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EXECUTIVE SUMMARY

Jonas will develop and pilot a noise-monitoring platform, harmonize technical approaches to MSFD
requirements, and promote the adoption of quieter operational practices among users of the NE
Atlantic marine space.

This  effort  will  essentially  be  based  on  extensive  computer  modeling  using  AIS  and  archival
environmental  data  to  achieve the necessary  coverage for  the wide Atlantic  area.  Although the
collection  of  actual  field  data  is  not  foreseen  during  the  project  itself,  devising  methods  for
calibrating model output to better represent the reality is an absolute requirement. That is why work
package 5 deals with methodologies for computing noise maps and encompasses a task dedicated to
model  calibration  through  ground  truth  acoustic  measurements,  under  which  this  work  was
performed.

Ground truth calibration, here after "field calibration", represents a challenge for at least two main
reasons: one, is that the number of field observations are in all circumstances too few for efficiently
constrain the modeled field in large areas and during long periods of time, and second, there is no
known way to validate the calibrated field in a way to direct the calibration effort. In practice, there
is no well accepted methodology for field calibration and/or for data sampling strategy. Efforts in
that  direction  in  previous  EU  projects  such  as  BIAS  and  JOMOPANS  provided  data  model
comparisons but no definite calibration strategies,  entailing model modification to approach the
observed data.

This report summarizes the work performed under the task dedicated to field calibration where the
problem is analyzed by describing previously proposed techniques and a number of possible future
approaches with their  advantages and drawbacks are outlined.  One of  those approaches to our
knowledge, not previously tested on real data, was implemented in a data set kindly provided to
JONAS by the IMAR Okeanos group of the Azores University, with interesting results. Data - model
comparisons  is  then  performed  through  objective  distribution  distance  indicators  and  tested  in
another data set gathered in the southwest approaches to the channel, off Bretagne.

Future developments will  encompass the usage of this and other field calibration techniques for
computing broadband continuous noise and cetaceans impact indicators.  Journal and conference
publications of this work are being submitted.
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1.  Introduction
When the focus is random ocean sound, there is no particular signal to detect or to

estimate so,  the interest  is  on the sound structure  and on the noise  “amount”,  i.e.,  its
intensity, classically defined as the sound pressure level (SPL), evaluated at any moment in
time, space and frequency. Sound structure relates to its correlation in time and/or space
and eventual directionality. Often, the main goal is to be able to estimate SPL everywhere
with a limited number of observations, which is a rather ill-posed task.

There is an ongoing research topic in the underwater noise community regarding the
question of “What is the ocean sound reference level?”, or, in other words, “how did the
ocean sound like many years ago, before the industrial revolution?”. The assumption behind
this question is that the sound level in the ocean should have been constant throughout the
centuries, and should have started to change only when coal burning steam ships started to
cross the oceans, in the early 19th century. Fishing and recreational vessels, although more
geographically localized, also suffered a steep increase in the last 2/3 decades. The economic
process of globalization contributed to a dramatic increase in ship traffic and therefore to
ocean noise [1].  Early  ocean sound measurements suffered from a lack of  measurement
equipment with both the endurance and low (self-)noise required for reliable ocean noise
measurements.

Noise mapping is performed in order to investigate the continuous noise generated
by anthropogenic activities and estimate its contribution to the ambient noise of the North-
East Atlantic Ocean. As part of the EU Marine Strategy Framework Directive (MSFD [41]),
these noise maps are envisaged to monitor and assess the underwater continuous noise
levels and their threat to marine ecosystems. 

Model  validation  is  the  process  that  aims  to  include  information  from  acoustic
measurements recorded at sea into the results from the models directly or into the models
themselves. This process is organized in several steps that are described in Figure 1.1. The
comparison  and  the  calibration  are  key  steps.  Comparison  is  often  performed  by
investigating the statistical differences of the noise level distributions over time between
models and measurements at the recording position (e.g. using Cumulative Density Function
in  the  BIAS  project  [27]).  The  calibration  relies  on  this  information  to  adjust  different
parameters or the models themselves in order to fit the computed noise level distributions
to the measurements.

Several projects have already produced noise maps that include a validation process.
For example in the EU, the Baltic seas were studied by the BIAS project, and the North Sea
by the JOMOPANS project.  These areas share a common environmental setting that is a
mostly shallow water environment. In this framework and for low frequencies, the seabed
properties are expected to have a strong influence on the received levels. Hence, in the BIAS
project, the calibration process involved adjusting the bottom properties locally. The vessel
source  levels  were  also  adjusted  locally  according  to  the  measurements.  Similar
requirements were proposed in the QuietMEd project (Deliverable D3.3 of this project [37]).
The goal was to perform acoustic data assimilation.

JONAS - internal diffusion  _________ 1
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Noise  maps  in  the  JOMOPANS  project  were  not  calibrated  using  at  sea
measurements directly, as it was performed in BIAS. The final noise maps were produced
using  three  optimizations  of  the  semi-empirical  models:  the  ship  source  levels  model
(following ECHO programme), the seafloor geo-acoustic model (Zhou et al, 2009 [42]) and
the wind noise model (Ainslie et al, 2011).

In the JONAS project, because of the area covered, it was not possible to perform
calibration of the noise maps. In this document, the comparisons between measured and
simulated noise levels are performed in order to provide confidence maps. The methodology
is explained and two case studies are provided in the annexes. 

Figure 1.1: Sound model calibration through the integration of observations.

2.  Ocean sound models
2.1. Shipping noise models

In  the JONAS project,  the shipping noise  maps (Figure  2.1)  at  coarse  resolution were produced
following the methodology detailed in the JONAS deliverable 5.2 and [28]. From the passive SONAR
equation, the received levels are modeled by subtracting the source levels (SL) by their associated
transmission losses (TL). Both are computed separately and relies on numerous non-acoustic data
that define the propagation environment and the local shipping activity.

JONAS - internal diffusion  _________ 2
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Figure 2.1: Example of the results obtained for the large-scale JONAS area, for four days of different 
months. The daily shipping noise maps are produced for the 1/3-octave band centered on 63 Hz. 
Scales are in decibels reference 1 µPa.

2.2. Wind sound modeling

Sound generated at the sea surface by the action of wind and induced waves is known to
be predominant above a frequency of a few hundred Hz [2]-[4]. Below that frequency wind
sound  exists  but  is  overcome  by  the  noise  due  to  distant  shipping  (30-150  Hz)  and/or
earthquakes (< 30 Hz). So, the observation of wind driven sound between a few tens of Hz
and  a  few  hundred  Hz  is  contaminated  by  shipping  noise,  especially  in  the  northern
hemisphere where it is difficult to perform experimental measurements in shipping noise
free  areas.  The  contribution  of  Cato  [5]  with  ocean  sound  measurements  in  Australian
waters where shipping noise is low, and later by Burgess [6] using a surface steered vertical
array to exclude shipping noise from distant sources, was determinant for establishing an
empirical dependence of ocean sound on frequency and wind speed on one hand [6], [7]
and on surface wind sound levels, on the other hand [7], [8].

So, there are mainly two approaches: in the first one it is acknowledged that wind sound
depends only on wind speed and frequency and it attempts to fit observed sound with these
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two parameters. The other, models wind sound as that produced by a uniform infinite sheet
of  sound sources  near  the  surface  and  then  propagates  the  sound generated  by  those
sources to the observation position, using the local conditions (bathymetry, sound speed,
etc) [8]. In the example of the Azores, treated below (section 6-b), we will be adopting the
first approach.

