GE(D) G8(1) AG() ASC) ROGL) RG(H) CLCL)
o 9(3) CC(2) C8(2) AC(2) AS(2) RO(2) RG(2) CL(Z)

[}
LN
»

D(NL)CC(NL)CS (NL)AG(NL)AS (NL)RO(NL)RG(NL)CL(HL)

Number of layers, including the upper and lowar
 halfspaces. These should always be mcluded, qven
o in cases where they are vacuum. :

P{}: Depth » in m of upper boundary of layer or
halfspace. The reference depth can be choosen .
arbitrarily, and D() is allowed to be negative
For layer no. 1, i.e. the upper halfspace, this
parameter is dunimy.

CC(): Velocity c. of compressicnal waves in m/s.
' If specified as 0.0, the layer or halfopace is a -
vacuum.
€8(): Velocity ¢, of shear waves in m/s. In arder to be .
physically meaningful, it is required that ¢, €
0.75¢.. If specified as 0.0, the layer ot halfopue;
is fluid. X ¢, < 0, it represents the comprmiona.l
velocity at the bottom of the actual layer, which'
is treated as & fluid with 1/c(z)? varying li.ueprly
with depth. N
" AC(): Attenuation 7. of compressicnal waves in dB /A. :
If the layer is fluid, and AC() is specified as 0.0,
; - then an empirical water attenuation is used.

" A8(): Attenuation v, of shear waves in dB/A. For the .

attenuations to be physically meaningful, it is

required that \
7 3 (_.)
Ye T 4 \c,
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BLOCK IV - (Continued)

* Description:

RO(): Density p in g/cm?®.

RG(): RMS roughness of interface in m. RG(1) is
dummy. If RG > 0 the Kirchhoff approximation
is used for the scattering loss, i.e. CL. — oc.
This is computationally faster than doing the
full scattering theory, but it is only applicable for
small roughnesses and large correlation lengths.
To invoke the full non-Kirchhoff scattering RG
must be specified equal to the negative rms
roughness, i.e. RG < 0,

CL({): Correlation length of roughness in m. This

‘ parameter is only required if non-Kirchhoff
scattering has been selected, i.e. RG < 0.
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Lines:

Required:
Syntax:
Format:
 Deseription;

CK v  ~ SOURCE DATA

1

Always

Option L: SD NS DS AN IA FD

else: SD

Free

SD: Source depth z, in m. If option L has been
specified, SD defines the mid-point of the vertical
source array.

NS: Number of sources in the array.

DS: Source spacing in m.

AN: Specifies the nominal grasing angle of the
generated beam in degrees. AN > 0 corresponds
to downward propagation.

‘IA:  Array type
[1) Rectangular weighted array
(2] Hanning weighted array
[3) Hanning weighted focused array
[4) Gaussian weighted arrsy
{5] Gaussian weighted focv sed array

FD: Focal depth in m for an array of type 3 or 5.
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'BLOCK - VI -~ RECEIVER DATA

Lines: SR

Regqired; Always
Syncax:; RD1 RD2 NK IR
' Formaé: Fre:
Description:

"~ RD1: Receiver depth in m. If the calculations are to be
perforined for more than one receiver, ie. NN > 1,
then RD1 specifies the uppermost receiver.

RD2: If N2 > 1 this parameter determines the depth
of the Jowermost receiver. If NR = 1, then this
parameter is dummy.

NR:  Nwumber of receivers in depth. s

IR:  if options T or I have been specified; plots will "~
be generated for each IR receiver depth. This
parameter is useful if option C or A have been
chocsen, and integrands or transmission loss
curves are wanted only for a limited number of: .
depths. o
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PHASE VELOCITIES '

: Mmunum phase velocxty ¢mln in rn/s YD
- the upper limit of the’ truncated honzontal '

‘Determines the lower limit of the trunca&ed
homonta.l wavenumber space

In plane geometry (optxon P) CMAX may be e

- wavenumber spectrum vill be'inclided with.
Frin = —kpax, yielding coirect solution
‘st zero range. Contour offset. (op*mn 1)
'ﬂallowed in tlna case, -

avenumber space:’

ez = 2Tf/cmin--

Maximum phase velocity cmax in m/s

' 'kmin = 27‘f/cmn

specified as negative. In this case, the. negatxve.
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Always
Wi IC1 IC2

: Should be an mteger power of 2, i.e. NW = 2M,
" The sampling points are placed equidistantly in -
. the truncated wavenumber space determined by -

. CMIN and CMAX |

4: Number of the first sampling point, where the
. .<alculation is to be performed. If ICt > 1, . .
then the Hankel transform is zeroed for sampling
‘points 1,2..ICL ~ 1, and the discontinuity is .

2+ - Number of the last. samphng point where the:
- calculation is to be performed. If IC2 < AW,
then the Hankel transform is geroed for snmpling
“points IC2 + 1,...8¥, and the d.‘scontmwty is
-smoothed by Hemute polynoxmal extrapolatmn

- 78 -



‘Fm

SACLANTOEN SR-118

7 - Running SAFARI-FIP

4Mlmmum TANge: Fryiy in km, Determ.men h
~.starting value' for the’ a:—axis of transmission k

- wluch ‘transtnission loss vs depth will be,;p:,
- *option D is selected. .
17 Maximum range rm., in km. This pa.ram ’
- only defines the end of the 2-axis of transmi
- loss'and contour: plats._ The ‘TAngE | interval.
s ‘caleulation i is defined by. Train a0d the |
- and discretization of the wavenumber’ space
:  Length of z-axis in cm of all plots, i.e: also

t - Range mterval between tack marks on th
~ “axes of transmission loss and contour plo
© Also determines the range interval between
... plats of transnission loss vs depth for:pp;

For integrand plota a.ll scalmg aud Iabelli
automatlc : ’

and contour plots. RMIN is also the first rang:

length of the transnnsmm loss axis if option’
selected. '
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PLO 'mm / TRANSMISSION LOSS AXES

es: 1 for. teu:h field parameter (N, V, H).
* Required: -~ If options &, D, T or T were specified.
- Syntax:  -TWIN'TMAX TLEN TINC
Format: =~ E'eﬁ

" THIN: Minimum transmission loss in dB. For plots
~ . .of transmission loss vs range {cptions A and
T), TMIN deterraines the upper border. In the
case of transmission loss vs depth (option D), it
- determines the right border of the plot.
- Maximum transmission loss in dB. Determines
- the Jower border- (for options & and T) or left .
~ “border (for.option D) of transmission loss plots.
" It.should be noted, that the reference for the
- ‘perticle velocities is 1 m/s, when the reference
- pressure js-1 Pa (1 N/m?) at 1 m distance
‘ _the source. If option L has been spemﬁed
e. mare than one source is present, then the . -
reference pressure of each source is divided by
- “the number of sources. This ensures that the
“order of magnitude of the field parameters are
- .independent of the number of sources in the
o arTey.
1 Length of y-axes in cm for transmission loss a.nd
. integrand plots. For option D, the transmission -
?lou'ls represented by the z-axis and the length is .
‘therefore determined by RLEN, SR
uniber of dB between tick 1aarks on _
‘ansrnission loss axes. Sca.ling and’ Iubeung of
. »»intagrmd plots is sutomatic.”
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OT DATA / DEPTH AXES

I optkms C or D were specified,
i‘DCUP DCLO DCLN DGIN

P: memum depth in'm for both contour pl
- plots of transinission loss vs depth. N
s Maximum depth in m for both contour plo and
plots of tranumisnion loas s depth ' :
:DCLN: - Length in ¢m of depth axes. _ »
DCIN: . Difference in m between tick xnarka o depth
.. BXes, ~

s PLOT DATA / CONTQUR LEVELS

“. "1 for each selected parameter (N, V, B).
.. K option € was specified.
U ZMIN ZMAX ZINC

- ZMIN: ‘Lowet limit in dB of tra.nstmsswn losa int
"~ which contonr lines are to be plotted: -
MAX "ZKUpper limit in dB of transmission loss: ,mterval
. -which contour lines are to be: plot\;ed

INC;  Difference in dB between contomrs. . .
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: __;'If»_opt_ion Z was specified in Block II.
VLEF VRIG VLEN VINC
_ nm DVLO DVLN. DVIN

F:. Left border value of velocity in m/s.
. Right border value of velocity in m/s.

© 7 VLEN: Length of velocity axis in cm.

. VINC: . Distance between tick marks in m/s.

DVUP: Depth at upper border of plot in m.
L0: Depth at lower border of plot i inm.

- Length of depth axis in cm. -
- sttance in m'between tlck muks on depth mu_, E
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7.2. NUMERICAL CONSIDERATIONS

When SAFARI-FIP is to be applied to a propagation problem, the first difficulty that
arises is related to the discretization of the environmental model. When modelling
real data collected in an area where only a few environmental data are known,
it is generally necessary to re-run the code several times in order to fit a discrete
stratified model; on the other hand the accuracy requirements will usually be limited,
and there will be no purely numerical considerations involved. However, the choice
of environmental model is important in cases where the SAFARI results have to be
compared to those obtained by other numerical models, which is very common in
relation to the verification of new algorithms. Many codes, like the normal mode and
parabolic equation models, assume a linearly varying sound velocity profiie between
the sampling points, whereas SAFAR! assumes either isovelocity layers or a sound
speed varying non-linearly between the sampling points, Eq. (5). It is therefore
necessary for the number of profile sampling points to be so large that the difference
between the interpolation techniques has no significant effect on the calculated sound
field. It is not possible to give any specific rules in this regard since the effect depends
on many factors such as frequency, water depth and the receiver range of interest.
But if isovelocity layers are used to represent the profile, a layer thickness of }A will
usually be sufficient. For the inhomogeneous layers, however, the thickness can be
chosen to be much larger. In any event the profile discretization should be controlled
by checking the convergence.

The actual choice of parameters controlling the wavenumber integration is far more
critical. There are essentially 5 paramaters: CMIN, CMAX, NW, IC1 and IC2, but
they cannot be chosen independently from other parameters, in particular the range
interval of interest (Block IX), because of the wrap-around problem. Further, both
source and receiver depths influence the choice of integration parameters, e.g. in
the waveguide problem the presence of the normal modes will require much higher
sampling rate if the source and receiver are inside the waveguide than if one of them
is buried in the bottom. There are no general rules which can be used to automate
the wavenumber integration. The only way to obtain accurate results is to change
the integration parameters until convergence is obtained.

Clearly, when making paraiLeter studies, convergence tests are not required for every
small change in the environmental parameters. However, convergence tests must
be done for at least one characteristic example before proceeding with a complete
propagation study. A user with a reasonable knowledge of the physics of waveguide
problems will — after gaining some experience - be able to deterinine the proper
parameters relatively quickly. All problems are, however, not equally easy to nredict,
and it is therefore advisable - also for the experienced user -~ to use the following
guidelines for estimating the integration parameters for every new application of

SAFARI-FIP.

