SEVENTH FRAMEWORK PROGRAMME Marie Curie Actions-People International Research Staff Exchange Scheme

Ocean Acoustic Exploration (OAEx)

1st OAEx Workshop Proceedings Instituto de Estudos do Mar Almirante Paulo Moreira Arraial do Cabo, Brazil March 2010

INSTITUTO DE ESTUDOS DO MAR ALMIRANTE PAULO MOREIRA (ADMIRAL PAULO MOREIRA MARINE RESEARCH INSTITUTE)

1st OAEx Workshop Ocean Acoustic Exploration

March, 22nd - 26th 2010 Arraial do Cabo, Rio de Janeiro, Brasil

University of Victoria

Contents

Schedule	2
Attendance list	4
Abstracts	6
Presentations	16
Experiment planning	84

Schedule

MARCH, 22nd, 23rd WORKING DAY

9:00 - 11:30 MEETINGS

12:00 - 13:00 LUNCH

13:00 - 17:00 MEETINGS

MARCH, 24th PRESENTATIONS

9:00 - 9:30 OPENING

9:30 - 10:00 ANALYSIS OF GEOACOUSTIC PARAMETERS (P-WAVE VELOCITY, POROSITY AND GRAIN SIZE) OF MARINE SEDIMENTS OBTAINED BY CORES L. Artusi, H. C. Macedo, <u>I. P. Simões</u>, J. P. Hermand

10:00 - 10:30 IMPULSE RESPONSE INTERPRETATION OF A VERY SHALLOW WATER ACOUSTIC CHANNEL

H. Chaves, L. Artusi, H. C. Macedo¹, I. P. Simões, R. Nonato, <u>P. Felisberto</u>, P. Santos

10:30 - 10:45 COFFEE-BREAK

10:45 - 11:15 AN ACOUSTIC INVERSION EXERCISE WITH SAGA, USING TEM-PERATURE (T) AND SALINITY (S) DATA COLLECTED NEAR THE CABO FRIO COAST

<u>F. Marin</u>

11:15 - 11:45 FEATURE MODELS USED IN ACOUSTICAL OCEANOGRAPHY L. Calado, A. C. de Paula, J. P. Hermand, O. Carrière, N. Martins, O. Rodriguez

12:00 - 13:30 LUNCH

13:30 - 14:00 SONAR PERFORMANCE PREDICTION IN CABO FRIO <u>N. Martins</u>, L. Calado, S. M. Jesus, M. Simões

14:00 - 14:30 ESTIMATION OF 3D OCEANOGRAPHIC PROPERTIES USING 2D ACOUSTIC OBSERVATION

N. Martins, F. Marin, S.M. Jesus

14:30 - 15:00 FEATURE-ORIENTED ACOUSTIC TOMOGRAPHY: UPWELLING AT CABO FRIO (BRASIL) <u>O. Carrière</u>, J. P. Hermand, L Calado, A. C. de Paula, I. C. Silveira

15:00 - 15:50 GEOACOUSTIC INVERSION AND SOURCE PASSIVE LOCALIZA-TION IN SHALLOW WATER L. Maia

- 15:50 16:00 COFFEE-BREAK
- 16:00 17:00 IEAPM HIGH LIGHTS <u>M. Simões</u>

MARCH, 25th WORKING DAY

- 9:00 10:30 REPORT PLANNING
- 10:30 10:45 COFFEE-BREAK
- 10:45 11:30 REPORT PLANNING
- 11:30 13:00 LUNCH
- 13:00 15:00 CRUISE PLANNING
- 15:00 15:30 COFFEE-BREAK
- 15:30 17:00 SECONDMENT SCHEDULE

MARCH, 26th WORKING DAY

9:00 - 11:30 REPORT PLANNING

11:30 - 12:00 ENDING

Attendance list

- UALG /PT
 - Sérgio Jesus
 - Nélson Martins
 - Paulo Felisberto
- ULB / BE
 - Jean-Pierre Hermand
 - Olivier Carrière
- IEAPM / BR
 - Marcus Vinícius da Silva Simões
 - Ana Cláudia de Paula
 - Lúcia Artusi
 - Helber Carvalho Macedo
 - Isabel Cristina Vendrameto Peres Simões
 - Leonardo Martins Barreira
 - Antônio Hugo Saroldi Chaves
 - Fernando de Oliveira Marin
 - Eduardo Giuseppe Rigoglio
 - Pablo Jabor
 - Leandro Calado
- COPPE / BR
 - Carlos Eduardo Parente Ribeiro
 - Luiz Gallisa Guimarães
 - Lussac Prestes Maia
 - Paulo Ricardo Brito de Araújo
- PETROBRAS / BR
 - Alexandre Coelho da Fonseca
- IPqM / BR
 - Fernando Luis Ribeiro da Rocha
- CASOP / BR
 - Warley Gripp Santana

Abstracts

ANALYSIS OF GEOACOUSTICS PARAMETERS	_
(P-WAVE VELOCITY, POROSITY AND GRAIN SIZE) OF MARINE SEDIMENTS	7
IMPULSE RESPONSE INTERPRETATION OF	
A VERY SHALLOW WATER ACOUSTIC CHANNEL	8
AN ACOUSTIC INVERSION EXERCISE WITH SAGA,	
USING TEMPERATURE (T) AND SALINITY (S) DATA	
COLLECTED NEAR THE CABO FRIO COAST	9
FEATURE MODELS USED IN ACOUSTICAL OCEANOGRAPHY	10
SONAR PERFORMANCE PREDICTION IN CABO FRIO	11
Sonat i Ett oftwance i teldicition in cado fitto	11
CLASSIFICATION OF 3D OCEAN FEATURES	
BY 2D ACOUSTIC SAMPLING	12
FEATURE-ORIENTED ACOUSTIC TOMOGRAPHY:	
UPWELLING AT CABO FRIO (BRASIL)	13
GEOACOUSTIC INVERSION AND SOURCE PASSIVE	
LOCALIZATION IN SHALLOW WATER	14
IEAPM HIGHLIGHTS	15