So, in the first  approach a suitable distribution may be obtained by considering that
proposed by Kewley  et al. [7], that assumes the underlying process of surface wind sound
generation as having two mechanisms: one for low sea state and another for high sea state,
involving white caps. The separation of the two mechanisms is roughly between 8 and 10
knots. According to this assumption a possible curve fitting is to allow two slopes for the
wind speed dependency so that sound intensity could be written as:

p2(f )=av+b v3 ,

and the sound spectrum level NL in dB to be given by:

NL(f , v )=10 log10 [10L1(f ,v )/10+1 0L2 (f , v)/10 ] ,

where the two terms L1 and L2 are given by:

L1 (f , v )= A( f )+10 log10 v ,

L2 (f , v )=B (f )+30 log10 v ,

where A (f )=10log10(a) and B(f )=10 log10(b). Kewley et al. [7] does not give the curve fitting
coefficients a and b so it is necessary to resort to the estimated source level spectra shown in Fig. 3
of [7], which requires adding bottom loss. According to Fig. 11 of [6], the frequency dependency of
bottom loss may be approximated by a straight line of the form:

BL(f )=0.0073 f +0.731 ,

with f  in Hz and BL in dB. Using (3) one can get the sound level correction factor C (f ) (see eq. 7 of
[6]) as:

C (f )=10 log10[ b(f )+1
b( f )−1 ],

where b(f )=10BL(f )/10. For reference, bottom loss frequency dependence is shown in Fig. 1(a) and
the  C (f ) factor is shown in (b).  These two figures basically say that bottom loss increases with
frequency and that the correction factor is as small as energy remains trapped in the bottom with
bottom loss increase. 
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(a) (b)

Figure 2.2: Bottom loss effect as suggested by Burgess and Kewley [6]: bottom loss frequency
dependence (a) and sound level factor as given by (4) (b).

Using C (f ) and the source level SL of Fig. 3 of [7] into:

NL(f , v )=SL (f ,v )+C (f )+8 ,

one gets the sound spectrum level in dB//1μPa2/Hz. Figure 2.3 shows source level as per Fig. 3 of [7]
(a) and calculated sound spectrum level given by (5) in (b). 

(a) (b)

Figure 2.3: Kewley et al. [7] empirical wind sound model: source level (a) noise spectrum level (b), for
various wind speeds.

In order to be able to generate the wind sound level for any wind speed a nonlinear curve least
squares fitting was performed for coefficients A (f ) and B(f ) generating the approximate curves as
shown in Fig. 3 for wind speed (a) and for sound level (b). 
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(a) (b)

Figure 2.4: Kewley et al. [7] empirical wind sound model nonlinear least squares fitting: for wind
speed (a) and for noise spectrum level (b).

It is clear that the approximation error is smaller at higher wind speeds.

3. Modeling errors
Noise maps are uncertain because of errors and uncertainties. Figure 3.1 highlights

dependencies among data used in modeling (see DL5.1) on the noise level assessment. In
the following, errors are discussed whether they could be attributed to the source level or
the propagation model. These two processes are generally distinct and have differentiated
impacts. 

Figure 3.1: Underwater acoustic modeling and non-acoustic data dependencies.

JONAS - internal diffusion  _________ 6
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3.1. Source level error
Source level usually refers to the equivalent noise generated by a ship at a single

point at 1 m distance from this point. This approximation might be strongly unrealistic for
very large ships. In order to model the source level (SL) radiated from a position (defined by
AIS data) different source models are commonly adopted for their ease of use  (Ross and
Kuperman, 1989 [29]; Breeding et al., 1996 [30]; Wagstaff, 1973 [31]; Wales and Heitmeyer,
2002 [32]; Audoly and Rizzuto, 2015 [33]; Audoly et al. 2015 [34]; Wittekind, 2014 [35]) . No
consensus has been found on the source model but most recent noise mapping projects are
using RANDI 3.1 model (Breeding et al.,  1996 [30])  as it  can be implemented easily and
requires vessel information that are commonly provided in AIS catalogs.

The origin of errors on the source level modeling are summarized here:

● The single source point approximation.
● The source model itself.
● From the AIS data feeding the model:

○ Missing, or wrong vessel information in the AIS catalog.
○ AIS  data  comprehensiveness,  such  as  data  gaps  (spatial,  temporal  resolution,

duplicated position or missing vessels). This is a commonly encountered issue as not
all vessels are using AIS transceivers.

To alleviate these issues and possible errors, the source level modeling can rely on several:

● AIS data interpolation of the positions
● Vessel classification using different vessel categories with unique source model for each.
● Production of statistical products, such as vessel density maps.

These solutions were used in  the JONAS noise  mapping process  (see deliverable  D5.2),  but  the
source model itself is very difficult to modify and generalize. Several EU projects already explored
this  option and  they  proposed  updates  to  the  source  models  that  rely  on  more  or  less  vessel
parameters and categories (e.g. AQUO project [33, 34, 39]).

3.2. Transmission loss error
The  Transmission  Loss  (TL)  computation  requires  an  accurate  description  of

environment physical properties, in order to model the acoustic propagation. This modeling
phase relies  on the usage of  environmental  data  that  are  listed in  the deliverable  D5.1
(Bathymetry, sound speed profiles (SSP) and seabed properties). The TL computation related
issues are listed here:

● Source and receiver depth locations
● Model-related errors:

○ unadapted model usage and wrong approximation (e.g. ray-based method at low
frequency);

○ numerical errors and artifacts;
○ 3D effects of the environment that are not considered;
○ computation time-related approximations (e.g. limited maximum distance between

source and receiver).
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● Environmental data related errors:
○ data gaps;
○ errors in the input data;
○ inappropriate spatial and temporal resolutions.

3.3. Model parameterization
Temporal  and  spatial  resolutions  are  defined  by  users  and  follow  scientific  /

regulatory needs. This decision is defined by expert judgment and is mostly motivated by
computation efficiency, as large areas and/or fine resolution maps are difficult to model in
reasonable  computation  time.  The  resolution  dependency  is  an  important  parameter,
especially for model/measure comparison purposes, and the relationship between different
resolutions needs further investigation. 

4.  Comparison to measurements
4.1. Acoustic data

Acoustic data used in the JONAS project were opportunistic datasets provided by
project partners. A list of available datasets is given with details in the JONAS deliverable 4.1.
Therefore,  the contributing acoustics  projects  may not  have been designed in  the most
optimal way for the purpose of validation and uncertainty assessment. Measurement data
were processed by the partners in order to provide the Sound Pressure Level (SPL) for both
the 63, and 125 Hz One Third Octave (OTO) bands.

4.2. modeled noise map
The resulting noise maps used for the comparison are the preliminary noise maps (JONAS

deliverable 5.2) modeled at 63, and 125 Hz OTO bands.

4.3. Noise level comparison

The  noise  level  estimation  over  a  time  period  from the  measurements  and  the
modeled noise maps allow estimating the frequency of occurrence of several bins of acoustic
levels by building an histogram. The Probability Density Function (PDF) is built by normalizing
the distribution of temporal occurrences in one cell of the map. The temporal PDF allows the
comparison of values of density between the two datasets.