1. Select the horizontal phase velocities CMIN and CMAX such that all signifi-
cant wave phenomena are included, i.e. CMIN should be chosen to be 10-20%
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smaller than the smallest wave speed in the problem and CMAX should be a
very large number, e.g. CMAX = 1E8. If evanescent waves are known to be
present CMIN may have to be even smaller.

2. Select a few characteristic receiver depths.

3. Select a reasonably small number of sampling points NW, and run the code
with option I to obtain plots of the integration kernels.

4. Repeat steps 1 to 3 with decreasing CMIN until all significant wavenumber
components are within the integration interval. Then read the wavenumber
limits kyin and kpax from the plot or calculate them directly as knin =
2% f[Cmax 80d kpey = 28 f /O

5. Select the range interval (RMIN, RMAX) of interest, and convert from km to m
to obtain rpi, and ry,,. For the FFT integration to ‘reach’ r,,., the nec-
essary number of sampling points must be larger than Npyin = Pmex(Emax —
kmin)/2%). Choose the smallest M for which NW = 2M > N_ ;.. Set IC1 = 1
and IC2 = NW.

6. If the integration kernels plotted out in step 3 are very ‘peaky’ due to low loss
in the waveguide, select option J and specify COFF = 0 to invoke the default
contour offset. The experienced user can choose a specific value of COFF as
described in Block IIT above.

7. Now select option T and calculate the transmission loss.

8. Double the number of sampling points NW (remember to double IC2 as well)
and re-calculate.

9. Repeat step 8 until a stable transmission loss curve is obtained.

10. Now the number of receivers can be increased and the other options C, A
and Z can be specified, as desired. Remember to change the plot parameters
accordingly, see Table 0.

This is the standard procedure which is only applicable if the number of sampling
points KW is reasonably small, at least smaller than the m:-izum allowed for the
actual installation. If this is not the case, there are two different ways to proceed. If
the computation time is not important and the actual computer allows it, a larger
version can be installed, and the procedure above is repeated or continved. In many
cases, however, the computation time will become unacceptable using this approach,
and the sccond possible approach has to be taken. This, however, requires a little
more knowledge concerning the physics of the actual problem.

As discussed earlier, each horizontal wavenumber component k corresponds to a
specific conical or plane wave propagating at grazing angle #, where k = k., cos 8,
k.. being the medium wavenumber of layer m. Therefore the small wavenumbers
correspond to steep propagation, and k = k,, correspcnds to horizontal propagation.
It is well known for the waveguide problem that the waves propagating at grasing
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angles larger than the critical angle 6. at the bottom will suffer a large attenuation
for every bottom bounce and will therefore yield an insignificant contribution to
the totel field at longer ranges. This so-called continuous part of the wavenumber
spectrum 0 < k < k. can therefore be ignored for long range propagation. This is in
fact the approximation made in most normal mode models where only the discrete
part k. < k < k., of the spectrum is considered. In SAFARI-FIP the wavenumber
spectrum can be reduced by specifying a smaller value of CMAX. This will obviously
lead to a smaller wavenumber spectrum, and thus to larger ranges covered by the
FFT integration. Due to the fact that the wavenumb«r spectrum is a continuous
function of k, an arbitrary truncation peint may give ri: . to numerical artifacts such
as wrap-around. The truncation is therefore usually determined in the following
way:

1. Carry out steps 1 to 2 above.

2. By inspection of the integration kernels, choose a truncation point in the con-
tinuous spectrum where the amplitude is small. Calculate the orresponding
phase velocity c;. If only a single receiver depth is required thoose CMAX = ¢,
and proceed to next step. If more receiver depths are involved a universal
truncation point with vanishing amplitude can usually not be found. In these
cases and when the kernel has significant amplitude in the whole continuous
spectrum, choose CMAX somewhat larger than ¢;. Then use IC1 to specify
the first samupling point where the caiculation should start, and SAFARI will
automatically taper the discontinuity. The same procedure is of course ap-
plicable if the wavenumber spectrum is truncated at the large wavenumber
end, which requires a proper choice of CMIN and IC2.

3. Now perform steps 5 to 8 above.

4. If determination of both short and long range propagation is required, cal-
culate the full-spectrum solution to a reasonable and convenient range as
described above. Then compare the solutions to ensure that they overlap. If
this is not the case ~ which will only very rarely happer. - change the trun-
cation point to include more of the continuous spectrum and re-calculate the
long-range field until there is an overlapping region of identical results.

To the inexperienced user the procedure outlined here may seem very curnbersome,
but as mentioned above the test of convergence is not needed for every small change

in the parameters, and after a few trials it will probably seem a very logical proce-
dure.
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7.3. SAFARI-FIP EXAMPLES

Using basically the same environmental model as for the SAFARI-FIPR examples, we
will here demonstrate the different features of SAFARI-FIP by a series of examples.
These have been chosen such that also the numerical considerations involved ir the
wavenumber integration are illustrated.

In all cases the water depth will be 100 m and the ocean bottom is assumed to have
the properties given in Table 4.

® 7.3.1. SAFARI-FIP case 1: Seismic interface wave propagation

In the first example we will calculate the transmission loss at 5 Hz for a source depth
of 95 m anc a receiver depth of 100 m and for ranges out to 5 km. This is done by
specifying the data file given in Table 11.

After running SAFARI-FIP with this data file, the plot program FIPPLOT will pro-
duce the plots shown in Fig. 9. The kernel in the wavenumber integral representation
of the normal stress at depth 100 m is shown in Fig. 9a. As can be observed, there
are two distinct peaks. The large peak at a wavenumber of 0.07 m~! is the funda-
mental interface mode. The second peak at a wavenumber of 0.017 m~! is a virtual
mode associated with propagation in the water column. Figure 9b shows the calen-
lated transmission loss, clearly displaying an interference pattern produced by the
interface mode and the virtual mode. It should be pointed out that the integra-
tion contour has not been offset in this case because no discrete normal modes are
present. Had the frequency been chosen a little higher, however, the virtual mode
would have moved into the discrete spectrum and given rise to a very sharp peak
in the integration kernel. In that case option J couid conveniently be selected, but
this is dealt with in the following example.

As can be observed from Fig. 9a, the amplitude of the integration kernel is not
insignificant at the truncation point defined by the parameter I1€2. However, due to
the tapering of the discontinuity and the fact that the exponential function is rapidly
varying at the large wavenumbers, the influence of the truncation is insignificant.
The significance of the truncation can of course be checked by increasing the value
of IC2 and comparing the results.
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Table 11

SAFARI-FIP case 1 data file
Dats file Description Notes
SAFARI-FIP case 1 title
NIT options 1
6.0 frequency 5 Hs
4 number of layers
0000000 layer 1 (upper halfspace, vacuum) p
015600 00010 layer 2 (isovelocity water column) 2
100 1600 40¢ 0.2 0.5 1.8 0 layer 3 (silt sediment)
120 1800 600 0.1 0.2 2.0 0 layer 4 (sand sub-bottom)
95 source depth 95 m
100 100 1 1 receiver depth 100 m
100 1E8 phase velocities CHIN and CNAX 3
2048 1 1000 wavenumber sampling parameters 4
0.0 5.0 20 1.0 range axis parameters
20 80 12 10 transmission-loss axis parameters

Option N indicates that the normal stress (= — pressure) should be calculated. The I
option will produce a plot of the deptk-dependeat Green’s function, i.e. the kernel in
the integra' representation for the normal stress at the selected receiver depth. Option
T will generate a plot of the transmission loss as function of range.

The ses surface is intrnduced by including a vacnum upper halfspace, and the sea
surface is chosen as the origin for the depth axis.

In order io include the propagation directions close to vertical, CMAX has been set
to a very large number such that kn, =~ 0. Since the source is close to the sea-
bed and the frequency is relatively low, seismic interface waves will be excited. CMIN
should therefore be chosen somewhat smaller than the smallest wave speed in the
problem, i.e. the sedimeni shear speed 400 m/s. A value of 250 m/s would probably be
sufficiently low. However, due to the link between the wavenumber and range sampling,
Eq. (115), this would lead to a relatively course range sampling, Ar =~ cyjn/f = 50 m.
To reduce this to 20 m, CMIN is specified as 100 m/s,

Th number of wavenumber sampling points, N, is specified as 2048 = 2'*, but since
no wave phenomena are expected with phase velocitiezs smaller than 200 m/s, the
depth-dependent Green’s function is only calculated for the first 1000 sampling points
(ICt = 1, 1€2 = 1000), automatically invoking the discontinuity tapering.
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Fig. 9. Results for SAFARI-FIP case 1: (a) depth-
dependent Green’s function as function of horison-
tal wavenumber; (b) calculated transmission loss as ]
function of range. 1
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m 7.3.2. SAFARI-FIP case 2: Normal mode propagation

As a second example, a propagation problem is chosen where the interface wave is
unimportant. Because of the characteristic expunential amplitude decay away from
the guiding boundary, the interface wave is insignificant when either the source or
the receiver is far away from the sea-bed in terms of wavelength. Typically, the
contribution to the total field by the interface wave is insignificant if the source
is one wavelength away from the sea-bed and if discrete modes are present in the
water column. We will therefore place a 30 Hz source at mid-water depth and again
calculate the transmission loss out to 5 km range for a receiver at the ocean bottom.
To demonstrate how a velocity profile in the water column is specified, it is assumed
that the sound speed has been measured to be 1500 m/s at the surface, 1480 m/s
at 30 m depth, and 1490 m/s at the sea-bed. The data file is set up as shown in
Table 12,

The results are shown in Fig. 10. Figure 10a shows the integration kernel with the
velocity profile plot inserted. Two discrete modes are apparent, and a third mode is
just around cut-off at the medium wavenuinber for compressional waves in the sub-
bottom, k = 2% f/1800 =~ 0.105. The resulting transmission loss plotted in Fig. 10b
is clearly dominated by the interference pattern produced by the 2 discrete modes
for ranges larger than 1 km.
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Table 12
SAFARI-FIP case 2 data file
Data file Description Notes
SAFARI-FIP case 2 title
NITIZ options 1
30 0 frequency and contour offset 2
6 number of layers
0000000 layer 1 (upper halfspace, vacuum)
0 1600 -1480 0 0 1 O layer 2 (water layer) 3
30 1480 -1490 0 0 1 O layer 3 (water layer) 3
100 1600 400 0.2 0.5 1.8 0 layer 4 (silt sediment)
120 1800 600 0.1 0.2 2,0 0 layer 5 (sand sub-bottom)
-0 source depth 50 m
100 100 1 receiver depth 100 m
700 1E8 phase velocities CNIN and CMAX 4
1024 1 612 wavenumber sampling parameters 5
6.0 5.0 20 1.0 range axis parameters
20 80 12 10 transmission-loss axis parameters
1450 1550 10 25 velocity axis for profile plot
0 100 10 20 depth axis for profile plot 1

The first 3 options are the same as snecified in case 1, but here option J has been
specified to invoke the contour offset since discreie modes are present at this frequency.
Further, option Z will generate a plot of the velocity profile in the water column. The
associated axis specifications are given at the end of the data file.