ANALYSIS OF GEOACOUSTICS PARAMETERS (P-WAVE VELOCITY, POROSITY AND GRAIN SIZE) OF MARINE SEDIMENTS ABSTRACT

Lucia Artusi¹, Helber Carvalho Macedo¹, Isabel C. V. Peres Simões¹, Jean-Pierre Hermand²

 ¹Marinha do Brasil - Instituto de Estudos do Mar Almirante Paulo Moreira Rua Kioto 253 - Arraial do Cabo - RJ 28930-000 Brazil
 ²Environmental Hydroacoustics Lab., Université libre de Bruxelles (U.L.B.) Avenue Franklin D. Roosevelt, 50 - B-1050Brussels, Belgium

The presentation is about the secondment of CF (T) Lucia Artusi, CF Helber Carvalho Macedo and CC (T) Isabel Cristina Vendrameto Peres Simões at ULB (Université libre de Bruxelles), on November, 2009. The secondment had been advised by Prof. Jean-Pierre Hermand at the Hydroacoustic Environmental Lab in order to attend the general purpose of Work Package 2 (WP2), what is to develop a detailed environmental model of the test area near Cabo Frio Island, based on archived data.

The depths at research area varies from 40 to 130 meters. The archived data are the detailed bathymetry, the sediment grain size of the seafloor and the P-wave velocity (Vp) of sub-bottom layers.

The bathymetric data were collected on board of TAURUS Hydrographic vessel, owned by Brazilian Navy. Two different echosounders were used: EM1000 and EM1002. The data set is a raw data, consisted of bathymetric and backscatter data.

The seismic data were collected last October on board of OCEAN SURVEYOR vessel, with Geopulse equipment. Two lines were acquired and still need to be processed.

The core campaign was held in June 2009, on board of DIADORIM, an IEAPM's research ship. Twelve cores were obtained, some of them with almost 2 meters of length. They were sent to UFF (Fluminense Federal University in Niterói), to be analyzed with Geotek Multi-Sensor Core Logger.

The Core Logger is a system to perform automated measurements including compressional wave velocity and magnetic susceptibility. The compressional wave velocity reflects the physical characteristics of sediment. It means that sediment composition, degree of compactation and size of grains can interfere in p-waves results. The acoustic impedance, the porosity and density values are calculated after the Vp and magnetic measurements.

The cores were logged longitudinally, in two orthogonal positions (zero degree and 90 degree). Two months later, another measurement at zero degree orientation was taken. These measurements lagged in time make possible to check if some anisotropy or heterogeneity happen inside the layers, beyond the natural loss of water, the decomposition of organic matter and the compaction of sediments. To avoid layers disturbance, .the cores were transported in vertical position.

Vp is influenced by core diameter and local temperature. During work processing, we found out an unacceptable variation in Vp values. Working with Prof. Jean-Pierre we found out that the reason was that core tubes had been deformed. The data had been corrected and the lines are matching now. The Vp information refers to the sediment column, below the seafloor.

After the measurements, the cores were split in the middle and photographed. At every 10 cm, samples of sediments were collected and sent to the lab to analyze the fraction of grain size of sediments.

All those data will support the environmental model for the research area.

Another activities conducted during the secondment were: an extensive bibliography research; the enrollment as a ULB's visitor researcher; an academic visit to the Museum of Musical Instruments; and a lecture given by Professor Hermand at the Royal Military Academy within the scope of Marie Curie Program. Also Prof Hermand donated to IEAPM the book Acoustic Sensing Techniques for the shallow water environment, 2006.

IMPULSE RESPONSE INTERPRETATION OF A VERY SHALLOW WATER ACOUSTIC CHANNEL

Hugo Chaves¹, Lucia Artusi¹, Helber Carvalho Macedo¹, Isabel C. V. Peres Simões¹,

Raimundo Nonato¹, Paulo Felisberto², Paulo Santos²

¹Marinha do Brasil - Instituto de Estudos do Mar Almirante Paulo Moreira

Rua Kioto 253 - Arraial do Cabo - RJ 28930-000 Brazil

²Institute for Systems and Robotics, University of Algarve, Campus de Gambelas, PT-8005-139 Faro, Portugal

This presentation describes an experiment conducted in the framework of OAEx project in front of Ilha dos Porcos, Arrail do Cabo, Brasil. The objectives of the experiment were to test the equipments available at IEAPM, test the whole acquisition chain at sea conditions, acquire acoustic field data to exercise basic signal processing procedures and to made some simple propagation condition analysis, made a rough classification of the sediment by comparing features observed in real data with the outputs of the propagation models (arrival structure, travel time, signal spread, transmission loss.

The acoustic data acquisition system were tested at IEAPM Acoustic Laboratory facilities. It was compound of 2 hydrophones (one with preamplifier) connected to a Laptop's sound card. The acquisition program was running in Matlab and the data were saved in mat-files. The sound source used was an active sonar sound source. Taking in account the characteristics of source and hydrophones, the signal used in the sea trial was a sequence of chirp signals and multitones in the band 3000-4000Hz. The signal was generated using a PC sound card driven by a Matlab script. The area chosen to perform the experiment was off the Ilha dos Franceses/Ilha de Cabo Frio, thus inline with the interest area identified previously. Due to weather conditions, the sea trial was conducted in a alternative site (Ilha dos Porcos). The sound source was suspended from RV Diadorin at 10m depth and the hydrophones system from a small boat (Leg) at 10m and 15m depth. The acoustic measurements were performed in 8 stations, ranging from 100m to 1200m in range independent track. Simultaneously with the acoustic measurements CTD and XBT measurements were conducted. The positioning of the deployments was obtained from GPS systems on board of both ships and from Diadorin radar. Initial acoustic data processing showed that the signal acquired by the hydrophone at 15m was clipped, thus further processing was done with the hydrophone at 10m only. From the raw signal arrival patterns were computed. Despite the sea conditions observed during the sea trial and the high frequency of the signal, the measured arrival patterns were stable. Applying the ray tracing propagation model Bellhop and assuming a sand sediment arrival patterns were modelled and compared with measured ones. A first analysis based on arrival pattern time spreading leads to consider that sediment was softer than sand. Using a trial and error approach it was estimated that the sediment was mud.