Other studies generally consider a direct comparison of the distribution by using
statistical moments like mean, median and standard deviation (SD). A set of percentiles can
be chosen to compare the distributions in a more detailed analysis (JOMOPANS project in
Putland et al., 2021 report [36] and [40]). In the BIAS project the comparison was carried out
by using cumulative density functions (CDF) from the temporal distribution of noise levels
(Folegot et al., 2016 [27]).
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4.4. Distances between distributions

Quantifying distances between probability density functions is a recurrent problem
explored through different concepts in the evidence theory (Jousselme et al., 2012 [36]). The
distances used in this study were chosen from a long list of distances defined in (Cha, 2007
[44]). Four different methods were used to compare the measured and modeled noise levels
distribution over the same period of time. These distances are proposed as supplementary
information adding  to  the  commonly  used  statistical  moments  of  the  distributions.  The
distance values could allow modelers to obtain more information and orient the calibration
step.  Moreover,  such  values  could  help  automatize  the  comparison  process  for  several
recording stations and also ease the comparison between distant recorders.

4.4.1. Statistical moments

Mean,  median  and  SD  are  computed  to  assess  relevant  information  about  the
distributions. These values are directly in dB which ease their interpretation. These common
values and percentiles are commonly compared in most projects. Comparing these values is
straightforward,  and simple differences between medians or means has been commonly
used to validate models.

In the following, for a number of d bins, Pi and Qi are the probability of the ith bin for
the measurements and the model data respectively.

4.4.2. Minkowski distance

Minkowski distance is defined in (6). It is a measure of the distance between the
probabilities  for  each  bin.  It  can  be  interpreted  as  a  rough  estimation  of  the  distance
between the complete distributions. This is performed in a similar way as comparing the
statistical  moments,  or  the  percentiles,  which  return  a  distance  between  distributions
considering each bin.

 (6)

Minkowski distance formulation, between Q and P, two PDFs which are computed
from histograms over a total of d bins. The norm is denoted by p, when p=2 as performed in
this study, the Euclidean distance is computed. 

4.4.3. Sørensen / Czekanowski

Sørensen / Czekanowski similarity as defined in (7), can be interpreted as how much
overlap is observed between the distributions.

 (7)
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Sørensen / Czekanowski distance formulation. The Sørensen similarity is used in this document and
is defined as 1 - dsor.

4.4.4. Normalized Sørensen / Czekanowski similarity

A normalization to the mean or the median of the measured and modeled noise
values  before  computing  the  histogram and  distributions  can  be  performed in  order  to
recenter the distributions. A second step is performed to quantify the similarity of the shape
of the normalized distributions by re-using the Sørensen / Czekanowski defined in (7).

Figure 4.1: Randomly generated normal distributions and the associated distances between them.
Distances are computed using the methods described above. SD: Standard Deviation; Mink:

Minkowski distance; Sor: Sørensen / Czekanowski similarity; Sorn: Normalized distributions to the
median and Sørensen / Czekanowski similarity.

4.5. Spatial extent of the comparison

The  statistical  noise  maps  modeled  by  following  the  methodology  described  in
JONAS D5.2 are producing uncertain results. Using the distances and comparison presented
above, uncertainty can be attributed to models at these specific locations and time periods.
As multiplying the number of measurements is not always possible, providing validated and
error  estimation  over  a  large  area  is  not  possible.  This  problem  could  be  tackled  by
extending the local uncertainties further away from the recorders. The goal is to define a
spatial neighborhood in which the comparison between model and measurements can be
extended,  whether  it  concerns  match  or  mismatch.  For  this  purpose,  we  introduce  the
confidence  area,  that  could  be  simplified  as  a  confidence  radius  around  the  recorder
position in idealistic cases. Therefore, we assumed that model mismatch, assessed when
comparing the distribution, is of the same magnitude in the confidence area (or defined by
the range in the confidence radius).

JONAS - internal diffusion  _________ 10
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The confidence radius computation is based on propagation range, above which the
acoustic contribution at the receiver can be neglected. A threshold of 100 dB attenuation of
the emitter source level is set. Thus, the radius defines the median range of propagation of a
signal  of  100  dB  around  the  recorder.  This  definition  does  not  consider  other  sources'
contribution and  local  noise  at  the  receiver  position,  as  it  would  have  been  taken  into
account in classical detection performance. 

The method used to determine the confidence radius is presented here:

- Compute TL from the recorder position in 8 directions.
- Find  the  distance  above  which  the  TL  value  is  too  big  to  consider  significant

contribution of the source without noise (e.g. 100 dB at 63 Hz).
- The confidence radius  is  the  median distance for  a  source to  have  a  significant

contribution

This definition is strongly empirical, and depends on several parameters like the frequency.

5.  Data fitting or field calibration
Assimilation of acoustic measurements can be defined as a more advanced process.

It  aims  at  integrating  measurements  into  model  output.  Such  a  process  has  not  been
strongly investigated yet in underwater acoustics as it requires a dense network of acoustic
recordings. However, the amount of measurements required is too limited to apply such
methodologies to underwater acoustics in a straightforward way. 

The correction of  underwater  noise  maps is  commonly  performed using local  or
global geoacoustic inversion of the environment. Usually, geoacoustic inversion is performed
by minimizing error between measured and simulated physical quantities: mode arrivals,
angles...; inversion for noise maps considered mainly on matching acoustics levels.

The global error is often related to a complex interaction between parameters listed
in Section 3. Depending on the frequency, different physical properties can be identified as
the main contributor to the error. At low frequencies, the seabed acoustic properties were
identified as  the  main contributors  to  error  as  it  remains  poorly  known and difficult  to
estimate. Two main inversion methods have been proposed to correct sound speed and
sediment absorption. The method must guarantee that inverted parameters respect physical
properties.  The  spatial  extent  of  the  validation  must  be  considered  as  well,  and  the
correction may not be generalized to larger areas.

In theory the data fitting problem may be formulated as follows:

Given the noise observation data set O, estimate the set of parameters θ N  such that:

θ̂ N=min
θ

J (N (θ) ,O)

where  N (θ ) is  our sound model output for input parameter  θ,  and  J (⋅) is  some cost  function
adjusting the model to the observations.

JONAS - internal diffusion  _________ 11
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This process, known as “field calibration”, may be schematically represented by the
diagram of Fig. 1.1 where it is assumed, in a first approximation, that for the considered
frequency  band:  the  anthropogenic  noise  component  is  reduced  to  shipping  noise;  the
abiotic noise is dominated by surface wind generated sound, and the biotic component is
too sparse in time and space to be considered for continuous sound measurements.

The correction of  underwater  noise  maps is  commonly  performed using local  or
global geoacoustic inversion of the environment. Usually, geoacoustic inversion is performed
by minimizing error between measured and simulated physical quantities: mode arrivals,
angles...; inversion for noise maps considered mainly on matching acoustics levels.

The expectation is that parameter vector  θ̂ N  resulting from minimization (8), will
procure a better model to data adjustment even outside the time, frequency and, especially,
spatial window of the observations than the forward model N (θ N

¿ ) for some basic default a
priori parameter vector θ N

¿ .