The frequency is specified as 30 Hz and the default contour offset will be applied since
COFF = 0.

By specifying a negative value for the shear speed, SAFARI will interpret the number
as the negative of the compressional speed at the bottom of the layer, i.e. at the next
interface. The solution obtained assumes a linear depth variation of 1/c? within the
layer.

Although it cai be demonstrated that the part of the spectrum with phase velocities
smaller than a2 1400 m/s yields no significant contribution to the total field, a relatively
small value of CHIN has been selected. This is again done in order to obtain a reasonable
range sampling. In the present case Ar ~ cpj /f = 23.3 m.

As in the former case, by specifying IC2 = 512 the insignificant second half of the
wavenumber spectrum is not calculated.
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Fig. 10. Results for SAFARI-FIP ca.e 2: (a) depth-
dependent Green's function as function of horison-
tal wavenumber with velocity-profile plot inserted;
(b) calculated transmission loss as function of range.
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m 7.3.3. SAFARI-FIP case 3: Transmission loss vs depth and range

Next, we take exactly the same problem considered in case 2, but calculate the
transmission loss at several receiver depths, both in the water column and in the
sediment, and produce a contour piot of the loss as a function of range and depth.
Further, we produce a plot of the transmission loss averaged over depth as a function
of range. The data file is given in Table 13.

The resulting plot of the depth-averaged trensmission loss is shown in Fig. 11a. Note
that the averaging removes the interference pattern seen at the individual receiver
depths, Fig. 10b. The contour plot produced by the CONTUR program is shown in
Fig. 11b. The periodic pattern for ranges longer than a couple of kilometres is typical
for a 2-mode propagation problem. The actual contouring grid size is indicated by
the small ‘box’ at the upper left corner of the plot.

Figure 12 shows two out of a total of 5 plots of transmission loss vs depth produced
by option D.
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Table 13
SAFARI-FIP case 3 data file
Data file Description Notes
SAFARI-FIP case 3 title
NCaAD) options 1
30 0 frequency and contour offset
[ number of lavers
0000000 layer 1 (upper lialfspace, vacuum)
0 1500 -1480 0 0 1 O layer 2 (water layer)
30 1480 -1490 0 0 1 0 layer 3 (water layer)
100 1600 400 0.2 0.5 1.8 0 layer 4 (silt sediment)
120 1800 600 0.1 0.2 2.0 0 layer 5 (sand sub-bottom)
50 source depth 50 m
0.1 120 41 40 receiver depths 0.1-120 m 2
1360 1E8 phase velocities CHIN and CMAX 3
1024 1 960 wavenumber sampling parameters 4
0.0 5.0 20 1.0 range axis parameters 5
20 80 12 10 transmission-loss axis parameters
0 120 12 20 depth axis for contour plot
40 70 6 contour levels in dB

Option C will create a contour piot of the transmission loss as a function of depth and
range, whereas option A will calculate the depth-averaged transmissicn loas over the
specified number of receiver depth. Option D will generate plots of transmission loss
vs depth at the ranges defined by the range axis parameters, see note 5 below.

41 receivers will be placed equidistantly in the depth interval 0.1-120 m. Note that the
first recejver is not placed on the surface where the field is known to vanish and thus
has an undefined dB level. The last parameter in this line is IR = 40. This parameter
is dummy in the present case; but if optior I or T had been specified, an integrand or
transmission loss plot would be created for every 40 receiver depth, i.e. here for the
first and last depth only.

Compared to case 2, the wavenumber interval is smaller here, since a very fine range
sampling is not crucial for the contour plots as a consequence ot the CONTUR program
performing a smooth interpolation between the data points. The present choice of CHIN
and CMAX translates into a range step of Ar ~ 45 m.

% The tapering iv again activated by =pecifying 12 = 950.

The range axis parameters are applied to both the plot of the depth-averaged trans-
mission loss and the contour plot. Further, they determine the ranges for which trans-
mission loss vs depth will be plotted (option D). Thus, these plots will be produced at
the ranges corresponding to the tick marks on the range axis.
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Fig. 11. Results for SAFARI-FIP case 3: (a) depth-averaged transmission
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w 7.3.4. SAFARI-FIP case 4: Long-range propagation

In this example it is demonstraied how long-range propagation problems are treated
by properly truncating the integration interval. The problem comnsidered is exactly
the same as in case 2, but now the transmission loss should be calculated out to a
range of 50 km. If the wavenumber interval wus left unchanged, several thousand
sampling points would be required. It is well known, however, that except for
very short ranges — typically less than a few water depths - the field will be entirely
dominated by the two propagating normal modes, clearly showing up as sharp peaks
in the intsgrand plot of Fig. 10a. The long-range propagaiion loss can therefore be
calculated by includiag only the discrete part of the spectrum containing the two
modes, significantly reducing the required sampling. This is done by creating the
data file given in Table 14.

The resulting plots of the integratior. kernel and the transmission loss are shown in
Fig. 13. As can be observed, the wavenuruber interval has been properiy truncated.
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Table 14
SAFARL-FIP casc 4 data file
Data file Description Notes
SAFARI-FIP case 4 title
NIT) options
o 0 frequency and contour offset
[ number of Jayers
00000OC0O layer 1 (upper halfspace, vacuum)
0 1500 -1480 vV 0 1 0 layer 2 (water layer)
30 1480 -1490 0 0 1 ¢ layer 3 (water layer)
100 1600 400 0.2 0.5 1.8 0 layer 4 (silt sediment)
120 1800 600 0.1 0.2 2.0 0 layer 5 (sand sub-bottom)
50 source depth 50 m
100 100 1 1§ receiver depth 100 m
1300 1760 phase velocities CHIN and CMAX 1
612 46 465 wavenumber sampling parameters 2
0.0 60 20 10 range axis parameters
40 120 12 20 transmission-loss axis parameters

A proper value of CMAX is found by observing the full integrand in Fig. 10s. An
obvious point to truncate is where the amplitude vanishes at the wavenumber 0.11 m™?,
corresponding to a phase velocity of 1712 m/s. The actual value of CNAX has been
chosen a little larger, as 1750 m/s. The value of CNIN is less critical, but 1300 m/s has
been chosen to yield a reasonable range sampling.

Since CMAX was not chosen equal to the actual value corresponding to the wavenumber
where the integrand amplitude was zero, IC1 is given a value which will start calcu-
lation at this particular point. Also, since the integrand amplitude is known to be
insignificant at the high wavenumber end of the selected interval, 1C2 is set to a value
smaller than NV,
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Fig. 13. Results for SAFARI-FIP cace 4: (a) trun-
cated integration kernel as function of horizontal
wavenumber; (b) calculated transmission loss as func-
tion of range.

- 98 -




-~ ——————

SACLANTCEN SR-113 7 - Running SAFARI-FIP

w 7.3.5. SAFARI-FIP case 5: Beam propagation

In this last example it is dsmonstrated how SAFARI-FIP is applied to a beam prop-
agation probiem. A linear vertical array, placed at mid-water depth in the environ-
ment treated in case 1, is generating @ 1000 Hs gaussian beam impinging on the
bottom at a nominal graszing angle of 256°. The task is to investigate the reflection
and transmission characteristics of this beam by generating a contour plot of the
sound-pressure field in depth and range. The data file is set up in Table 15.

The contour plot produced by means of the DISSPLA plot package is shown in
Fig. 14a, whercas Fig. 14b shows the corresponding UNIRAS contour plot with dark
shading indicating high levels. Since the angle of incidence of the beam is between the
critical angles of the silt layer and the sub-bottom, the incident beam is both reflected
and transmitted at the water/sediment interface whereas the transmitted beam is
totally reflected at the sediment /subbottom interface. The resulting complex beam-
splitting reflectivity pattern is easily observed. More beam examples can be found
in [21,22,26,27).
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Table 15
SAFARI-FIP case 5 data file
Data file Description Notes
SAFARI-FIP casa § title
PRCL options 1
1000 frequeacy 1 kHs
4 number of layers 2
65 1600 0 0 0 1 O layer 1 (upper halfspace, water) 2
65 1500 0 0 0 1 O layer 2 (isovelocity water layer) 2
100 1600 400 0.2 0.5 1.8 0 layer 3 (silt sediment)
120 1600 600 0.1 0.2 2.0 0 layer 4 {sand sub-bottom)
50 41 0.76 26.0 4 100 source array parameters 3
60 126 51 52 receiver depths 50 to 125 m
1600 6000 phase velocities CKIN and CHLX 4
2048 1400 1950 wavenumber sampling parameters 5
0.0 0.3 20 0.06 range axis for contour plot
50 126 12 26 depth axis for contour plot
24 64 ¢ contour levels in dB

Option P indicates that the sources are line sources rather than point sources. The
calculatinns are therefore performed in plane geometry, and the calculated parameter
is the normal stress, option N. Option C generatas a contour plot of the field in depth
and range. Finally, option L indicates that the field is generated by a vertical linear
array.

Since only the first boitom bounce of the beam is of interest, the sea surface is remove {
by replacing ths water column by an iafinite halfspace. Note that a duminy inter’ace
has been introduced just below the lowermost source in the array. This is a ‘trick’,
reducing the computation time in cases where many sources and receivers are present.
This is due to the fact that the homogeneous solution within a layer has to be super-
imposed with the direct source field - an operation which must be performed for every
source/receiver combination within each layer. In the present cas~ the introduction of
the dummy interface reduces the number of receivers present in the source layer to the
uppermcst 10, and the savings in computational eflort more than compensates for the
additional computation involved in adding an extra interface. It is left as an exer~ise
to the user to demonstrate this.

Since option L was chosen, all 7 source parameters have to be specified. The mid-point
of the array is 50 m, i.e. in the middle of the water column. The 2rray has 41 elements
with a spacing of 0.75 m, i.e. half a wavelength. The total array length is thetefore
30 m. The steerir 7 angle is 25° downward with respect to horizontal. The array is of
type 4, indicating a Gaussian, non-focusing shading. The focal depth, specified to the
depth of the sea-bed, is therefore dummy in this case

Although the wavenumber spectrum of the patallel beam will be rclatively narrow,
almost the whole spectrum of propagation angles in the water has been included in
order to gec¢ a reasonable range sampling.