AN ACOUSTIC INVERSION EXERCISE WITH SAGA, USING TEMPERATURE (T) AND SALINITY (S) DATA COLLECTED NEAR THE CABO FRIO COAST

Fernando Marin Marinha do Brasil - Instituto de Estudos do Mar Almirante Paulo Moreira

Rua Kioto 253 - Arraial do Cabo - RJ 28930-000 Brazil

The presentation showed the work that was done in the October 2009 secondment, that integrates the WP 2 mentioned in the Annex I - 'Description of Work' of the EU OAEX Program Proposal FP7 230855. This secondment consisted of carrying out an interdisciplinary study, by deriving an acoustic inversion exercise, considering oceanographic features typical of Cabo Frio cape, provided by partner IEAPM.

The Cabo Frio area is known to be prone to great variability, as exposed to a northeastern wind-driven upwelling regime during most of the year. The OAEx Program comprises a series of acoustic experiments in this area, with the objective of carrying out acoustic inversion for the estimation of oceanographic and geoacoustic parameters needed by acoustic models, to forecast sonar ranges.

To carry out an acoustic inversion exercise with SAGA, we used temperature (T) and salinity (S) data collected near the Cabo Frio coast. It comes from CTD, XBT, MBT and Nansen bottle profiles respecting to several years, taking part of the Raw Database of the Acoustic Environment Forecast System for Naval Operations Planning (SISPRES), from the Brazilian Navy. These data were arranged in monthly files, from January to December, giving rise to three-dimensional fields of T, S and sound speed (svel), where each month is characterized by a single field. The month of December was selected for analysis, for the greatest amount of data.

The outline of the Presentation was: INTRODUCTION (Purposes), DATA SET, THEORY (Literature Review, Main Applications of Underwater Acoustics, Speed of Sound in Sea-Water, Forward and Inverse Problems, Acoustic Inversion, EOF, SAGA and some concepts), METHODOLOGY (Data Analysis, Considerations), RESULTS and CONCLUSIONS.

FEATURE ORIENTED MODELS USED IN ACOUSTICAL OCEANOGRAPHY

L. Calado¹, A. C. de Paula¹, J. P. Hermand², O. Carrière², N. E. Martins³,

O. Rodriguez³

¹Marinha do Brasil - Instituto de Estudos do Mar Almirante Paulo Moreira

Rua Kioto 253 - Arraial do Cabo - RJ 28930-000 Brazil ²Environmental Hydroacoustics Lab., Université libre de Bruxelles (U.L.B.)

Avenue Franklin D. Roosevelt, 50 - B-1050Brussels, Belgium

³Institute for Systems and Robotics, University of Algarve, Campus de Gambelas, PT-8005-139 Faro, Portugal

Synoptic oceanic and acoustical predictions require the best, as possible, specification of initial conditions. To provide the required synoptic environment, knowledge-based feature models (FMs) have been used by regional simulations and operational forecasting for the past two decades, in many parts around the word, associated with specific purposes. Feature Oriented Regional Model (FORM) is a technique that uses previous knowledge of oceanographic features, the development of parametric (Features Models) and numerical models. Multi-Scale Objective Analysis (MSOA) was the tool used to merge different data set scales, keeping each data set characteristic and resulting in smooth field. As Brazil Current has a complex dynamic, it was develop parametric models to main oceanographic features off Cabo Frio (RJ, Brazil) coast (upwelling and eddy).

It was developed a Feature model based on acoustic to inversion purpose for coastal upwelling in Cabo Frio region, as well as it was applied the Regional Oceanic Model System (ROMS) with high resolution grid to provide the environment to test this methodology. The objective was to verify if this tool is huge enough to be used for acoustical purposes to recognize time evolution of the environment, shallow water acoustic tomography.

Also the temperature and salinity fields were developed, based on Feature Model techniques to simulated water environmental field, to be applied as scenarios for a average profile, a coastal upwelling and an eddy at Cabo Frio, to define the sound propagation and localize sound sources.

The proposed scheme presents the FM technique, added to numerical modeling for ocean forecasting, as a tool that allows predicting the acoustic environment.

SONAR PERFORMANCE PREDICTION IN CABO FRIO

N. Martins¹, L. Calado², S. Jesus¹ and M. Simões²

¹Institute for Systems and Robotics, University of Algarve, Campus de Gambelas, PT-8005-139 Faro, Portugal ²Marinha do Brasil - Instituto de Estudos do Mar Almirante Paulo Moreira Rua Kioto 253 - Arraial do Cabo - RJ 28930-000 Brazil

Rua Kioto 253 - Arraial do Cabo - RJ 28930-000 Brazil

Sonar performance prediction is carried out off Cabo Frio (Brazil). The aim is to arrive at the detection probability of a hypothetical existing sonar, in passive mode. In opposition to standard approaches, in which sonar performance is computed with climatologies, here, two oceanographic scenarios from the POM ocean prediction model are tested. One scenario is a barotropic ocean; the other, a cold-core vortex. Following Ref. [C.M. Ferla and M.B. Porter, "Receiver Depth Selection for Passive Sonar Systems", IEEE Journal of Oceanic Engineering, vol. 16, no. 3, 261-278, 1991, the acoustic source is assumed to be at an unknown depth. Hence, for each source-receiver range, the probability is computed as a weighted average of the probability corresponding to each possible depth. As a means of assessing sonar performance as a function of receiver depth, for an unknown source-receiver range, the final measure of performance is given in range units - the 'detection radius' -, as an integral of range-dependent detection probabilities. The results show that the cold-core vortex induces an increased detection radius. In summary, it is encouraged the inclusion of coupled ocean-acoustic prediction systems with detection probability indicators, as operational tools for the time-varying ocean environment.