Comparison is obviously performed only for the current time-frequency-space data
cube where observations are being carried out and may take various forms, depending on
the optimization strategy  being  sought.  There are,  at  least,  three alternatives for  model
calibration:

1. environmental focusing which proceeds by changing environmental parameters at the input
of the acoustic propagation model (ENV box marked as (1) in Fig. 1.1) is similar to the ill-
posed  problem  of  environmental  parameter  estimation  faced  for  example  in  popular
matched-field techniques, such as MFP, OAT or MFI (see below for references). It normally
entails  an  optimization  procedure  that  “navigates”  in  a  very  large  multidimensional
parameter space, making it possibly even more ill-posed than MFP;

2. source level adjustment that estimates ships’ source level intensity (SL box marked as (2) in
Fig. 1.1), requires determining the level of excitation of every sound source within receivers’
acoustic reach, and then expecting that those ships will cross the area maintaining that level
of emission, in order to better constrain the sound map over time and space. The process
may be quite challenging and hangs on several assumptions; 

3. direct model transformation for the calibration process to directly apply feedback of the
data - model match on the acoustic model or wind model outputs (marked as (3) in Fig. 1.1).
This  may  be  performed  by  determining  field  weights  from  data-model  statistical
distributions and wisely use those weights to calibrate model outputs; 

Of course, the options above do not exclude the possibility of combining two or more of these
alternatives, which may procure a more realistic and possibly better adjustment at the expense of a
higher computational burden.

5.1. Environmental focusing

Parameter  adaptation  may  take  advantage  of  a  large  body  of  work  on  ocean
environmental  parameter  estimation  using  underwater  acoustics,  generically  called  as
matched-field (MF) based methods. Those methods are rooted in the seminal work of Hinich
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[9] and Bucker [10] then popularized as matched-field processing (MFP - see [11], [12] for
reviews), initially proposed for acoustic source localization. The turning point from MFP to
environmental  parameter  estimation  started  with  the  work  of  Collins  [13]  on  MF
focalization,  where the environmental  parameters  are  adjusted until  the source position
turns into focus. Some authors separate environmental estimation MF methods for water
column properties, as ocean acoustic tomography (OAT) [14]-[16], from bottom parameter
estimation, known as matched-field inversion (MFI) [17]. In some cases, the objective was to
obtain the source location without knowing the media environmental parameters (this is
normally  called  blind  source  localization)  [18].  The  inversion  process  relies  on  the
uniqueness of the acoustic observation relative to the parameters to be estimated. That
uniqueness depends on the frequency band being used, on the temporal and spatial span of
the  observations  and,  of  course,  on  the  particular  propagation  conditions.  In  most  MF
application examples found in the literature the field is assumed to be illuminated by a single
source.

In the sound mapping case, sources are multiple and their location is known (AIS
information is required). So, the objective becomes that of fitting the model output to the
data, constrained to a given SPL at the Qt source location. This objective may be expressed
as:

J mf (θ )=min
θ

∥ o−m(θ)∥2 s . t .{mq(θ)=sq ,q=1 , …,Qt },

where  o are  the  observations,  m is  the  model  output  (it  includes  both  shipping  noise  and
background surface wind sound),  sq is the power level of the  qth ship source contributing to the
acoustic field and mq(θ ) is the model predicted power at the location of source q, conditioned on
environmental parameter vector θ. The dimension of the observation vector, respectively the model
vector,  is  the number of  sensors,  in case multiplied by the number of  frequencies.  Note that a
Bartlett type  of  objective function may  not  be  used  since it  is  a  normalized  quantity  based on
spatial/frequency correlation, and therefore insensitive to the absolute field intensity which is the
goal here.

Assuming that the bathymetry is fixed, the two set of parameters to be included in
optimization vector  θ are water column and bottom properties.  Changing water column
sound speed by means of temperature profiles, mostly affects acoustic field structure and
not  so  much  attenuation.  Acoustic  field  structure  is  represented  by  the  bending  of  the
propagation rays and therefore affects the signal time spread and depth dependence of the
acoustic field. Instead changing bottom properties only affects shallow water propagation
and has nearly no effect on signal attenuation in deep water, since rays seldom interact with
the bottom in ocean depths over, say, 2000 m. In other words, in that case we see little, if
any, chance of success in environmental parameter changes to significantly adjust model
output to received levels.

5.2. Source Level adjustment

The  actual  source  level  of  each  passing-by  ship  is  unknown  so,  in  practice,
characteristic values of each ship type (cargo, tanker, cruise, etc) drawn from the literature
are  normally  used.  Deviations  between  these  typical  values  and  actual  emitted  noise

JONAS - internal diffusion  _________ 13
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intensity is unknown, but may potentially be quite large. The sum over the ship sources
within acoustic reach may contribute to some degree of leveling of individual deviations if
the number of sources is large and if ships are evenly distributed in the area. Otherwise, in
some cases, a few close by passing ships may dominate the received field for short periods
of  time,  introducing  strong  biases.  Those  biases  and  deviations  may  be  frequency
dependent.

A first attempt to directly estimate source levels of ships within acoustic reach of the
receivers was proposed and tested with simulated data based on real AIS data, in [19]. The
source model relies on several assumptions and the origin of possible errors is listed above.
In this study, the first assumption made is stationarity, e.g. that ship radiated noise does not
vary  significantly  in  a  given  time window during  which  a  least  squares  fit  is  attempted
between model and observations by varying source ship levels. The goodness of the result
depends on a Green’s  function matrix  G that itself  depends on the propagation model,
environmental parameter vector θ and source positions given by AIS (named vector a in the
paper). A simulated example is constructed based on 1 hour of true AIS data off the port of
Lisboa  (Portugal).  In  that  case  17  different  ships  were  identified  as  cruising  by  the
observation location and inverted for the proposed technique. It is shown that even for the
perturbed case, source level  estimation accuracy is  very high for  close ships but steeply
decreases  with  range  /  propagation  conditions.  This  is  normal  because  their  respective
weight in the received signal  decreases accordingly.  In  the approach above the solution
vector of ship source level is inherently assumed as deterministic.

 An  alternative would  be to  assume the source level  as  stochastic  with  a  given
probability density function (pdf)  p (Psl), as explored in the previous part. In this case the
Bayesian estimator would be given, according to standard theory, by the conditional mean
estimator (also called MAP - mean a posteriori),

P̂sl=∫
❑

❑

Psl p(Psl∨o)d Psl ‍,

where Psl is the source level power variable and p(Psl∨o) is the conditional pdf of Psl when the
observation vector o is known, also called the posterior pdf. In practice the problem remains that of
estimating this posterior pdf that may be obtained through the well known Bayes relation

p(Psl∨o)=
p(o∨Psl) p (Psl)

p(o)
,

where:

1. p (o∨Psl) is the pdf of the observed data o when ship source level Psl is known, and may
be given by the model output for true source level vector; 

2. p (Psl) is  the  prior  source  level  pdf  before  observation,  which  may  be  based  on  some
previous historical  observation. In order to take advantage of the Bayesian framework it
would be desirable to assume a Gaussian prior, centered on historical source level values.
This static may be built on existing source level models;

JONAS - internal diffusion  _________ 14
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3. p(o) is the prior pdf of the observations o, without dependence on the source level, this is a
mere normalization factor. 