The wavenumber sampling parameters have been chosen such that only the non-
vanishing part of the spectrun: is included. This can be shown by adding option
I to obtain plots of the integration kernei.
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SAFARI- FIP case 5.
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SAFARI-FIP case 5.
Fig. 14. Results for SAFAR!-FIP case 5. (a) contours in depth and range of

beam-generated acoustic field produced by the DISSPLA package; (b) con-
tour plot produced by UNIRAS.
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8. Runnring SAFARI-FIPP

The SAFARI-FIPP module calculates the depth-dependent GSreen’s function for a
selected number of frequencies and determines the pulse response at a given re-
ceiver position by evaluating first the wavenumber integral, Eq. (13), and then the
frequency integral, Eq. (8). As was the case for SAFARI-FIP, both stresses and par-
ticle velocities can be determined, and the field may be produced by either point
or line sources. By arranging the sources in a vertical phased array, pulsed beam
propagation can be analysed.

The time response it of course dependent on the pulse shape at the source. In
SAFARI-FIPP the user can either select one of the five internal pulse shapes or create
an external file containing any desired pulse shape. In either case the source pulse
is defined as the pressure pulse produced at a distance of 1 m from the source (for
solids the negative of the normal stress 1 m below the source). The time dependence
is therefore not directly that of the forcing term in the potential wave equation,
Eq. (6). This is important to note when comparing the SAFARI-FIPP solutions with
those obtained by other codes.

The pulse response output is available as either individual pulse plots for single
receivers or as stacked plots, where the stacking can be perforraed in either range or
depth. For the individual plots the time series are producad in true units, i.e. Pa for
stresses and m/s for particle velocities, again assuming that the source pulse shape
is given in Pa. For the stacked plots the individual traces are scaled according to
certain rules specified in the following.

All inputs to SAFARI-FIPP are read from the file currently assigned to the logical
file FOR001. Before running the program the user has to assign the file containing
the input data to this logical name. The most convenient approach is to incluc.e this
assignment in a general command file which also assigns file names to the logical
names of the output files, as described in Subsect. 5.6.

As was the case for the single-frequency module, successful use of SAFARI-FIPP is
highly dependent on the parameters specified, in particvlar those related to the
truncation and discretization for carrying out numerical integrations. It is obvious
that the additional frequency integration performed in SAFARI-FIPP makes this
module even more difficult to use than SAFARI-FIP. It is therefore important that
the user be extremely confident in running SAFARI-FIP before trying to use the pulse
model. In the following the preparation of input files is first discussed in detail and
then the numerical considerations particular to the pulse model are addressed.
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Table 16
Parameters of SAFARI-FIPF input files: Calculation and environmental parameters
Block Parameter Units Limits
| TITLE : title of run - < 80 char.
1 optl opt2 ...: output options - < 40 char.
IIl FREQ: source centre frequency Hs >0
COFF: integration contour offset dB/A COFF > 0
v NL: number of layers, incl. halfspaces - NL > 2
: depth of interface m -
CC: compressional speed m/s cC>0
CS: shear speed m/s -
AC: compressional attenuation dB/A Ac 20
AS: shear attenuation dB/A 4820
RO: density g/cm® RO 20
RG: rms value of interface roughness m -
CL: correlation length of roughness m cL>0
A\ SD: source depth (mean for array) m -
NS: number of sources in array -~ ¥S >0
DS: vertical source spacing m D3 >0
AN: graging angle of beam deg -
IA: array type - 1<IA<LS
:  focal depth of beam m PD # 8D
Vi RD1: depth of first receiver m -
BD2: depth of last receiver m RD2 > RD1
: number of receivers - MR>0
Vil CMIN: minimum phase velocity m/s CHIN > 0
CHAX: maximum phase velocity m/s -
i : number of wavenumber samples - w>1
IC1: first sampling point - IC1 >1
IC2: last sampling point - IC2< W
IINC: integrond plot increment - IINC > 0
IX NT: number of time samples - nr=2M
Fi: low frequency limit Hs F1 >0
F2: high frequency limit He Fs >Ft
DT: time sampling increment s pE>0
RO: first receiver range km -
DR: receiver range increment km DR #0
KRAN: number of ranges - AN >0
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8.1. INPUT FILES FOR SAFARI-FIPP

The input data are structured in 13 blocks. The first nine, described in Table 16,
specify the title, options, frequency, environinental parameters, source and receiver
geometry and finally the wavenumber and frequency integration parameters. The
last four blocks, described in Table 17. contain axis specifications for the graphical
output. Some of these blocks should always be included and others only if certain
options have been specified. The single blocks and parameters are described in detail
in the following.

Table 17
Parameters of SAFARI-FIPP input files: Plot parameters
Block Parameter Units Limits
X! CRED: reduction velocity m/s CRED > 0
TMIN: start of time window s -
TMAX: end of time window s -
TLEN: length of time aixs cm TLEN > 0
TINC: distance between tick marks s TINC > 0
xP SPLO: lower limit of stacked plots m or km -
SPUP: upper limit of stacked plots m or km -
SPLN: length of stacking axis cm SPLN > 0
SPIN: distance between tick marks m or km SPIN > 0
X1 NMOD: number of modes - NMOD > 1
FXIN: min. freq. dispersion curves He FXIN > 0
FMAX: max. {req. dispersion curves Hs FMAX > 0
FLEN: lenght of frequency axis cm FLEN > 0
FINC: frequency tick mark spacing Hs FINC > 0
GVLO: min. phase/group velocity m/s VL0 > 0
GVUP: max. phase/group velocity m/s GVUP > 0
GVLN: lenght of velocity axis cm GVIN >0
GVIN: velocity tick mark spacing m/s GVIN >0
beiliy VLEF: wave speed at left border m/s -
VRIG: wave speed at right border m/s -
VLEN: length of wave speed axis cm VLEN > 0
VINC: wave speed tick mark distance m/s VINC > 0
1) AN depth at upper border m -
DYLY: depth at lower border m -
DVLN: length of depth axis cm DVLN > 0
DVIN: depth axis tick mark interval m DVIN > 0

! Only for option R or NRAN > 0.
4 Only for option Z.

? Only for options 8 and D. ° Only for option 6.
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OPTIONS

- - Always
-optl -opt2 opt3..
. Free. Maximum 40 alphanumeric characters.
- .-Series of alphanumeric characters specifying the desired
" aptions. The following are implemented at present:

B: - If this option is specified the slowness interval
(or phase velocity interval) will be held constant
. at all frequencies. As a default procedure,
.-+ the wavenumber interval will be determined
. from the SpeC-lﬁed phase velocities and the
- maximum frequency and will then be held »
constant at all lower frequencies,. The B option
- should be used when.only s certain part of the.
angular spectrum is- considered; e g. the discrete
ppectrim. containing normal modes: ‘On the other
Y d,:_when evaneacent waves are co:mdered

: ;mterval should be held comtmt in- order to
include the whole exponential ‘tail’ at the low .
réquenciss; thus in these cases the B option
hould be onntted It is always a good hnbxt

fréqumcies (XIWC>0)
Fbt: uch aelected range the pulsel wxll be

culing is puformed ind:vxduully foreach
tacked plot; the amplitudes for different ranges
therefore cannot be directly compared. The
depth stacked plots, however, can be rescaled by
S0 77 running FIPPLOT with option RES,
il Ri - The Filon integration scheme is used for the

- * 7 wavenumber integration instead of the standard
scheme based on the trapezoidal rule.
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-Dispr .on curves are plotted.'for a selected
. number of interface modes and normal modes. .
The modas are not found directly by searching for

: m_the depth dependent Green s function. Th
- "user should therefore be sure that the mode of -
- interest is present at the selected-depth-at all-
- frequencies. - Otherwise a ‘false’ mode: may. be.:
- - found, leading to discontincus. dwpersion curves.
i Horisontal particle velocity is calculated. :
i - Complex wavenumber integration -ontour i -
.- applied. The contour is shifted into the. upper
. halfplane by an offset controlled by the i mpu
.. parameter COFF (Block III). - B
Sources are arranged in 'a vertical line an'ay
Normal stress Oss (= =p in fluids) is ‘calenla
- Plane geometry. ‘The sources will be line sour
- instead of point sources as used in the dafault»
: cyl.mdncal geometry. -

AT first multaphed by the ra'\ge of the actual i
eceiver, and then a commou scaling factor is -
applied to all traces. This factor is deterxmned
" such that the trace for the first receiver range * g
;- does not overlap the next trace. This scaling ia S
" performed individually for each receiver depth;
thus the amplitudes for different receivers cannot
be directly compared. The scaling may be
changed by running the plot program FIPPLOT
' mth the RES opnon as deacnbed in Appendu
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(Gontinued)

.7 ¥y Verticol particle velocity is calculated.
. X2 'If sources are present in a solid medium, these
- will be considered vertical point forces (line forces
-+ 'in plane geometry) rather than omnidirectional
~ sources. :
. .'Z: Plot of velocity profile is generated.
©at Digit determining the desired source pulse,
" defined as the pressure or normal stress produced
- ‘at'1 m distance from the source. There are
st o five internal pulse shapes, shown together with
.. 'their normalised frequency spectra in Figs. 15
"7 %0 19. The user can, however, create any desired
. pulse shape in an external file and read it in by
specifying n =0, The internal pulse shapes in -
pressure. (negative of normal stress) are functions - -
‘of time ¢ and the centremsulu frequency we =
2xf. 88 followa R

1] Thls in the cefmlt oouxce puho deﬁncd by thﬂ t:::
_}ff(t) =0 15 coaw.,t+025coo2w¢t. S
S 0 < 4. < T. = 1/fe‘ R

= Y At cor(Wit/T),

0gt<T=186/f.

L where A, = 0.48829,4; = -0.14128 and
- Ay = 0.01168, ensuring vamahmg first and second
. derivativesat t =0 and t =
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" [3] A single sine period

J(t) = sinwt, 0<t<T=1/f.