CLASSIFICATION OF THREE-DIMENSIONAL OCEAN FEATURES BY TWO-DIMENSIONAL ACOUSTIC SAMPLING

N.E. Martins¹, F.O. Marin² and S.M. Jesus¹

¹Institute for Systems and Robotics, University of Algarve, Campus de Gambelas, PT-8005-139 Faro, Portugal ²Marinha do Brasil - Instituto de Estudos do Mar Almirante Paulo Moreira Rua Kioto 253 - Arraial do Cabo - RJ 28930-000 Brazil

The estimation of water column properties is routinely done by resorting to acoustic inversion methods. The problem is ill-conditioned and computationally intensive, if each of a huge set of spatial points is a free parameter in the inversion. Empirical orhogonal functions (EOFs) are efficient in the regularization of the inversion, providing a set of principal components with a few (2, 3) coefficients to estimate. At small scales, only the vertical variability is considered in the definition of the EOFs. The extension of the approach to larger scale anisotropic fields requires horizontal discretization into sectors, with the estimation of range-dependent coefficients. This becomes unstable and complicated by higher computational costs, and has been overcome by two-dimensional depthrange EOFs, in the past. The present work extends the empirical orthogonal function concept to three dimensions, assessing the performance of the inversion for an instantaneous sound speed field constructed from measures off Cabo Frio, Brazil. The results show that: 1) 3 EOFs are insufficient to represent the field; 2) the acoustic observations do not carry enough information on the underlying sound speed field. Further studies are required, specially to remove the ambiguity, by adding acoustic transects.

FEATURE-ORIENTED ACOUSTIC TOMOGRAPHY: UPWELLING AT CABO FRIO (BRAZIL)

Olivier Carrière¹, Jean-Pierre Hermand¹, Leandro Calado², Ana Cláudia de Paula², and Ilson Carlos Almeida da Silveira³ ¹Environmental Hydroacoustics Lab., Université libre de Bruxelles (U.L.B.) Avenue Franklin D. Roosevelt, 50 - B-1050Brussels, Belgium ²Marinha do Brasil - Instituto de Estudos do Mar Almirante Paulo Moreira Rua Kioto 253 - Arraial do Cabo - RJ 28930-000 Brazil ³Instituto Oceanográfico da Universidade de São Paulo Praça do Oceanográfico 191 - São Paulo - SP 05508-120 Brazil

Data assimilation in coastal environments is a hard task due to the strong coupling between state variables and forcing and the lack of data on the scale of interest. Acoustic tomography can compensate for the scarcity of measurements and complete standard data set with valuable synoptic measurements on temporal and spatial scales suitable to a regional circulation model.

In a previous work, we showed that the acoustic monitoring of the central position of a seasonal thermal front was feasible by coupling a basic feature model and appropriate inversion techniques involving full-field acoustic propagation modeling [Carri'ere & Hermand, 2009]. In this work, we apply this technique on a different feature model which describes the coastal upwelling that occurs on the southeastern coast of Brazil and in particular the Cabo Frio area. Recent work has already applied such features model for regional modeling and simulation purposes [Calado et al., 2008].

During the summer, when coastal upwelling is more common and robust due to favorable forcing conditions in this area, the surface temperature difference between the stratified waters off shore and upwelled waters near the coast is most of the time greater than 8 degrees centigrade. As coastal upwelling occurs, the waters follow the shelf break and the isotherms bend upwards in the vicinity of the continental slope. In most situations the resulting sharp variations of the sound-speed field, associated with a varying bathymetry, create a strong coupling between the acoustic propagation modes that cannot be neglected.

In the first part of the work, we study the characteristics of the acoustic propagation in vertical slices of the Cabo Frio environment in the range from 200 Hz to 800 Hz, and compare complex-valued acoustic fields synthesized through different simulated upwelling situations, taking into account the range-dependent bathymetry and seabottom acoustic properties. The geoacoustic model is derived from a set of multibeam, seismic and sediment core data obtained in the framework of an Ocean Acoustic Exploration IRSES project [Carvalho et al., 2009].

Based on the forward modeling results, the second part of this paper applies a Kalmanbased data assimilation scheme enabling the tracking of the principal parameters of the sound-speed field in the vertical slice, using the upwelling feature model to parameterize the environment. The proposed scheme considers the regular measurements of multifrequency, fullfield acoustic data on a vertical array of receivers that are assimilated in the basic feature model to continuously correct the prediction of the time-evolving physical parameters of the Cabo Frio upwelling. To cope with the nonlinearity between the environmental parameters and the resulting acoustic measurements, advanced nonlinear extensions of Kalman filters are required. More specifically, it is shown that the ensemble Kalman filter (EnKF) outperform the common extended Kalman filter (EKF).

GEOACOUSTIC INVERSION AND SOURCE PASSIVE LOCALIZATION IN SHALLOW WATER

Lussac Prestes Maia

Universidade Federal do Rio de Janeiro(UFRJ) Instituto Alberto Luiz Coimbra de Pós-graduação e Pesquisa de Engenharia (COPPE) Centro de Tecnologia, Bloco I, Ilha do Fundão, RJ, Brazil

The geoacoustic characterization of the seabed is a complex task, often solved by inversion techniques. In the same way, it can be solved passive source localization problems. The inversion of acoustic pressure data generally uses the well known Matched Field Processing (MFP) method, which is a frequency domain approach and it is generally used with the sparse sampling in frequency of a multitone signal and a dense array of hydrophones. Alternatively, it is possible to use the time domain processing Model Based Matched Filter (MBMF), which exploits the time dispersion characteristics of a broadband coded signal in a shallow water channel using the corresponding impulse response. This work presents theoretical ground and two experiments using respectively MFP Bartlett multifrequencies and MBMF in a frequency domain version, both applied to pressure data registered on a sparse hydrophone array, from a source emitting broadband signals during the Maritime Rapid Environment Assessment (MREA/BP'07) experiments in south of Elba island, off the coast of Italy [Hermand & Le Gac, 2007]. Signals multitone and linearly frequency modulated (LFM) over the frequency range 300-1600Hz were emitted by the source, whose distance from the vertical array receiver decreased slowly in a range independent environment. The cost functions were used to estimate the best field through MFP and analogous MBMF inversion technique. The processing applied to a sequence of emissions in intervals of one minute produces stable results which are in agreement with the earlier experiment Yellow Shark, showing the feasibility of the methods.