Using the linear observation model proposed in [19] with the notation above, one
may write the linear Bayesian observation data model as 

x=Hs ,

y=x+u , 

where matrix H  contains the Green’s function transmission loss, s is the source level vector under
estimation, assumed random and a priori Gaussian distributed N (μ s ,C s) and u is the observation
noise, assumed also zero mean white Gaussian distributed with variance σ w

2  and uncorrelated with s.
Without loss of generality  C s may be assumed diagonal or, in a first approximation, of the form
C s=σ s

2 I . In that case estimator (8) may be expressed in closed form as:

ŝ=μ s+C s H T ¿

Several comments are in order:

1. The first comment is that the impact of the ill-conditioning of the Green’s function matrix
noted in [19] is substantially reduced here because the matrix to invert includes the noise
cross-covariance; 

2. The assumption of a Gaussian pdf for source level distribution makes more sense than a
uniform prior,  as normally used for poorly known a priori  parameters. The mean of that
distribution should be the historical values and constant variance σ s

2 remains to be selected
by trial and error; 

3. In  practice,  since  the  true  channel  attenuation  between  each  source  and  the  receiver
location is error prone, an estimate Ĥ  of H  will be used in (13) so those model errors will be
reflected in the final source level estimate, contributing to the data-model best fit; 

In reality data model (12) only takes into account the shipping noise component,
completely bypassing the surface wind sound background component. Although there might
be local  variations of  wind speed induced surface sound,  we will  generally  assume that
ambient sound background component to be relatively stable over time so, we may model it
as sound level  Lb(f ) of a stochastic process power  b with the usual Gaussian distribution
N (μ b ,Cb). Therefore, a more realistic model, including the background component, would
be 

x=Hs ,

y=x+b+u

Since  x=Hs,  b and  u are  all  Gaussian distributed independent  variables,  their  joint  pdf  is  also
Gaussian which implies that the posterior  conditional distribution of  s∨ y  is  also Gaussian with
mean 
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ŝ=E [ s∨y ]=μ s+C s H T ¿

and covariance given by (adapted from theorem 10.3 in [20]),

C s∨y=C s−C s HT ¿

Introducing suitable estimates for the a priori statistics of the source level s and the
background  b allows for computing the posterior estimators and its covariance as above.
Also,  the  same  framework  may  be  used  to  derive  the  posterior  of  the  predicted  field
estimate when the source level estimate is known, that is p( y∨ŝ), and derive not only its
conditional  mean  but  also  its  variance  at  all  spatial  locations,  therefore  allowing  to
propagate  the  ship  estimates  near  the  observation  locations  to  the  whole  area  where
shipping noise prediction is performed, as ships travel through the area.

5.3. Direct model transformation

The standard procedure follows to estimate sound maps in 1/3 octave frequency
bands, represented by their center frequencies. To each center frequency in the band one
may associate an SPL pdf  drawn from the data  observations and another one from the
model predictions.

In theory, assuming a Gaussian distributed acoustic pressure, power SPL should be
distributed according to a modified χ2 with a number of degrees of freedom equal to the
number of power bins averaged to obtain the SPL estimate. However, when the number of
averaged bins is large the corresponding  χ2 distribution tends to approach the Gaussian
distribution again, via the central limit theorem.

An ad hoc procedure to allow for data-model fitting much simpler and easier to
implement  than  those  proposed  above,  would  be  to  perform  a  simple  variable
transformation from the model to the data distribution. The simplest example would be
given  by  a  linear  transformation  such  as  Y= AX+B where  B  is  a  mean  shift  and  A2

represents a variance change coefficient. A different set of coefficients would be calculated
for  each  frequency  across  the  spectrum  such  that  one  would  end  up  with  a  spectral
calibration of  the  form  {A (f k), B( f k); k=1 , …, K } for  f k being  the  1/3  octave  center
frequency of the K  frequency bands in, say, [40-1000] Hz. Note that this transformation is
linear in the SPL domain but non-linear in the sound pressure power domain. In fact, if the
level  X  is  X=10 log10 px and  Y  is  Y=10log10 py,  then we will  have  p y=bpx

a,  where

b=10B /10and  a=A .  This  transformation ensures proper mean and variance shifts of the
respective distribution but pdf shapes will not be preserved in the pressure level domain.

In practice this means that the SPL distributions over a given area would be (mean
and variance) modified according to the differences between data and model found at the
recording locations. The idea behind this is that mean and variance distribution modification
would contain the model to data calibration necessary for each point in space. Although this
view may be acceptable, its validity may be questioned for areas sparsely sampled in time
and  space,  and  its  validation  may  be  difficult  if  not  impossible  to  ascertain.  However,
keeping these drawbacks in mind, the fact that this is the simplest route for field calibration
this approach was tested in the Azores June 2018 data set as described in section 7-b.
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6.  Case study
6.1. Celtic sea

This section presents a case study performed in the Celtic Sea, using SHOM acoustic data
recorded at station 04C and 05G (Figure 6.1.1).  The modeling results are the JONAS preliminary
noise maps computed for each day 2019. The modeled noise values were extracted at the closest
positions and depth to the recorders and treated as time series vectors.

Figure 6.1.1: Bathymetry and vessel density map (total for the day 04-09-2019) with the recorder
positions used in this case study (black diamonds).

6.1.1. Acoustic data

The acoustic data recorded at station 04C and 05G were processed at SHOM to produce a measured
ambient  noise  level  every  10  seconds  for  the  OTO  bands  centered  on  63  and  125  Hz.  The  4
hydrophones  deployed  at  each  station  have  their  location,  depths  and  recording  periods
summarized in table T6.1.1.
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Station Position n°Hydro Depth (m) T0 TF

04C 006°17,100'W

48°57,001'N

SMART 19 27 07/09/2019 22/10/2019

SMART 1 37 07/09/2019 22/10/2019

SMART 2 54 07/09/2019 10/10/2019

SMART 3 83 07/09/2019 17/10/2019

05G 007°22,296' W

47°35,494'N

SMART 2 86 20/03/2020 23/05/2020

SMART 3 155 21/01/2020 21/03/2020

SMART 19 304 20/03/2020 18/05/2020

Table T6.1.1: Station 04C and 05G recorders, with their depth and recording periods.

The noise level density distributions were computed over the time series every 0.5 dB for both the
measurements and the model. Additional processing was performed on the recorders of station 04C
with the aim of reducing flow and self-noise. This processing was a selection of the time periods with
the least currents observed in tide and current data (dark blue distributions in Figure 6.1.2). This step
was only performed at station 04C in order to explore the gap between model and measurements
and was found to be very relevant.
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Figure 6.1.2: Left: Noise level distributions measured and modeled at station 04C. Right: Noise level
distributions with  each value  normalized to the median level  observed in the  left plot.  Modeled
distributions are in orange; Dark blue is the measurement distribution with a time selection with the
least flow noises. The heavy tail observed in the measurements distribution mainly results from self-
noise that is problematic on this recorder, as well as some rare and close passages of vessels.
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Figure 6.1.3: Left: Noise level distributions measured and modeled at station 04C. Right: Noise level
distributions with  each value  normalized to the median level  observed in the  left plot.  Modeled
distributions are in orange; Dark blue is the measurement distribution with a time selection with the
least flow noises.