‘with a Hanmng window,

e £(t) = Lsinwet (1 - cos fuwet) ,
O o 0 s t ST = 4/ f..

o 'uced in selsmology [1‘]

J(t) = amwct - %-stwc _
0<tg T 2 llfc

. - 1f option [0] is specified. the source pulse is read

66, This fite shonld be. formatted. and: contain

:apecxﬂed by the: parametcr Dl‘ (Block IX), &nd

a [4] This option creates a source pulse with a time
- dependence consisting of 4 sine penods. wexghted ‘

L _[5] ‘The last internal source pulse is the one cften T

from the file currently assigned to the logical. umt,

‘the amplitude satnpled with the same interval as .
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Fig. 15. SAFARI-FIPP source pulse no. 1 and its
frequency spectrum.
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(a) SQURCE PULSE

2.0 PULSE TYPE 8. FIPP__RPULSE
! Range: 1.0 m
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o
o, \
S
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L]
4
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Dimensionless time 4,
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o
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g
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Fig. 10. SAFARI-FIPP source pulse no. « and its
frequencv spectruii.
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Fig. 17. SAFARI-FIPP source pulse no. 3 and its
frequency spectrum.
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PULSR FIPP _ RPULSS
10 Pl T & Rangs: 10 m
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o
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)
o -0
~39%% 10 20 30 40 8.0
Dimensionless time tf,
(b) SQURCE SPECTRUM
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o
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Dimensionless frequency f/f,

Fig. 18. SAFARI-FIPP source pulse no. 4 and its
frequency spectiam.
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Fig. 13. SAFARI-FIPP source pulse no. 5 and its
frequency spectrum. f
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BILOCK 11’1

o :_f'lmhﬂ‘

- Roquired:
 Syntax:
- Format:

.. Description:

FREQUENCY

1
Always

FREQ, COFF

Free

"RREQ:
COFF:

Centre frequency f. of spurce spectrum in Hs.
Wavenumber integration contour offset. To be
specified in dB/A, where A is the wavelength at
the source depth SD. Since only the horisontal
part of the integration contour is considered, this
parameter should not be chosen so large that the
amplitudes at the ends of the integration interval
become significant. In lossless cases too small
values will give sampling problems at the normal
modes and other singularities. For intermediate
values, the result is independent of the choice

of COFF, but it is recomumended to use a valne
which at the centre frequency f, is the same as
that used by SAFARI-F!P for the same number of
sampling points, i.e.

COPP = 60c¢(z.)(¢m‘n cm“)/NH

This value is the default which is spplied if option

J is specified and COFP = 0.
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IV - ENVIRONMENTAL DATA
o 23
;0 Always

ML '
“D(1). cCc(1) cs(1) ac(1) As(l) ao(z) nc(1) CL(i)
n(z) cC(z) cs(z) AC(z) AS(2) an(z) nc(z) cn(z) o

fD(NL)CC(NL)CS(NL)AC(QL)AS(NL)RD(NL)EG(NL)QL{NL)

- Number of laym, including the upper and lo
' *halfapaces These should: alwa.ys be Ane
in' cases where they Are vacuum, .
Depth z in m of upper boundary of layer o
- halfspace. ‘The reference depth can'be choos
. ark.erarily, md D() is. &llowed to be negative.
~ Forlayer no, 1, ie. the. up;:er haltapace, thu ‘
- . .parameter is - dummy. i -
)+ Velocity e of oompressional wavu' ] m/s DY
‘ ;.,It' speuﬁed as 0. 0, the layer or halfspace is a gk

' ithen an empu'iul wato: attetmutwn is med =
Attenuation v, of shear waves in dB/A. For tlm

. attenuations to be physically meaningful, it is
required that .
. 7' 3 cc N
+<3(3)
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ot -is used for the :catterins loss, Lo, CL . -
_ lus is computaﬁom_ny faater oo doi

L "-froughness iie. RG <0 .
{ _.' Correlation 1ength of: roughness 111 m _ T}u
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] Gaussian weighted arzay
} Ganssian weighted focused atray

: ing ‘weighte AY: e
3] Hamung wenghted focuxed ‘atray

MdepthmmforanmayoftypeBars .
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' _Number of recexver depth! considerad,
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3 Mxmmum phue velocaty Cmin N m/a Deterxmnet
the upper limit of the truncated honzontal

'hntn = 21rf/('mu

: \_vhere _f is, the actual,ﬁ‘equency if ophon B' '
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‘smoothed by Hermite polynomial extrapolation; -

C¢. If this parameter is an integer >0 then integrand
" plots will be produced for each TING frequency
-considered in the calculation.

oints 162 +1, ... NV, and the discontinuity
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TIME, FREGUENCY AND RANGE PARAMETERS

.. Always
 'NT F1 P2 DT RO DR NRAN

. Number of sampling points in time domain.
. Should be an integer power of 2. To avoid
- aliasing it is extremely important, that the time
. window (NT*DT) is chosen large enough to contain
.. the entire time signal at all the selected ranges.
- Lower limit of frequency band comidered. Should
- be. given in. He.
%-;'Upper limit of frequency band. considered Should
-, be givenin Hx, If F2 is specified as havinga-.
: "Lvalue greater than the Nyquist frequency 0. BJDI,
‘will be xeplaced by the Nyquist frequency . =
‘in the calculations, It should be noted that a-
.. -simple rectangular weighting is. apphed to: the
- frequency window defined by F1 and F2.. To .
.. avojd ‘ringing’ in the pulse responses. due to the
. abrupt truncation, it is therefore reqmred that
' - F1 and F2 be chosen where the source ﬁ'equency
- spectrum has a minimum, se¢ Figs. 15 o 19:
Interval between samples in time domain. Shuuld
e given in seconds. See notes. above ‘
‘kmforﬂutrecexm P
cing in km' ‘etmen' e ‘ewern (homontnl'
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tion ltand:fllltu>0 T

mx_ TLE!I l' INC

block detmmnes the tnme wmdo‘ “applie
ulations and plots: of piilse responses
lote:all sculmg a.nd labding is automatic

D -Reductxon veloctty Ce int m/s. The pulse
caleulations and the pulse plotting are perform
_“in the reduced time t, = t — rfep
- aliasing the reference velocxty should |
lacger than the largest. group: velocity-
p;oblem “If CRED js- specified:an 0.0, the:re
time will be act,equt:.l to thie real. um:
Mxmmum time in: aeconda, ‘PDete

S "'am in seconds
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R
: . For optiona D and S
. .SPLO:SPUP SPLN SPIN

- sPLO:

GxBD PLOT pARAMETERs

‘Lower limit of y-axis in stacked pulse plots. If
" . the range-stacked format has been chosen ‘(optic?m
-~ 8) then SPLO should be in k. For the depth-

~ stacked format (option D) it should be given in m
- SPLO should be chosen such that enough space. u
" -ayailable for- keoping the negative amplitudes of

. unite a8 SPLO Again space ;hould be anllablvjj,:ori_._

;fi: Length in em of y-axis of stacked pnlne plotn. :
- Interval between tick marks.on y-axis of :tu:ked

he lovmmost tuce mthin the plot fxame

he trace clossst. to SPUP

ulse plots. Sune naits as SPLO- md SPUP L

- 124 -




OACLANTCEN SR-113

8 - Running SAFARI-FIPP

;‘UHOD

| -r:-mv;

" FLEN:

'PLOT DATA / DISPERSION CURVES

:If:option G has been speciﬁed

- PMIN PYAX FLEN FINC.
© GYLO GVUP GVLN GVIN

:the term ‘modes’ covers not only ‘the norm

- transform integrand, this also mcluding aeismi

" inturface modes. The modes are counted in t

. usual way, i.e. from low. phase velounec tow

" high phase velocities. '
 Minimum frequency in Hs.’ Detmnec the f"’:j*f '

- starting point of the z-axis, '
BMAX:
© " point of the z-axis.

‘Length of frequeucy axis in cm.
.. FINC:
o GVLOe .

b ~ starting point of the y-axis for dupewon cur-
- plots, '
¢ . Maximum velocity in m/s Determmeuit
~ point of the y-axis. :
_Length in em of velacity axis for diapersi '
3 Velocity tick ma.rk xnterval in m}c. a

Number of unodes for which phue a.nd group
velocity curves are to be plotted. In this context

modes, but all significant peaks in the Hank

Maximum frequency in Hs. Determmes the tmd

Tick mark interval for frequency axis.
Minimum velocity in m/s. Determines the
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DVUP:

3I¢OCK XHI - PLOT DATA / VELOCITY PROFILE

e Liuu 2
' 'Rmmd If optioa £ was specified in Block II.
Syntax: VLEF VRIG VLEN VINC
S DVUP DVLO DVYLN DVIN
o Formati. - Free
* Description: ‘
o VLEF: Left border value of velocity in m/s.
- VRIG: Right border value of velocivy in m/s.
. .-VLEN: Length of velocity axis in em.
- VINC: Distance between tick marks in m/s.

pvLos

e ‘Depth at lower border of plot in m.
o DVEN:.

Length of denth axis in em. 4
- Distance in m between tick marlu on lepth axis, . {

Depth at upper border of plot in m.
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8.2. NUMERICAL CONSIDERATIONS

It must be assumned that the user is confident with the numerical problems involved
in running the reflection coefficient and transmission loss models SAFARI-FIPR and
SAFARI-FIP before trying to use the much more complicated pulse code. We will
therefore at this point concenirate on the numerical considerations particular to the
pulse code. For guidelines concerning the selection of environmental models, the
user is referred to the previous sections.

The first thing the user has to select is a proper source pulse, which can either be one
of the internal pulses or one created by the user and placed in a file that can be read
by SAFARI-FIPP. After selecting the centre frequency f., the frequency bandwidth,
defined by the parameters F1 and F2, is chosen such that the amplitudc of the source
spectrum is small at the truncation points. This is easily done by inspection of the
frequency spectrum of the source pulse.

Next, the time sampling DT is selected. If chosen too large, the pulse plots will
become very ‘peaky’, but in most cases 10 sampling points per period at the centre
frequency f. will be sufficient, i.e. DT = 0.1/ f.. The total time window T is of course
dependent on the total number of time samples NT, but it is usually convenient to
postpone the determination of this parameter until later.

Instead we selecy at this point the parameters controlling the wavenumber sam-
pling. The numerical considerations in this regard are identical to those described
for SAFARI-FIP, but the wide frequency band is a complicating factor. First an
appropriate slowness interval, defined by CMIN and CMAX, should be selected, which
is most conveniently done in the following way:

1. Select three characteristic frequencies, typically the centre frequency and one
at each end of the frequency intervai.

2. Determine the necessary wavenumber interval for each frequency as described
for SAFARI-FIP.

3. Now determine whether the wavenumber interval should be held constant
at all frequencies (default) or should vary such that the slowness interval is
constant (option B) and select values of CMIN and CMAX accordingly.

If only a certain spectral part (limited and frequency-independent beamwidth) is be-
ing cunsidered, then option B must be selected, but in this case the procedure above
is used to determine proper truncation points, and, as was the case for SAFARI-FIP,
the truncation may have to be tapered by selecting proper values of ICi and IC2.

The number of wavenumber sampling points is a parameter which is even more
critical in the present case than for transmission loss calculations where an error of
a fraction of a dB is usually acceptable. This is due to the fact that not only the
amplitude but also the phase of each frequency component has to be accurate in order
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to yield a correct pulse ~esponse. Although a convergence test could be performed
by using SAFARI-FIP at a few selected frequencies, it will usually be necessary to
perform the convergence test on the fuil pulse problem. For the inexperienced user,
however, it is advisable to perform a convergence test for SAFARI-FIP at least at the
centre frequency to obtain reasonable initial estimates of the number of wavenumber
samples. It should be stressed that aithough the Filon integration scheme (option F)
is not default it is highly recommended due to the increased accuracy and reduced
sampling requirements.