IEAPM Highlights

Marcus Simões

Marinha do Brasil - Instituto de Estudos do Mar Almirante Paulo Moreira Rua Kioto 253 - Arraial do Cabo - RJ 28930-000 Brazil

Since OAEX starting date on February 1st 2009, IEAPM is deeply committed into collaborated and contributed with the best in personnel and material resources to fulfill OAEX goals, milestones and deliverable. The results of the work done to deliver to all partners the best conditions and equipment to realize a data collecting experiment focused on a sea cruise near Cabo Frio Island on Arraial do Cabo in Rio de Janeiro are presented. During this year IEAPM improve its research vessel fleet acquiring by opportunity the RV Finder which was renamed to "Aspirante Moura" receiving Brazilian Navy visual indicative U-14. Furthermore, sets of new oceanographic, hydrographic, geologic and acoustic equipments are being acquired to improve our participation and commitment in OAEX goals. This presentation outline IEAPM responsibilities on OAEX, shows U-14 pictures and list the equipments, on board conditions and resources to the scientific personnel and crew.

Presentations

ANALYSIS OF GEOACOUSTICS PARAMETERS	
(P-WAVE VELOCITY, POROSITY AND GRAIN SIZE) OF MARINE SEDIMENTS	17
IMPULSE RESPONSE INTERPRETATION OF	
A VERY SHALLOW WATER ACOUSTIC CHANNEL	22
AN ACOUCHIC INVERSION EVERCICE WITH CACA	
ISING TEMPERATURE (T) AND SALINITY (S) DATA	
COLLECTED NEAR THE CABO FRIO COAST	26
FEATURE MODELS USED IN ACOUSTICAL OCEANOGRAPHY	36
SONAR PERFORMANCE PREDICTION IN CABO FRIO	44
CLASSIFICATION OF 3D OCEAN FEATURES	
BY 2D ACOUSTIC OBSERVATION	51
FEATURE-ORIENTED ACOUSTIC SAMPLING	
UPWELLING AT CABO FRIO (BRASIL)	59
GEOACOUSTIC INVERSION AND SOURCE PASSIVE	
I OCALIZATION IN SHALLOW WATED	67
LOCALIZATION IN SHALLOW WATER	07
IEAPM HIGHLIGHTS	76

ANALYSIS OF GEOACOUSTICS PARAMETERS (P-WAVE VELOCITY, POROSITY AND GRAIN SIZE) OF MARINE SEDIMENTS

> CF(T) Lucia Artusi CF Helber Carvalho Macedo CC(T) Isabel C. V. Peres Simões Prof. Jean-Pierre Hermand

> > Brussels, Belgium November - 2009

SUMMARY

EXPERIMENT AREA – OAEX PROJECT - PLANNING

GENERAL PURPOSE OF SECONDMENT

SPECIFIC PURPOSE

ACTIVITIES

FINAL REMARKS

Brussels, Belgium / November - 2009

Ocean Acoustic Exploration

2

GENERAL PURPOSE

To develop a detailed environmental model of the test area near to Cabo Frio island, based on archived data

SPECIFIC PURPOSE

Analyze the bathymetric data, seismic and geological cores

Ocean Acoustic Exploration

Brussels, Belgium / November - 2009

Ocean Acoustic Exploration

Bathymetric data set NHo Taurus 2005 e 2008

EM 1000 (2005) EM 1002 (2008)

Brussels, Belgium / November - 2009

4

Brussels, Belgium / November - 20

5

6

Seismics data

Ocean Surveyor October, 2009

Geopulse/GeoAcoustics

Ocean Acoustic Exploration

- magnetic susceptibility
- acoustic impedance
- porosity
- density

Brussels Belgium / Novembe

laium / November - 2009 riise

a

1.61

Subject of papers	Quantity of papers
Acoustics in Water	14
Bioacoustics	12
Geoacoustic Inversion	36
Experiments (in situ and at laboratory)	62
Source localization	12
Morphology and backscattering	34
Signal Processing	20
Environmental Noise	13
Seismic	19
Publications identified but not accessed	49
TOTAL	269

Brussels, Belgium / November - 2009

Ocean Acoustic Exploration

Ocean Acoustic Exploration

- 1. Standard values of P-velocity, magnetic susceptibility, acoustic impedance, porosity and density to each sub-bottom layer;
- 2. Influence of time and direction of measures while logging the core (gas bubbles, decomposition of organic matter and compaction)
- 3. Reflexion coefficients of the surperficial layer of sea bottom
- 4. Thickness and geometry of the sub-bottom layers where the acoustics experiments will be held
- 5. Support the environmental model of Cabo Frio area

14

1st OAEx workshop IEAPM – Arraial do Cabo March 2010

Impulse response interpretation of a very shallow water acoustic channel

H. Chaves, L. Artusi, R. Nonato, H. Carvalho, I. Peres (IEAPM) P. Felisberto, P. Santos (ISR/CINTAL/UALG)

Summary

- Experiment overview
- Channel impulse response
- Acoustic propagation modelling
- Data interpretation
- Conclusions and future work

Ilha dos Porcos Experiment

- 21th July 2009
- Very shallow water area
 - water depth: 28m
- XBT stations
- Emitting system:
 - active sonar source suspended @ 10m
 - band 3000-4000Hz
 - LFM and Multitones
- Receiving system:
 - 2 hydrophones suspended @ 10m, 20 m
- Stations 8 ranges from 80m~1100m

23

Ilha dos Porcos Experimental Setup

Stations location

Signals

- emitted
- series of 10 LFM-CHIRP between 3-4 kHz with 50 ms, silence 50ms
- Tone pulses (3, 3.25, 3.4, 3.5, 3.6, 3.75, 4 kHz) during 4 sec, silence 5 sec.
- 5 minute

Impulse response

• estimated by crosscorrelation between emitted lfm and received signals (hydrophone @ 10m)

Measured vs modeled IR(1)

Impulse response modeling

- <u>Ray trace acoustic model</u> (Bellhop)
- Simulation parameters
 - Water Column
 - Source frequency= 3500 Hz
 - Depth= 28 meters
 - Sound Speed= 1520m/s (isovelocity, measured with XBT)
 - Water density= 1024 kg/m3

- Sediment Parameters

- Type: Medium Sand
- Velocity: 1750 m/s (isovelocity)
- Density= 1800 kg/m3
- Attenuation= 0,6 dB/m/kHz

Measured vs Modeled IR (2)

 new sediment parameter :Velocity: 1600 m/s (isovelocity), density= 1400 kg/m3, attenuation= 0,4 dB/m/kHz

conclusions and future work

- Acquired knowledge in planning and conducting an acoustic sea trial
- Available equipments were tested
- Basic signal processing procedures were practiced
- Acoustic modeling using ray tracing (Bellhop) were practiced
- General characterization of the bottom by trial and error
- Apply acoustic inversion methods to estimate environmental parameters (make a fine tune of the bottom characteristics)

DAEx (Ocean Acoustic Exploration) – Portugal: 28th Sept to 23rd Oct 2009 – An coustic inversion exercise with SAGA

OAEx Joint Research Programme

"OAEx: Ocean Acoustic Exploration"

I Workshop

"An acoustic inversion exercise with SAGA, using temperature (T) and salinity (S) data collected near the Cabo Frio coast."