6.1.2. Comparison results

Comparison  was  performed  following  the  methodology  described  in  this  document  by
computing the statistical moments, the Minkowski and Sørensen similarity between the measured
and modeled noise level distributions (empirical PDF). Results are shown in the next tables (A-T2)
and figures (6.1.2 to 6.1.3).
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Model Processed Measurements

station Mean Median SD Mean Median SD

05G_SMART_03 104.88 104.90 2.89 100.36 99.91 2.88

05G_SMART_19 103.75 103.80 2.21 97.56 97.20 2.47

05G_SMART_02 103.42 103.30 2.27 98.40 98.07 2.44

04C_SMART_19 107.16 107.37 2.41 85.24 82.04 6.85

04C_SMART_01 107.61 107.46 2.10 86.31 83.35 6.76

04C_SMART_02 107.26 107.20 1.94 85.73 82.88 6.90

04C_SMART_03 107.17 107.12 1.98 92.61 91.01 5.80

Table T6.1.2: Resulting analysis of the statistical moments for all the hydrophones at the station 05G
and 04C. 04C measurements analysis was performed on the flow-noise processed values.

Figure  6.1.4:  Minkowski  and Sørensen similarity  computed between the  modeled and measured
noise level distributions (empirical PDF) for all the hydrophones at both stations 04C and 05G. 04C
measurements analysis was performed on the raw data and the flow-noise corrected values.

The results obtained from this analysis show a large difference between the two stations,
with the 05G model being closer to the measurements than the ones at 04C. Still, the modeled noise
level distributions are higher than the measured ones at both stations.

Results from the statistical moments measured and modeled at the station 04C show a large
discrepancy  between  hydrophones.  A  minimal  median  or  mean  difference  is  found  at  the
hydrophone 04C_SMART_03, which corresponds to the deepest hydrophone of the station. Here the
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use of the similarity methodology allows to quantify this difference, and it is showing a very low
Sørensen similarity. This means that the two distributions are largely different.

The  three  remaining  hydrophones  show  similar  median  and  mean  differences  between
measurements and model (21 to 25 dB offset).  This  difference is  less pronounced with the raw
measurements  than  with  the  flow noise  processed  data  shown here.  The  normalized  Sørensen
similarity computed between the flow noise processed measurements and the model, show a rather
average fit between the distribution’s shapes and over the 4 hydrophones. The Minkowski method
has returned values  that  are  close  to  0.5.  The small  variations around this  central  value are  in
agreement with the results from the Sørensen method.

For the station 05G the model and measurements are distant by approximately 5 dB in mean
and  median  values.  The  standard  deviations  of  both  distributions  are  very  close  (difference  of
variances  is  approx.  1  dB).  This  is  also  observed  in  the  high  values  of  normalized  Sørensen
similarities, meaning that the shapes of the distribution are close.

6.1.3. Confidence assessment

These results  can be summarized in terms of uncertainty with the Table T6.1.3 assessed
using the mean level error and the shape of the distribution for the temporal dynamic. Here, the
local differences between stations are of 5 dB in mean at 05G station, and more than 20 dB at 04C.
Moreover, the fit between the distribution shapes, means that temporal dynamics of the noise levels
are matched in both cases. These results could mean that the model is affected by a systematic error
locally.  At  station 04C,  the calibration process  could  be oriented toward a work on the seabed
parameters.

The confidence radius was computed following the methodology exposed above by using
the TL modeled at 63 Hz and presented in figure 6.1.5. The table T6.1.3 summarizes the information
of uncertainty estimated qualitatively from the distributions, for both stations and confidence radius
on this uncertainty estimation.

04C 05G

Error mean levels High Average

Error Dynamic Low Low

Empirical confidence 
radius (km)

77.13 93.83

Table T6.1.3: Qualitative confidence assessment results for the two stations 04C and 05G
evaluated in this case study.
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Figure 6.1.5: Representation of the transmission losses associated with the position 04C (left) and
05G (right). Computed at 63 Hz using RAMS and SHOM datasets.

Figure 6.1.6: Noise map of the day 17-03-2019 for the One Third Octave band centered on 63
H Colored circles represent the confidence radius defined in the table T6.1.3 at both stations 04C and
05G. The color is based on the error on the mean levels from this table.

Figure 6.1.6 represents the radius of confidence around both receivers and the qualitative
error estimation as colors.  The recorder 04C is affected by self-noise and strong current induced
noises,  which  is  also  limiting  the  confidence  in  the  comparison  results.  This  confidence  in  the
acoustic data processing was not incorporated in this study, but it could eventually be added in table
T6.1.3 while the color could be adjusted to summarize all the information.
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6.2. Case study Azores

This  section  describes  the  application  of  the  field  calibration  methodology  described  in
(section) to the data set provided by the IMAR-Okeanos group in the Faial - Pico Islands study area in
the Azores. Figure 6.2.1 shows the bathymetry of Azores central group of islands as given by GEBCO
[21]. The black box signals the area where three IMAR-Okeanos acoustic recorders are located.

Figure 6.2.1: Central Azores archipelago bathymetry map covering the islands of Faial, Pico, S.Jorge
and Terceira with box signaling IMAR-Okeanos acoustic recorders position.

6.2.1. Acoustic data

The box with the acoustic recorders is shown in great detail in Figure 6.2.2. The location of
the acoustic recorders is shown as the colored diamonds: CA on the Pico side at 484m depth, IN at
the channel border and MG on the Faial slope both at 200m depth. 

Figure 6.2.2: Faial - Pico bathymetry with CA, IN and MG recorder positions.

The  data  was  recorded  with  three  Ecological  Acoustic  Recorders  (EAR)  produced  and
commercialized by Marc Lammers [22]. These are duty cycle programmable long endurance deep
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water recorders with an assumed flat sensitivity over the band 20 - 1000 Hz, operated at a sample
rate of 2000 Hz, 16-bit resolution and a 47.5 dB total chain gain.

The data was read and processed with the PAMGuide package1 The SPL was calculated at
the 16 one-third octave band center frequencies in the band 20-1000 Hz, as the sum of the power
spectra estimates over each one-third octave band. The power spectra estimates were obtained for
1 s window length (i.e. a frequency spacing of 1 Hz) and averaged over 10 min. The EARs were set to
record  from  14:00  to  20:00  UTC  each  day.  Internal  clock  drift  exists  but  is  unknown,  so  data
validation through individual target tracking is only approximative. 

Figure 6.2.3: Data collected on June 3, 2018 from 14h to 20h UTC: bathymetry, recorder position and
AIS cumulative ship distribution (top left); measured SPL over time of the day and frequency in the

band 20 - 1000 Hz for CA (top right), IN (bottom left) and MG (bottom right).

Figure 6.2.4: Data collected on June 10, 2018 from 14h to 20h UTC: bathymetry, recorder position
and AIS cumulative ship distribution (top left); measured SPL over time of the day and frequency in

the band 20 - 1000 Hz for CA (top right), IN (bottom left) and MG (bottom right).

1 https://doi.org/10.1111/2041-210X.12330reference PAMGuide paper, including Matlab and R codes supplementary information.
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Figure 6.2.5: Data collected on June 23, 2018 from 14h to 20h UTC: bathymetry, recorder position
and AIS cumulative ship distribution (top left); measured SPL over time of the day and frequency in

the band 20 - 1000 Hz for CA (top right), IN (bottom left) and MG (bottom right).