An initial convergence test for the wavenumber sampling is most conveniently done
together with the one necessary for determining the length of the time window,
T = NT » DT. This is done in the following way:

1.

Select a narrow frequency window arouu | the centre frequency, typically F1 =
0.8f¢- md F2 = 1.2fc.

. Choose CRED and NT such that the time window of length T is believed to con-

tain all arrivals. As the frequency sampling interval is inversely proportional
to the length of the time window, Af = 1/T, NT should be chosen as small
as possible in order to limit the calculation time. CRED is most conveniently
taken to be the highest wave speed in the problem.

3. Select pulse type 4 which has the narrowest spectrum.

. Run SAFARI-FIPP {0 obtain pulse responses at all ranges.

. If the pulse response at longer ranges become ‘noisy’, it indicates that the

wavenumber sampling is insufficient. Increase the sampling and re-run until
the ‘noise’ disappears. Remember that che very narrow frequency band will
yield considerable ‘ringing’ of the pulse, which should not be confused with
the undersampling noise. The amount of ‘ringing’ of the source pulse can
be checked by selecting option R, which produces a plot of the source pulse
filtered by the rectangular window aetermined by F1 and F2.

. When the result is stable, increase the time window by changing either NT or

DT. The true arrivals will be invariant to the change in time window, whereas
the arrivals which are wrapped around will change position. Repeat until the
wrap-around disappears.

. The pulse type is now changed to the desired one and the frequency window is

extended accordingly, usually containing the entire main lobe of the spectrum.
The full response is then calculated. If high-frequency noise again appears at
the long ranges, the wavenumber sampling musi be increased. On the other
hand it will only rarely be necessary to change the time window again.

. As usual: When the result is stable, it is the final result.

It is clear that this convergence test procedure can become extremely time consun-
ing since the computation time is proportional to both the number of frequencies
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and the number of wavenumber samples. It is therefore important that the user se-
lects reasonably low initial values, which again requires that he is already confident
with the wavenumber sampling concepts of the single frequer.cy SAFARI-FIP mod-
ule. Further, it is extremely important that the user has a substantial knowledge
of time/frequency analysis by means of FFTs in order to be able to properly select
the time/frequency parameters and to pinpoint and remove the different numerical
artifacts such as wrap-around and ringing.

8.3. SAFARI-FIPP EXAMPLES

The use of SAFARI-FIPP for calculating the full time response will here be illustrated
by a few examples, all treating propagation in the sample environment used for the
SAFARI-FIPR and SAFARI-FIP test cases, i.e. a shallow water environment with 100 m
water depth and the layered bottom given in Table 4.

w 8.3.1. SAFARI-FIPP case 1: Dispersion curves

In this and the next example we use SAFARI-FIPP to model the propagation of
seismic interface waves along the ocean sea-bed. One of the numerical problems
particular to the pulse model is the determination of the necessary time window
in order to avoid wrap-around. As described above, the starting time is easily
determined from the maximum wave speed in the problem. The length of the time
window, however, requires a little more skill to determine, in particular in cases
where very slow interface waves are present. However, SAFARI-FIPP has the option
of calculating group velocities of the interface wave, which is a very valuable tool in
this regard. In this first example we will therefore calculate the dispersion curves in
the frequency interval 1-12 Hx for the slowest fundamental interface mode associated
with the envirorment treated in SAFARI-FIP case 1. To do this, the data file given
in Table 18 is set up.

The resulting dispersion curves are shown in Fig. 20. The minimum group velocity
is observed to be 280 m/s. If the pulse response has to be calculated out to a range
of 2.6 km and no reduced time is applied, the length of the time window required in
order to avoid wrap-around is T = 10 s.
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Table 18
SAFARI-FIPP case 1 data file
Data file Description Notes
SAFARI-FIPP case 1 title
L options 1
3 centre frequency 3 Hz 2
4 number of layers
0600000 layer 1 (vacuum halfspace)
0 1500 0 00 1 0 layer 2 (water column)
100 1600 400 0.2 0.5 1.8 0 layer 3 (silt sediment)
120 1800 600 2.1 0.2 2.0 0 layer 4 (sand sub-bottom)
95 source depth 95 m
100 100 1% receiver depth 100 m
300 1ES phase velocity interval 3
250 1 2560 0 wavenumber sampling parameters 4
612 1.0 12,0 ."1 0.5 0.5 0 frequency sampling parameters 5
1 number of modes 6
01220 2 frequency axis parameters
200 600 12 100 velocity axis parameters

It is indicated by option G that the dispersion characteristics of one or more modes
should be determined. Option ¥ indicates that the depth-dependent Green’s function
for the vertical particle velocity is used for finding the peak corresponding to the
interface mode.

The centre frequency is specified as 3 Hz, but this parameter has no influence on the
dispersion calculation.

The wavenumber interval is chosen so large that the fundamental interface mode is
known to be included at the maximum frequency of 12 Hz. Note that option B was
not specified. The wavenumber spectrum is therefore constant and equal to the one
determined by the maximum frequency.

The wavenumber sampling is not extremely critical for the G option because a bisection
technique is used to iterate onto the correct position of the modal peak.

The frequency interval has been chosen as 1 to 12 Hz, and to obtain a frequency
sampling interval of Af = 0.2 Hs, the timne sampling parameters have been adjusted
to yield a total time window of length T = 1/Af ~ 5 s. Since NRAN = 0, no pulse
plots are generated, but we have in any case chosen At = V.01 s, which is the sampling
required to nicely rejiesent graphically a wave of frequency 12 Hy. The appropriate
number of time samples therefore follows as NT = 2° = 512.

In order to determire the width of the time window for the following pulse calculations,
only the group velocity of the fundamental interface mode is required.
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Fig. 20. SAFARI-FIPP case 1: dispersion curves for the fundameatal in-

terface mode in a stratified sea-bed. Thke solid curve indicates the phase
velocity and the dashed curve the group velocity.
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w 8.3.2. SAFARI-FIPP case 2: Seismic interface wave propagation

In this example we calculate the time response of 5 vertical geophones on the ocean
bottom, spaced 500 m apart out to a range of 2.5 km, using a source of type 2 with
a centre frequency of 5 Hz. The environment is exactly as in the previous example.
This is done by specifying the data file given in Table 19.

The resulting stacked plots of the time behaviour of the vertical ai.d horizontal par-
ticle velocities are shown in Fig. 21a and b, respectively. Note that the amplitudes
have been multiplied by range before being plotted. The highly dispersive nature of
the slow seismic interface wave is characteristic for this type of propagation situa-
tion. Althcugh not particularly evident in the present case, it is also characteristic
that the horizontal component shows a second interface mode more pronounced than
the vertical component. For a more detailed description of the behaviour of seismic
interface waves, reference is made to [16-18]. In Fig. 21b for the horizontal compo-
nent, the first arrival is the lowest waterborne normal mode, which is only weakly
present on the vertical component. This arrival also contains a head wave arising
from the sub-bottom, but this wave is not easily isolated from the waterborne mode.
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| |
2 Table 19 f
| SAFARI-FIPP case 2 data file g
t §
Data file Description Notes !
SAFARI-FIPP case 2 title
5 YES2F) options 1
i 50 centre frequency 5 He 2
i 4 number of layers
? 0000000 layer 1 (vacuum halfspace)
: 0 1600 0 0 01 0 layer 2 (water column)
100 1600 400 0.2 0.5 1.8 0 iayer 3 (silt sediment)
120 1800 600 0.1 0.2 2.0 0 layer 4 (sand sub-bottom)
! 96 source depth 95 m
100 100 1 receiver depth 100 m
| 300 1Es8 phase velocity interval 3
l 1024 1 950 0 wavenumber sampling parameters 4
: 2048 0.0 12.6 .006 0.5 0.6 b frequency sampling parameters 5
f 0 reduction velocity 6
; 010 20 2 time axis for stacked plots 7
; 0315 0.5 range axis for stacked plots 8

. Options V and H are specified in order to cal -ulate both vertical and horisontal particle
velocities. Since option S has been seiected, the time responses will be displayzd in a
range-stacked format. A source pulse of type 2 has been selected. Option F invokes
the Filon integration scheme which requives less sampling points than the default
trapesoidal-rule integration scheme. Finally, the J option is specified to move the
wavenumber integration contour out intn the complex plane, This is not necessary
for the interface wave, which is itself highiy attenuated, but, ss was demonstrated in
SAFARI-FIP case 1, normal modes will become important for frequencies above the
centre frequency of 5 Hz, Thersfore a significantly larger number of sampling points
than the actnal 1024 would be required at the higher frequencies in the band. Note
that option B was not specified because the exponential decay of the wavenumbe.
integration kernel will be very slow at the low frequencies in cases where interface
waves are important.

The centre frequency is specified as 5 Hz. By inspection of Fig. 16b it is clear that
the sour-e pulse will contain significant energy up to a frequency of 12.5 Hs, which is
therefore selected as the upper limit for the calculutions. The default contour offset is
applied by specifying COFF = 0.

Asin case 1, a wide wavenumber spectrum is used in order to encompass all real angles
of propagation and all evanescent waves that are present.

The number of wavenumber samples selected is 1024, which translates into Ak ryax o
0.64 < }r, i.e. sufficient also for the standard trapesoidal rule integration and therefore
more than encugh for the selected Filon scheme. The last parameter IINC is set to 0
in order not to create any wavenumber integrand plots. By selecting IC2 as 950 the
tapering is invoked, to take care of possible discontinuities at the high wavenumber
truncation point.
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The frequency interval selected is 0 to 12.5 Hs, which ir an appropriate choice for
pulse type 2, see Fig. 21. The total time window is chosen a little larger than 10 s by
specifying DT = 0.006 and NT = 2048. The ranges where pulses are to be calculated are
determined by the iast 3 parameters. In the present case there are 5 receiver ranges
spaced 500 m apart in the interval 500 to 2500 m. Note that ranges are always given
in km.

S Due to the short rauges involved, no time reduction is applied; therefore CRED = 0.

" The time axis on all generated plots is specified to contain a window of width 10 s,
storting at 0 s. The length of the time axis selected is 20 cm.

Since the receivers are placed at ranges between 0.5 and 2.5 km, the range axis for the
stacked plots has been chosen to range from 0 to 3.0 ki in order not to truncate the
first and last trace.
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VERTICAL PARTICLE VELOCITY
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Fig. 21. Results for SAFARI-FIPP case 2: (a) stacked plot of vertical particle
velocity traces; (b) corresponding horisontal particle velocity traces.
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® 8.3.3. SAFARI-FIPP case 3: Normal mode propagation

In this last example the stacking in depth instead of range will be demonstrated by
calculating the field produced at a vertical array of hydrophones for a source at 50 m
depth and with range offsets of 5 and 10 km. The environment is the same as treated
in examples SAFARI-FIP 2 and 3, and the source is assumed to be of type 4 with a
~entre frequency of 30 Hs. Only the discrete part of the wavenumber spectrum wil
be included in order to demonstrate how the truncation of the integration interval
is introduced in the pulse calculations. The data file is given in Table 20.