Lt Cdr Fernando de Oliveira Marin Ocean Projects Division

IEAPM, 24th March 2010.

CC MARIN

OAEx - Portugal: 28th Sept to 23rd Oct 2009 - An acoustic inversion exercise with SAGA

OAEx Joint Research Programme

Secondment Place:

SiPLAB (*Signal Processing Laboratory*) Faculdade de Ciências e Tecnologia (FCT) Universidade do Algarve - Campus de Gambelas Faro - Portugal

Period:

28th September to 23rd October 2009

"An acoustic inversion exercise with SAGA, using temperature (T) and salinity (S) data collected near the Cabo Frio coast."

\sim	
55	MARIN

OAEx - Portugal: 28th Sept to 23rd Oct 2009 - An acoustic inversion exercise with SAGA

OAEx (Ocean Acoustic Exploration) - Portugal: 28th Sept to 23rd Oct 2009 - An coustic inversion exercise with SAGA

Summary

- 1 Introduction
 - Purposes
- 2 Dataset
- 3 Theory
 - Literature Review
 - Underwater Acoustics: Main Applications
 - Speed of Sound in Sea-Water
 - Forward and Inverse Problems
 - Acoustic Inversion
 - EOF
 - SAGA and some concepts
- 4 Methodology
 - Data Analysis
 - Considerations

5 Results

6 Conclusions

CC MARIN

2

OAEx - Portugal: 28th Sept to 23rd Oct 2009 - An acoustic inversion exercise with SAGA

Methodology Results Conclusi

Purposes

Introduction

•

OAEx Purpose

Develope synergies and reinforce collaboration between the EU (Portugal and Belgium), Brazil and Canada in the field of ocean acoustic monitoring and marine technologies.

Portugal Secondment Purpose

- **General Purpose**: Carry out an interdisciplinary study, seeking to understand the main acoustic inversion methods and deriving an acoustic inversion exercise.
- **Specific Purpose**: Carry out an acoustic inversion exercise with SAGA, using temperature (T) and salinity (S) data collected near the Cabo Frio coast.

Introduction Dataset Theory Methodology Results Conclusions o oooooooooooooo	Introduction Dataset Theory Methodology Results Conclusions o oooooooooooooooooooooooo
1 Introduction	Dataset
 Purposes 	
2 Dataset	- Detahasa SISDRES Detahasa
3 Theory	• Database. SISPRES Database,
Literature Review	 <u>Data</u>: Temperature (T) and Salinity (S);
 Orderwater Acoustics: Main Applications Speed of Sound in Sea-Water 	
 Forward and Inverse Problems 	 Data of several years arranged in monthly files, from lanuary to December, that was acquired by
Acoustic Inversion	Sundary to December, that was acquired by
 EOF SAGA and some concents 	 CTD (Conductivity, Temperature and Depth); XBT (Expendable Bathythermograph);
Methodology	• MBT (Mechanical Bathythermograph); e
Data Analysis	Nansen Bottles.
Considerations	• The month of December was selected for analysis for the
5 Results	greatest amount of data that highlight the upwelling.
6 Conclusions	
No Reference in the construction of the constr	CC MARIN OAEx - Portugal: 28th Sept to 23rd Oct 2009 - An acoustic inversion exercise with SAGA 7
Introduction Dataset Theory Methodology Results Conclusions	Introduction Dataset Theory Methodology Results Conclusions
Dataset - December data were selected for analysis	
	• Purposes
52 52 52 52 52 52 52 52 52 52 52 52 52 5	2 Dataset
	3 Theory
	• Literature Review
	 Underwater Acoustics: Main Applications Speed of Sound in Sep-Water
	• Forward and Inverse Problems
	Acoustic Inversion
-100 - 00 - 90-	• EOF
8 100-	• SAGA and some concepts
• 110	 Methodology Data Analysis
12° 12° 6° 42° W 54° 48° 42°	 Considerations
In the Figure, the white circles are the positions of the December data . The	5 Results
background is the interpolation of temperature data. The yellow square represents the receiver (R), and the red circles, the positions to be occupied by the source (S).	6 Conclusions
Toostor (ity, and the rea enclos, the positions to be occupied by the source (5).	

Literature Review - Forward Models

• A forward model is an important tool in predicting the sound pressure at a given point in space, being an essential element in many acoustic inversion methods [Soares & Jesus, 2005].

- Acoustic inversion can be loosely defined as an optimization problem, in which we seek the environmental picture corresponding to the acoustic field modeled observables that best match a given observation carried out by one or more hydrophones [*Caiti et al.*, 2006].
- The inversion software package SAGA (Seismo Acoustic inversion using Genetic Algorithms) has been developed for assisting in estimating environmental parameters [Gerstoft, 2007].

OAEx - Portugal: 28th Sept to 23rd Oct 2009 - An acoustic inversion exercise with SAGA

Methodology

Theory - Speed of Sound in Sea-Water

Dataset

A simplified formula [Medwin, 1975], but good only to 1 km depth:

Theory Methodol

$$c = 1449, 2+4, 6T - 0,055T^{2} + 0,00029T^{3} + (1,34 - 0,01T)(S - 35) + 0,016z$$

where

- **c** : sound speed $(m \ s^{-1})$;
- **T** : temperature ($^{\circ}C$);
- **S** : salinity (PSS-78); e
- **z** : depth (*m*).