Figure 6.2.6: Data collected on June 26, 2018 from 14h to 20h UTC: bathymetry, recorder position
and AIS cumulative ship distribution (top left); measured SPL over time of the day and frequency in

the band 20 - 1000 Hz for CA (top right), IN (bottom left) and MG (bottom right).

As illustrative examples, figures 6.2.3 – 6.2.6 show the recorded data for days 3, 10, 23 and
26 of June 2018. Each figure shows the bathymetry and cumulative AIS ship location distribution
between 14:00 - 20:00 for the area at hand (top left) and then clockwise the measured SPL over time
of the day and frequency at the CA, MG and IN sites. A short movie with the received spectra for all
days of June 2018 is available as supplementary material to this report.
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It is relatively standard to analyze the statistical behavior of an ocean sound data set through
spectral  power histograms.  These are shown in Figure  6.2.7,  for the received data at  the three
locations CA, IN and MG in plots (a) to (c), respectively. These figures were obtained for 1 s time
windows, therefore with a spectral resolution of 1 Hz,  with 50% time overlap but no averaging.
Therefore, these are not power spectral  estimates but “sample power spectra”.  The color  scale
denotes empirical probability so, SPL sample count on each interval over total number of samples,
for each frequency.

(a) (b) (c)

Figure 6.2.7: Faial-Pico data set spectral power distribution with 1 second time slots between 14:00
and 20:00 UTC in June 2018 for CA (a), IN (b) and MG (c).

Some preliminary comments are in order:

1 The output spectra is strongly attenuated in the low frequency band below, say 60 Hz.
Whether that  is  an imposed high-pass  filter  in  the acquisition  chain  to  avoid  static
pressure oscillations or a loss of sensitivity of the hydrophone for that frequency band,
is not known at this stage. 

2 Abnormally resistant intensity peaks can be seen at some individual frequencies; those
are persistent along time and vary from one recorder to the other. In fact, the recorders
at CA and IN are quite similar with a strong peak at 380 Hz and two smaller at 200 and
800 Hz, while MG has several clear peaks with a very strong one at 530 Hz. Clearly,
those peaks are hardware related and the generated self-noise greatly limits the system
capabilities in those frequency bands; 

3 Taking into account these observations, the filters of table 1 were applied to the data
prior to their usage for model calibration. 
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Cut bands

CA 188-197 and 374-393 Hz

IN 184-191 and 357-387 Hz

MG 267-274 and 528-553 Hz

Table 6.2.1: Band cut frequency filters applied to the observed recorder data

6.2.2. Shipping noise modeling

Shipping noise modeling was performed by Marsensing using a methodology described in
[23] and the following data sets: AIS data shared by AIShub 2, the source level from McKenna [24],
and  the  Kraken  propagation  model  fed  with  the  GEBCO  bathymetry  [21],  the  water  column
predictions by CMEMS3 and a uniform bottom description, as briefly shown in appendices 6.1 and
6.2. The results of the shipping noise modeling are discussed in detail in [25], [26]. The time and
space grids were set  to 10 minute and 500m×500m, respectively.  In a first  stage the field was
projected onto the locations of the receivers and a time series for each frequency was obtained,
every 10 min for the whole month at each location CA, IN and MG. Figure 6 shows the predicted
shipping noise SPL only for each time of day and day of month for the three locations CA (a), IN (b)
and MG (c). 

(a)

2 https://www.aishub.net/ https://www.aishub.net/

3 https://marine.copernicus.eu/https://marine.copernicus.eu/
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(b)

(c)
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Figure 6.2.8: Model shipping noise for each frequency band as a function of time of the day and day
of the month for sites CA (a), IN (b) and MG(c).

Clearly there is an SPL increase at some hour between 09:00 and 10:00, almost for all days of
the month, in all channels and frequency bands. That increase is stronger at CA sites than at IN and
MG. There are a number of days and times with nearly no noise (possibly no ships). These noise
"empty" moments are more frequent during the night and at the IN and MG sites.

6.2.3. Wind noise modeling

The wind noise forecast database from the European Center for Medium-Range Weather
Forecast (ECMWF)4 for the whole month of June 2018 was used. The coverage is from [-32∘,-10.25∘]
longitude West and [30∘,39.75∘] latitude North, as shown in appendix 6.3. The corresponding mean
broadband wind  sound  level  is  shown in  Figure  6.2.105 Clearly  the  month  of  June  mean  wind
generated sound, at least for this broadband component, is nearly constant at around 89 dB re μPa2.

4 https://www.ecmwf.int/ https://www.ecmwf.int/

5 for islands names please refer to figure 2, these will not be marked in the following plots to avoid image cluttering and for a lack of
space.
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Figure 6.2.9: Azores wide area over the whole month mean broadband SPL generated with the wind
Kewley et al. wind model using the ECMWF data.

6.2.4. Shipping noise and surface wind generated sound model

Putting together surface wind sound and shipping noise modeled with the tools described
above, for the three recording sites CA, IN and MG one gets the surfaces shown in Fig. 6.2.10(a), (b)
and (c), respectively. 

(a)
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(b)

(c)
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Figure 6.2.10: Model shipping and wind noise for each frequency band as a function of time of the
day and day of the month for sites CA (a), IN (b) and MG (c).

It is clear that the noise "holes" are now filled with the background surface wind generated
sound that shows different levels according to each frequency band. Note also that the color bar
with SPL has now a minimum level of 52 dB. The background level varies along the day of the month
and according with frequency but it is the same for recorders CA and IN that are in the same wind
cell, and slightly different for MG, lying in the contiguous wind cell.

6.2.5. Data-model - comparison

Data and model SPL may be compared for the three recorder locations by means of the SPL
empirical  distributions  which  are  proxies  of  the  probability  density  function  (pdf)  of  energy
distribution. These are shown for each 1/3 octave frequency bands and broadband in Fig.6.2.11(a),
(b) and (c),  for CA, IN and MG, respectively:  observed data (red),  modeled data (blue) and field
calibrated data (green).

(a)

(b)
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(c)

Figure 6.2.11: Data - model comparison of empirical probability of SPL distribution for 1/3 octave
bands in 40-1000 Hz and broadband for June 2018 from 14:00 to 20:00 UTC for CA (a) IN (b) and MG

(c): data (red), model (blue) and field calibrated (green).

The first remark is that the model noise distribution (in blue) tends to overestimate the data
(in red) in the low frequency bands, say those below 126 Hz. In the upper bands the model and the
data distribution tend to be centered with, however, a much smaller variance for the data than for
the model. Even the 200 and 400Hz bands in the CA recorder and the 200 and 500Hz for MG are
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now relatively centered. This behavior is due to the filtering imposed on the self-noise corrupted
bands as seen on Fig.  6.2.12. The distributions after calibration (in green) were obtained by the
linear transformation in the SPL domain as explained above. Since the ensemble of observations of
CA, IN and MG were put together in a single distribution from which the transformation coefficients
were calculated, their projection for each recorder location does not exactly fit the data distribution
but clearly tends to it, as it can be observed in the figures. The objective of this ensemble of data is
to provide a more spatial robust calibration than if a single recorder was used. The broadband field
(shown in the bottom right plot of each figure) was calculated as the power sum of the 1/3 octave
frequency bands over the whole considered band.