The resulting stacked plots are shown in Fig. 22. Note the two arrivals corresponding
to the two normal modes. As expected, the first arrival is the first mode with its
largest amplitude at approximately 60 m depth. The second mode arrives 0.2t0 0.3 s
later, and it has a low anplitude at 60 m depth. By comparing the results for the
two different ranges, the characteristic dispersion of the modes is evident.
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Table 20
SAFARI-FIPP care 3 data file
Data file Descrij tion Notes
SAFARI-FIPP case 3 title
ND4JFB options 1
00 centre frequency 30 Hs
6 number of layers
0000000 layer 1 (vacuum halfspace)
0 1500 -1480 0 0 1 0 layer 2 (water layer)
30 1480 ~1490 0 0 1 O layer 3 (water layer)
100 1600 400 0.2 0.6 1.8 0 layer 4 (silt zediment)
120 1800 600 0.1 0.2 2.0 0 layer 5 (sand sub-bottom)
60 source depth 50 m
90 10 9 receiver depths 10 to 90 m 2
1460 1700 phase velocities CHIN and CMAX 3
650 50 500 0 wavenumber sampling parameters 3
1024 16 75 0.00i2 5 5 2 frequency sampling parameters 4
1500 reduction velocity 5
01 200.2 time axis for stacked plots 6
100 0 15 20 depth axis for stacked plots 7

Option N indicates that the normal stress, equal to the negative value of the acoustic
pressure, should be calculated. The depih stacking is invoked by specifying option
D, and the wavenumber contour offset, option J, is again applied. Option F selects
the Filon integration scheme, and finally option B indicates that the phase velocity
interval (or slowness interval) should be held constant at all frequencies in contrast to
the former example, where the wavenumber interval was he.d constant. The B option
is essential when the calculations involve only a limited beamwidth.

There are 9 receivers in the vertical array, with the lowermost receiver at 90 md. 1
and the uppermost at 10 m depth. The deepest receiver has been specified first, since
the amplitude scaling is controlled by the first receiver depth, and the amplitude is
expected to bs larger at the bottom than at the pressure-rclease surface.

As in ezamr™ SAFAKI-FIP case 3, the wavenumber interval has been selected to
include or’~ - . propagating normal modes, and the tapering is applied by properly
specifying 1C1 and IC2. No integrand plots have been requested (IINC = 0), although
this feature is often applied to check the wavenumber truncation.

As can be observed from Fig. 18b, the selected frequency interval 15 to 75 Hs will
include the whole main lobe of the source frequency spectrum. The time sampling
parameters have been chosen to yield & total time window of 1.2 s, which turns out to
be sufficient for the ranges selected. As above, a dispersion calculation for the normal
modes (2 at the centre frequency) could have been performed in advance.

Since the fast-bottom head wave has been excluded from the wavenumber integration
interval, no arrivals fast- “an the water velocity (1500 m/s) are expected. Therefore
this velor*~ " «em - as reduction velocity.

® The time ax.s covers . .e first 1 s of the selected time window.

The depth axis for the stacked plots covers the whole water column, leaving enough
space for both the first and the last trace.
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Fig. 322. Results for SAFARI-FIPP case 3: depth-stacked plots of hy-
drophoune traces at two different ranges: (1) § km; {b) 10 km.
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Appendix A
Installing and running SAFAR! on the FPS164

SAFAR! is installed at SACLANTCEN on both the VAX 8600 cluster and the FPS164
Attached Processor. The installation on the VAX proceeds exactly as described in
Sect. 5. For the FPS164 the simulation of the FPS library functions should of course
not be used. Further, the most critical subroutines have been written in APAL64
sssembler and a special set of subroutines is available for doing asynchronous I/0
to all scratch files. This last feature requires the FPS164 tn be equipped with a D64
disk subsystem and to run under the Single Job Executive (SJE) operating system.

The FPS154 version is compiled and linked by means of the following command file:

COMFPS.COM

A - Installing and running SAFARI on the FP5164

“W W BB PGB N DG DG

- e »

SET DEF US5:[SCHMI.ANIS]

!

! SUBROUTINES

APFTNG64/XOFF=ALL/QPT=2 FIPASJE30

APFTNG4/XOFF=ALL/0PT=2 FIPSSJE30

APFTN64/X0FF=ALL/0PT=2 FIPPSJE30

APFING4/XOFF=ALL/0PT=2 FIPUSJE30

APFTN64/X0FF=ALL/OPT=2 FIPTSJE30

APFTNS84/XOFF=ALL/0PT=2 FIPRSJE30

!

! ASSEMBLER SUBROUTINES

!

APAL64 APCBGES

APAL64 CYMOVI

APAL64 CYINOV

!

! SUBROUTINES FOR ASYNCHRONOUS I/0
!

APFTNG64/XOFF=ALL/0PT=2 ASIO4

!

! CREATE LIBRARY

!

APLIBR64/0UT=SAFLIB/IN=(FIPPSJE30,FIPSSIE30,FIPUSIE30,~
- FIPTSIE30,FIPRSJES0,FIPASIE30,APCBGES ,CVMOVI,CVINOV, 4SI04)
!

! HNAIN PROGRANS

!
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A - Installing and running SAFAR! on the FP5164

APFTNG4/XOFF=ALL SJEFIPP30

APLINKG4 SJEFIPP30,SAFLIB.AOL
APFTNG4/XOFF=ALL SJEFIP30

APLINK64 SJEFIP30,SAFLIB.AOL

APFTING4/XOFF=ALL SJEFIPR30

APLINK64 SJEFIPR30,SAFLIB.AOL

'

t CREATE AND SUBMIT COMMAND FILE FOR COPYING
! IMAGES INTO FPS164/SJE FILES, HERE UNDER

¢ ACCOUNT :SCHMI

'

OPEN/WRITE COM COP.COM

WRITE COM "$ SET DEF US55:[SCHMI.ANIS]"

WRITE COM "$ SJE"

WRITE COM "ATT/W"

WRITE COM "AC” :SCHNI"

WRITE COM "COFYIN/BI SJEFIP30.IMG,SJEFIP30"
WRITE COM "COPYIN/BI SJEFIPP30.IkG,SJEFIPP30"
WRITE COM “COAPYIN/BI SJEFIPR30.IYG,SJEFIPR3O"
WRITE COit "DE:"

WRITE COM "QUIT"

CLOSE COM

FPSQUE CoP

W B B B D PG WGWODULY GG

SACLANTCEN SR-113

Also, a special command file is required for running SAFARI on the FPS164, e.g. for

the transmission loss program SAFARI-FIP:

FiP.COM

$ SET DEF USS5:[SCHNMI.ANIS]

$ OPEN/WIITE COM SAFARIFIP.CON

$ WRITE COM "$ SJIE"

$ WRITE CON “ATTACH/W 1"

$ WRITE COM “COPYIN '’P1’.DAT,FTNOO1"
$ WRITE COM ':SCHMI:SJEFIP30"

$ WRITE COM "COPYOUT FTNO19,’’P1’ PLP"
$ WRITE COM "COPYOUT FTNG20,’’'P1’.PLT"
$ WRITE COM "COPYOUT FTNO28,’°P1°’.CDR"
$ WRITE CON “COPYOUT FTNO29,’’P1’.BDR"
$ WRITE COM "DEYACH"

$ WVRITE COM "QUIT"

$ CLOSE COM

$ @SAFiRIFIP

$ ASSIGN/USEX ’P1’.PLP FORO19

$ ASSIGN/USER ’P1’.PLT FOR020
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$ ASSICH/USER SYS$COMMAND: SYSSINPUT
$ AUN US6:[SCHMI.VAXFIP]FIPPLOT

$ ASS/USER ’P32’.CDR FOROSH

$ AS3/USER ’P1’.BDR FORO17

% ASS/USER SYS$COMMAND: SYSSINPUT

$ RUN US6:[SCHMI.FIPCON]CONTUR.EXE

The two other modules are run by means of similar command files.
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Appendix B
Running FIPPLOT

When SAFARI is run by using the command files given in Sect. 5 and Appendix A,
the plot program FIPPLOT is automatically executed to obtain the graphical output.
The plot data are transferred through two files. The file with extension PLP contains
plot parameters such as axis lengths, titles, labels etc, whereas the other file, with
extension PLT, contains the actual data values to be plotted. Both files are formatted
ASCII files, and it is therefore possible to change the layout of the plots by editing
the PLP file and then execute FIPPLOT independently. Further, FIPPLOT has such
a general setup that it is easily intertaced to any other numerical code requiring
graphical output. We will therefore describe here the structure of the PLP file in
detail.

As a characteristic example, the PLP file generating the plot shown in Fig. 11a is as
follows:

ul024 modulo
uFIPP,STLDAY,CPX,IYA

wDEPTH AVERAGED LOSS

uSAFARI-FIP case 3.

ul number of labels
uFreq: 30.0 Hz$

uSD: 50.0 a$

u20.000000 XLEN
wl2.000000 YLEN
uf grid type
w0.000000 XLEFT
ub.00000 XRIGHT
wi.00000 XINC
ui.00000 IDIV
uRange {(km)$

uLIN

u80.0000 YDOWN
120.0000 YUP
ui10.0000 YINC
ul.00000 YDIV
ulNormal stress (dB//1Pa)$

uLIN

ul NC
wil2 N
u0.044957 IMIN
w0.449567-001 DX
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40.000000 YMIN
40.000000 nY
WFIPLLUPLIEND

Notice especially the initial space (denoted by () which is necessary for FIPPLOT to

correctly read the file. The PLP file w’ll always start with a block size modulo, with

which the corresponding uata file was written. This parameter is a leftover from
the versions using binary data files, but for the present version of FIPPLOT this
parameter is dummy. The file euds with the PLTEND flag signalling the end-of-file.

Between these two records tnz blocks of actual plot parameters are specified, in
the present case for a single plot only. Any number of blocks could, however, be
included, each generating one plot.

The plot parameter block starts with a rceerd specifying a 12-character plot iden-
tification (FIPP,, STLDPAV) followed by a series of 3-character options separated by
commas. The files generated by the SAFARI modules will in general not have any
options specified, but these are in.portart tocls for generating final plots. The fol-
lowing options are currently available:

DUP: The duplex character gcneraior will he used in stead of the default simplex.

CPX: The complex character generator is selected. This is the option chosen for
all plots in this report.

ITA: The italic character generator is used.

IXA: Integer format will be used for pltting the z-axis tick mark numbers instead
of the default decimal format.

IYA: Integer format will be used for plsiting the y-axis tick mark numbers instead
of the default decimal format.