Introduction - Underwater Acoustics - Main Applications

Underwater Acoustics - Civilian and military applications

infer

I neory

10

Results

- Bathymetric Sounders (measurement of water depth);
- Fishery Sounders (detection and localisation of fish shoals);
- Sidescan sonars (acoustic imaging of the seabed):
- Sediment Profiles (stratified internal structure of the seabed);
- Active and Passive Sonars (Detect targets, Acquire the target-radiated noise);
- Acoustic Communication Systems;
- Acoustic Tomography (Changes in the acoustic field can be related to changes in temperature).

CC MARIN	OAEx – Portugal: 28th Sept to 23rd Oct 2009 – An acoustic inversion exercise with SAGA			11	
Introduction O	Dataset	Theory ○○○● ○ ○○○○○○	Methodology 000000	Results	Conclusions
	- L.C.	N 1 1			

Forward Problem		
transmitted signal \Rightarrow	Model, Geometry of propagation, bottom, sound speed	\Rightarrow received signal

A known parameter set \mathbf{m} of a channel propagation will produce a set of data d:

 $F(\mathbf{m}) = \mathbf{d}$

0		000000000000	000000		
Introduction	Dataset	Theory	Methodology	Results	Conclusions

I heory - Inversion

Given a measured d data may be found

Theory Methodol

Methodology

Results

Conclusion

ntroduction

- Empiric Orthogonal Functions (EOF): a powerful tool for analyzing a large amount of data and also provide a quick interpretation;
- EOF are the eigenvectors of the correlation matrix of the observations;
- With origin in **Oceanography**, EOF are being used intensively in underwater acoustics;
- An advantage is the computational cost.

• The acoustic inversion considered the EOF-based model in Eq. 1 below for the sound speed. The goal is then to estimate the coefficients α_n :

$$c(z) = \bar{c}(z) + \sum_{n=1}^{n} \alpha_n EOF_n(z)$$
 (1)

• The advantage of using EOF is due to the fact that only a few EOF (2 or 3 in most cases) are enough to represent a profile with an acceptable error;

We can divide the inversion process into five parts:

- (I) Discretization of the environment and discretization or transformation of the data;
- (II) Efficient and accurate forward modeling;
- (III) A suitable objective function;
- (IV) Efficient optimization procedures;
- (V) Uncertainty analysis.

ENVIRONMENTAL

Search parameters

Parameter bounds

ALGORITHMS (GA)

Discretize parameters

· Select "populations" of

Use GA to generate new

match to observed data

populations with better

parameters

INFORMATION

GENETIC

0	0000000000 000000	
1	Introduction Purposes 	Methodology - <i>T</i> e <i>S</i> Data Analysis
2	Dataset	
3	 Theory Literature Review Underwater Acoustics: Main Applications Speed of Sound in Sea-Water Forward and Inverse Problems Acoustic Inversion EOF SAGA and some concepts Methodology Data Analysis 	 Vertical Sections of <i>T</i>, <i>S</i> and svel; Horyzontal Distribution of <i>T</i> and <i>S</i>; Choose the month where there was the largest number of data collected at the Cabo Frio coast, seeking the upwelling; Choose the location for the receiver (array of 3 hydrophones) and the positions to be assumed by the source; Calculation of the EOF, to use in the inversion process.
	 Considerations 	
5	Results Conclusions	
	OAEx – Portugal: 28th Sept to 23rd Oct 2009 – An acoustic inversion exercise with SAGA 22	CC MARIN OAEx – Portugal: 28th Sept to 23rd Oct 2009 – An acoustic inversion exercise with SAGA 23
Introduction O	n Dataset Theory Methodology Results Conclusions 00000000000 0 ●0000	Introduction Dataset Theory Methodology Results Conclusions o oooooooooooooooooooooooooooooooooooo
Meth	odology - Considerations	Methodology - Considerations

- Month: **December**;
- Number of hydrophones considered: **03**;
- \bullet Depth considered for the source: $10\ m.$
- Vertical spacing between the hydrophones: 10 m.

Table: Positions selected for S and R, to use in SAGA simulations. Datum WGS-84.

Equipment	R	S (Pos1)	S (Pos2)	S (Pos3)
Distance from R (km)	0	1	5	10
Latitude (S)	23° 00.6'	23 ° 00.6'	23 ° 00.6'	23 ° 00.6'
Longitude (W)	042° 01.2'	042° 01.8'	042° 04.1'	042° 07.0'

SISPRES Data - Vertical Section of Sound Velocity [m s⁻¹] - DECEMBER 1520 -10 1515 5 -20 Depth [m] -30 1510 -4 1505 -50 1500 -60 -10 9 8 7 6 5 4 3 2 Distance from Receiver (hydrophone array) [km] 1 0

Ü

Vertical section of sound speed for December. The **three yellow squares** represent the receiver, and the **white circles**, the positions to be occupied by the source.

SISPRES Data – Horizontal Distribution of T [° C] – prof 10 m – DECEMBER

Map of T [° C] as background, obtained by interpolation. In the Figure, the white circles are the positions of the December data. The yellow square represents the receiver (R), and the red circles, the positions to be occupied by the source (S).

Methodology

00000

Results

Methodology - Considerations

Second Step:

- Due to the small distance between the source and the receiver, we assume horizontal isotropy;
- Thus, we consider the SNAP module of SAGA to solve the inverse acoustic and used as input parameters the synthetic acoustic data generated with SNAPRD.

Dataset

First Step:

• From the T and S data, we obtained the sound velocity field;

Methodology

000000

- Next, we extract the profiles of the field in the positions of source and receiver;
- Subsequently, we use these profiles as input parameters in the module of SAGA SNAPRD to obtain synthetic acoustic data (sound pressure: the frequency domain);
- The SAPRD was used considering the strong horizontal anisotropy of the local. In this case, we solve a forward problem.

Ć

- 4 Methodology
 - Data Analysis
 - Considerations

26

Conclusions

Results

Results

Results ntroduction Dataset Methodology Conclusion Results - EOF coeficients

Result of the 1 km-inversion for the first three EOF coefficients. The red line indicates the inversion starting values (zeros - sound speed profile coincident with the average profile for the area). Looking at these curves, we can see that the coefficients α_3 and α_1 are the **best** and **worst** well-determined, respectively, according to the spread of the corresponding probability densities.