6.2.6. Wide area shipping and wind modeling

The next step is to extend the modeling to the wide area of the several islands and the
surrounding stretch of ocean of the Azores central group archipelago, for the whole month of June
2018. That is shown in Fig. 9 for the field received at 10 m depth, as the time mean SPL for the usual
1/3 frequency bands between 40 and 1000 Hz. 

Figure 6.2.12: Modeled field: time mean at 10 m depth for the 1/3 octave frequency bands in 40-
1000 Hz and broadband, for June 2018 at 10 min average with a 500 m spatial resolution.
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Figure 6.2.13: Broadband modeled field: 5, 25, 50, 75 and 95% percentiles and time mean at 10 m
depth in 40-1000 Hz, for June 2018, 10 min average with a 500 m spatial resolution.

The field distribution is clearly modulated through frequency with shipping routes between
islands and in other  areas to the southeast  being enhanced for the upper frequency band.  The
statistics for the broadband case is shown in Fig.6.2.13 for the 95, 75, 50, 25 and 5 percentiles and
the mean, for the same modeled data. Note that the broadband field is obtained, for each time
sample,  as  the  power  sum over  the  whole  frequency  band of  the  1/3  center  frequencies.  The
percentiles are extracted from the empirical cumulative density function obtained from histogram of
these time samples over the whole month and for each lat-lon location.

6.2.7. Field calibrated of wide area shipping and wind model data

As mentioned above the adopted strategy is to apply the simple calibration method based
on a linear transformation of the model distributions throughout space for each frequency band. The
coefficients of the transformation were deduced from the comparison between the modeled data
and the data gathered at the three, CA, IN and MG sites for each afternoon between 14:00-20:00
UTC during the whole month of June 2018. The data of each recorder was filtered according to the
frequency bands shown in table 1. These coefficients introduce a SPL mean shift or variance spread
modification, depending on the frequency. Figure 11 shows the whole month time means on each
frequency band and then for the broadband case (bottom right). 
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Figure 6.2.14: Field calibrated modeled field: time mean at 10 m depth for the 1/3 octave frequency
bands in 40-1000 Hz and broadband mean, June 2018, 10 min average.

The  statistics  for  the  broadband  case  are  shown  in  Fig.  12  for  the  95,  75,  50,  25,  5%
percentiles and the mean, for the same modeled data. 
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Fi
gure 6.2.15: Field calibrated broadband modeled field: 5, 25, 50, 75 and 95% percentiles and time

mean at 10 m depth in 40-1000 Hz, June 2018, 10 min average.

As mentioned above the effect of the calibration was to reduce the effective spread of the
field and the overall levels in the lower portion of the frequency band. Although the overall mean
levels seem in line and coherent with the known traffic routes and areas of shipping noise influence,
whether  that  narrowing  of  variability  with  direct  impact  in  the  statistics  is  justified  remains
questionable and extremely hard to validate.

6.2.8. Azores case study conclusions

Because of the area covered in the JONAS project, it was not possible to perform calibration
of the noise maps. In this document, the comparisons between measured and simulated noise levels
are performed in order to provide confidence maps. The methodology is explained and two case
studies  are  provided  in  the  annexes.  A  one-month  data  set  obtained  in  three  evenly  spaced
recorders from IMAR-Okeanos group were used as a sample for calibration of a wide oceanic area
containing four islands. Shipping routes between islands and in long routes across the area, as well
as fishing traffic has been measured through AIS, together with surface wind generated noise were
used for shipping noise modeling. Model output was compared to the measured data at the receiver
locations, and statistical differences drawn. These differences were then applied to the whole data
set for the whole area, to obtain a flavor of the field calibrated data set. Whether that calibrated
mean surface may be deemed as closer to the truth surface is hard to tell. Validation would certainly
require further validation points and / or comparison with other calibration methods among those
proposed.
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Annexe  1:  Data  fields  for  model
setup
A1.1 Azores water column data

The Azores high pressure system is the weather engine for most of the north Atlantic and sets
a relatively mild climate, with low winds and relatively warm water. In order to get a grasp of the
spatial and time variability of water column temperature, Figure. A.1.1 shows the spatial location of
mean temperature profiles over the area bathymetry (a), and water temperature variation in space
in the top plots and bottom left, and the variation through time at one single location (bottom right)
(b). 

(a)

(b)
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Figure A.1.1: Temperature, salinity and sound velocity profiles variation along the Azores area for the
month of June 2018. Source: CMEMS-Copernicus Marine Service.

Clearly,  temperature  variation  is  very  smooth  along  these  longitude  tracks  crossing  the  whole
observation area. In time we notice that an upper gradient is developing along the month of June.

Figure  A.1.2  shows temperature,  salinity  and sound velocity  profiles  variability  across  the
whole area and for the month of June 2018. This data was extracted from the CMEMS-Copernicus
Marine Service6 database. The water column shows a typical downward refracting sound velocity
profile with a deep sound channel and where the critical depth is never attained. Variability is mild. 

Figure A.1.2: Temperature, salinity and sound velocity profiles variation along the Azores area for the
month of June 2018. Source: CMEMS-Copernicus Marine Service.

6 www.copernicus.eu
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A1.2 Azores water column data

The cumulative ship distribution drawn from AISHub7 over the whole month of June 2018 for
the area at hand is given in Figure A.1.3 using logarithm base 10 of ship density evaluated in ship x
hour per arc minute2.

Figure A.1.3: Cumulative ship density for the month of June 2018 according to AISHub.

In reality this figure does not show the whole picture since it melts all the shipping contacts
as simple dots. Since ship types and position in time and space are the primary input to the modeling
effort, it is of paramount importance to have a better understanding of the AIS data set. That is why
the data was sorted along various parameters pertinent to the data set, such as, speed, ship type,
time and space. It was found, for instance, that approximately 25% of the contacts were ships in port
or on anchor (speed zero), so these were discarded. The remaining contacts were sorted by type,
using the ID tag existing in the AIS data stream. It was found that for approximately 50% of the
remaining  contacts  ship  type  was  not  available.  The  other  50%  were  divided  among:  fishing,
dredging,  sailing,  rescue,  passenger,  cargo,  tanker  and "other  type" not  classified in  any of  the
previous. All in all, 600 different ships were recorded, producing about 60.000 contacts during one
month. Different patterns were obtained when these ship types were separated along time (time of
the  day  and  day  of  the  month).  For  instance,  fishing  was  constant  throughout  day  time  while
passenger and sailing were active only during day time, while the former had peaks around noon
and then at the end of the day. Cargo was mostly active during night time and rescue only during the
day. The group that could not be identified had an activity distribution very similar to sailing. Spatial
distribution of the different ship types was also quite characteristic, with sailing covering long routes
and around the islands, cargo and tankers well away from the islands (long routes), passenger linking
ports only and fishing covering well known fishing spots.

A1.3 Azores wind speed forecast

Figure  A.1.5  shows  the  the  mean  wind  speed  over  the  whole  month  of  June  2018  as
predicted by the ECMWF8 with a resolution of 0.75×0.75 arc degree and 3-hour resolution. 

7 ship Automatic Identification System data exchange, www.aishub.net

8 ship Automatic Identification System data exchange, www.aishub.net

 European Centre for Medium-Range Weather Forecasts, www.ecmwf.int
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Figure A.1.5: Azores mean wind speed for June 2018, according to the ECMFW.
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