D3D: If the plot contains more than one curve (¥C > 1), then the first curve will
be plotted with a solid line, the second with a dashed line and the third
with a dotted line. If more than three curves are plotted, this sequence will
be repeated. To generate the dispersion plot in Fig. 20 the DSD option was
applied.

MRK: A marker will be plotted for each 10th data point on the curves. In the case
of more curves, different markers will be used for each.

COL: This option will plot individual curves in different colours, using the repeat-
able sequence: red-green-blue-cyan-magenta-yellow.

SCA: The default character size has been selected to yield a reasonable ‘balance’
of the plot when the length of the z-axis is 20 cm. This option will scale
the chazacter size accordingly for larger or smaller sizes. This is particularly
important when preparing illustrations for reports and journal papers, where
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a uniform character size is desirable, independent of the size of the original
plots.

RES: When this option is selected, FIPPLOT will request a scaling factor (1.0 =
no scaling) which will be applied to all curves in the plot, but not to the axis
values. This option is particularly useful for the range and depth-stacked
time series produced by SAFARI-FIPP.

TCT: This option is used in connection with the stacked time series plcts in order
to truncate the amplitude of each trace at a value corresponding to half the
distance between traces. Used in particular to avoid overlap of curves when
rescaling with a large factor (option RES).

NOP: With this option both the parameters from the PLP file and the data from
the PLT file are read but no plot is produced. It is therefore used for time-
saving when only selected plots are required.

The next record specifies the main title of the plot, followed by a record containing
the title specified in the SAFARI data file for the actual run. This title will be plotted
Jjust above the plot frame.

Then follows a sub-block containing the labels to be plotted in the upper right corner
of the plot frame. The number of lebels (> 0) is given first, followed by the label
texts, each of which should be on separate lines and terminated by a $.

The parameters XLEN and YLEN specify the length in cm of the z- and y-axis, re-
spectively. The parameter labelled ‘grid type’ indicates whether a grid should be
plotted. A value of 1 will produce a dotted grid as in Fig. 20.

The next 6 records contain the parameters for the z-axis of the plot. XLEFT and
XRIGHT are the data values at the left and right borders of the plot frame, respec-
tively, whereas XINC is the distance in the same units between the tick marks. XDIV
is a multiplication factor which will be applied to both the axis parameters and the
data values. After XDIV the z-axis label is specified, terminated by a $, and finally
LIN indicates that the z-axis should be linear. Another possibility is a logarithmic
axis, which has not yet been implemented, however. The parameters for the y-axis
are given in the same way in the next 6 records.

The parameter NC specifies the number of curves to be plotted. For each curve
a sub-block of 5 records has to be specified. The first parameter N indicates the
number of points in the curve. If N is negative, no curve will be plotted; instead a
marker will be plotted at the position of each data point. The parameter XMIN is the
z-coordinate (range) of the first data point, whereas DX is the equidistant spacing.
If DX had been specified as 0, then the N z-coordinates of the data points would be
read from the PLT file. In that case XMIN would be interpreted as an z-offset to be
applied to the curve. The same rules apply to YMIN and DY. In the actual case the
y-values (transmission losses) will therefore be read from the PLT file, and no y-offset
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will be applied. The offsets are only used for the stacked time series plots, where
it is important to be able to rescale (see option RES above) the amplitudes without
changing the trace offset. If both DX and DY are specified as 0, then FIPPLOT will
first read all N z-values and then all y-values. As an example of this, reference is
made to the PLP file for generating the sound-speed profile plot inserted in Fig. 10a.

When the PLP file has been edited, FIPPLOT is executed with the following com-
mand file:

$ ASS/USER ’'P1’.PLP FORO19

$ ASS/USER °P1’.PLT FOR020

$ ASS/USER SYS$CONMAND: SYSSINPUT
$ RUN FII'PLOT

All plots presented in this report have been edited, and they therefore do not appear
exactly as those produced automatically.
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Appendix C
Running CONTUR

SACLANTCEN SR-113

As was the case for FIPPLOT, the command files given in Sect. 5 and Appendix A will
automatically execute the contour plotting program CONTUR. The plot parameters
are iransferred from SAFARI into ths: file with extension CDR, whereas the actual
contour data are placed in the file with extension BDR. The data file is allowed to
be in both ASCII or binary format, but as SAFARI is run both on the VAX and the
FPS164 at SACLANTCEN, it has been most convenient to use the ASCII format.

The CDR file can be edited to change the layout of the contour plot. As a typical
example, the CDR file used to create the contour plot of Fig. 14b is shown below:

CONDR,FIP,FNT,CPX,UNI,TEK
SAFARI-FIP case 6.
SAFFIP6.BDR;1

Range (m)

0.0000

299.85356

0.0000

300.0000

15.0000

60,0000

Depth (m)
60.0000
126.0000
6.2500
25.0000
141.0000
51.0000
1.0000
1.0000
0.0000
50.0000
125.0000
60.0000
141.0000
651.0000
1000.0000
0.0000
5.0000
5.0000
21.0000

RMIN
RMAX
ILEFT
XRIGHT
XSCALE
IINC

TUP

YDOWN

YSCALE

YINC

data points along z-axis
data points along y-axis
DIVX

DIVY

FLAGRC

RDUP

RDLO

source depth (m)

grid points along z-axis
grid points along y-axis
frequency (Hs)

dummy

CAY

NRNG

ININ
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64.0000 ZNAX

3.0000 ZINC

2.0000 z-origin of plot in inches
0.0000 dummy

2.0000 y-origin of plot in inches
0.0000 NSH

0.1000 HGTPT

0.1400 HGTC

=-3.2000 LABPT

1.0000 ' NDIV

§.0000 NARC

-1.0000 LABC

-1.0000 LWGT

The first record specifies one 5-character option (CONDR) followed by a series of 3-
letter options. The CONDR option indicates that the actual contour plot is of the
depth-range type and CONTUR will interpret the parameters accordingly. This
option should therefore never be changed. The first 3-letter option (FIP) is purely
for identification and has no further effect. The FMT option indicates that the BDR
data file is ASCII formatted (BIN for binary format). These first 3 options should '
always be present in the specified order, but the options following are optional and /
can be given in any order. The implemented options are as follows:

DUP: The duplex character generator will be used for DISSPLA plots (MINDIS at
SACLANTCEN) instead of the default simplex.

CPX: The complex character generator is selected.

ITA: The italic character generator will be used.

UNI: The UNIRAS plot package will be used to generate a colour or grey-tone
contour plot. DISSPLA (MINDIS at SACLANTCEN) is the default plot

package. a
VIT: The raster plot will be produced on a VT240 terminal. This only has effect
if option UNT is specified.

G41: The raster plot will be produced on a Tektronix 4105 terminal. This only ;
has effect if option UNI is specified. ]

TEK: The raster plot wili be produced on a Tektronix 4691 ink jet plotter. This :
only has effect if option UNI is specified.

PRX: The raster plot will be produced on a Printronix printer. This only has
effect if option UNI is specified. :

COL: If the option UNI has been selected, a colour raster plot using au in-built
colour scale will be generated. By default a grey-tone scale is applied.

B
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VUG: If option UNI is selected, a viewgraph will be produced on a Tektronix 4691
or 4692 ink jet plotter.

ROT: The UNIRAS plot will be rotated 90°. Mainly used for generating viewgraphs
of plots with the z-axis being larger than the y-axis.

After the option record there is a record containing the title of the plot and a record
containing the name of the file containing the data, i.e. the BDR file. Except for
2 records containing the z-axis and y-axis labels, the rest of the records contain
numerical parameters, all supplied with a descriptive label. In gencral only ~ few of
these parameters should be changed. The most important ones are described below.

The lengths of the z- and y-axes are controlled by the parameters XSCALE and
YSCALE, respectively. CONTUR requires these parameters to be specified in coor-
dinate units per cn. ZMIN and ZMAX specify the limits of the contouring interval,
whereas ZINC is the contour increment. If UNIRAS is selected, areas with small data
values will be coloured with magenta (black in the grey-tone mode). The colour scale
then moves through different red tones into blue (white in the grey-tone mode). If,
however, ZMIN > ZMAX, then the colour scale will be inverted by CONTUR. If the
default DISSPLA package is selected, only contour lines with identifying numbers
are plotted. In the present case, removal of the UNI option leads to the contour plot
shown in Fig. 14a.

The last important parameter is NSM, which controls the amount of smoothing ap-
plied to the calculated contours. This parameter can be set to any value between
0 and 10, with 0 corresponding tu no smoothing. It is obvious that this parameter
should be used with extreme care.

After editing the CDR file, CONTUR may be executed by means of the following
command file:

$ ASS/USER 'P1’.CDR FOROG5

$ ASS/USER ’P1’.BDR FORO17

$ ASS/USER SYSSCOMMAND: SYS$INPUT
¢ RUN US5:[SCHMI.FIPCON]CONTUR
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« Initial Distribution for SR-113
Ministries of Defence SCNR Germany 1
JSPHQ Belgium 2 SCNR Greece 1
DND Canada 10 SCNR Htaly 1
CHOD Denmark 8 SCNR Netherlands 1
MOD France 8 SCNR Norway 1
MOD Germany 15 SCNR Portugal 1
MOD Greece 11 SCNR Turkey 1
MOD ltaly 10 SCNR UK 1
MOD Netherlands 12 SCNR US 2
CHOD Norway 10 French Delegate 1
MOD Fortugal 2 SECGEN Rep. SCNR 1
MOD Spain 2 NAMILCOM Rep. SCNR 1
MOD Turkey 5
MOD UK 20 Nationgl {iaison Officers
SECDEF US 60 NLO Canada 1
NLO Denmark i
NATO Authorities NLO Germany 1
Defence Flanning Committee 3 NLO Italy 1
NAMILCOM 2 NLO UK 1
SACLANT 3 NLO US 1
SACLANTREPEUR 1
CINCWESTLANT/ RtoS A
COMOCEANLANT 1 niR Belgium 1 ;
COMSTRIKFLTANT 1 NLR Canada 1
CINCIBERLANT 1 NLR Denmark 1 |
CINCEASTLANT 1 NLR Germany 1
COMSUBACLANT 1 NLR Greece 1
COMMAIREASTLANT 1 NLR italy 1
SACEUR 2 NLR Netherlands 1
CINCNORTH 1 NLR Norway 1
CINCSOUTH 1 NLR Portugal 1
COMNAVSOQUTH 1 NLR Turkey 1
COMSTRIKFORSOUTH 1 NLR UK 1
COMEDCENT 1
COMMARAIRMED 1
CINCHAN 3 Total external distribution 234
SCNR rfor SACLANTCEN SACLANTCEN Library 10
SCNR Belgium 1 Stock 36
SCNR Canada 1 —_—
SCNR Denmark 1 Total number of copies 280