Theory Methodol

OAEx - Portugal: 28th Sept to 23rd Oct 2009 - An acoustic inversion exercise with SAGA

Results

Methodology

Results - Sound Speed Profiles

Sound speed profiles used in the generation of the acoustic data (blue and green, for source and receiver positions, respectively), and the inversion outcome (red).

30

Table: EOF coefficients in the R and S positions, against the inversion result.

Methodology

Theorv

Results

Conclusions

Coefficient	Pos R	Pos S	Result
α_1	-126,92	-121,11	-96,97
α_2	-79,74	-65,46	-91,21
α_3	-6,23	20,53	2,53

The Tab. 1 shows the first three EOF coefficients in the receiver (R) and source (S) positions, against the result of the 1km-inversion. The verified difference between the values is attributed to the environmental mismatch and to the fact that the EOF coefficients can compensate mutually to generate a given sound speed profile and corresponding acoustic field, according to Eq. 1.

CC MARIN	OAEx - Portugal: 28th Sept to 23rd Oct 2009 - An acoustic inversion exercise with SAGA				31
Introduction O	Dataset	Theory 000000000000	Methodology 000000	Results	Conclusions
 Intr F 	oduction Purposes				
2 Dat	aset				
 3 The 4 4 5 6 7 7 8 8 8 9 10 10	eory iterature Rev Inderwater Ac peed of Soun forward and Ir coustic Invers OF GAGA and son	iew coustics: Main A Id in Sea-Water nverse Problems sion ne concepts	Applications		
 4 Met • D 	thodology Data Analysis				

- Considerations

Introduction

6 Conclusions

Conclusions

Dataset

- Looking at the sound speed profiles, the divergence observed in the deeper layer is attributed to the fact that we consider in the process of inversion, isotropy in thermal and bathymetric horizontal, not considered in the generation of acoustic field. And to the fact that the sound speed profiles are downward refracting, implying that the most insonified layers are not accurately observed by the superficial acoustic system;
- The acoustic inversion technique allowed to estimate coastal oceanographic properties of Cabo Frio, with a fair accuracy in the upper layers, by using a shallow acoustic source. For this reason, we can think of the use of acoustic inversion techniques as a tool to complement in situ and satellite data, for future rapid environmental assessments of this area.

Acknowledgments

My thanks to

- Prof. Sérgio Jesus (CINTAL), for the cordiality, infrastructure and facilities;
- PhD student Nélson Martins (CINTAL), for the great dedication to teaching and guiding the work, and for the nobility and friendly treatment;
- MSc Pablo Jabor and Lt Cdr Hugo Chaves, for providing the data;
- Cdr Ana Cláudia, for the great help and constructive criticism; and
- All members of SiPLAB (CINTAL), for the pleasant reception.

C MARIN	OAEx – Por	tugal: 28th Sept to 23rd Oct 20	09 – An acoustic inversion	exercise with SAGA	34	CC MARIN	OAEx - Port	tugal: 28th Sept to 23rd Oct 20	09 – An acoustic inversio	n exercise with SAGA	35
troduction	Dataset	Theory 000000000000	Methodology 000000	Results	Conclusions	Introduction O	Dataset	Theory 000000000000	Methodology 000000	Results	Conclusions
⊧≈≈≈≈	≈≈≈≈≈	≈≈≈≈≈≈≈	≈≈≈≈≈≈	≈≈≈≈≈≈	≈≈≈≈	≈≈≈≈≈	≈≈≈≈≈	≈≈≈≈≈≈	≈≈≈≈≈	≈≈≈≈≈≈	∞≈≈≈≈

FERNANDO DE OLIVEIRA **MARIN** Lieutenant-Commander Ocean Projects Divison Marine Projects Group Ocean Engineering Department

Contact:

e-mail:marin@ieapm.mar.mil.br tel: 55-22-2622-9026

Marinha do Brasil Instituto de Estudos do Mar Almirante Paulo Moreira

Feature Oriented Models used in Acoustical Oceanography

Leandro Calado CF(T) Ana Cláudia de Paula Departamento de Engenharia Oceânica - BR

> Jean-Pierre Hermand Olivier Carrière Universidade Livre de Bruxelas - BE

> > Nélson Martins Orlando Rodriguez Universidade do Algarve - PT

Sumário

The methodology to construct the thermohaline fields using Feature Models

Modelos de Feições para o Sistema Corrente do Brasil (CB)

Conditioning the location of sound sources induced by a coastal upwelling regime

Conditioning the location of sound sources induced by an oceanic eddy

Análise Objetiva de Multiplas Escalas (AOME)

Multi-scale Objective Analysis (MEOA)

Previsão de curto Período

Short-range forecasting

ressurgência

oceânico

Feature Models for the Brazil Current (BC) System

Summary

A metodologia de construção de campos termohalinos usando Modelos de Feições

Condicionamento da localização acústica de fontes induzido por um regime costeiro de

Condicionamento da localização acústica de fontes induzido por um regime vórtice

Tomografia acústica usando Modelo de Feição para a ressurgência costeira Acoustic tomography using Feature Model for a coastal upwelling

Introdução

Previsão de ambientes hidrodinâmicos e acústicos requerem a melhor especificação possível das condições iniciais.

Para prover esta sinopcidade, a técnica de Modelos de Feições (MF) tem sido usada para simulações e sistemas operacionais de previsão há duas décadas, em diversas partes do mundo.

Synoptic oceanic and acoustical prediction requires the best, as possible, specification of initial conditions.

To provide this synopticity, knowledge-based feature models (FMs) have been used by regional simulations and operational forecasting for the past two decades, in many parts of the word.

Modelos Regionais Orientados por feições (MROFs)

Feature Oriented Regional Model System (FORMS)

O Modelo Regional Orientado por Feições é uma técnica que alia o conhecimento prévio de feições oceanográficas, com o desenvolvimento de modelos paramétricos (Modelos de Feições) e modelagem numérica.

The Feature Oriented Regional Model is a technique that uses previous knowledge of oceanographic features, the development of parametric models (Features Models) and numerical models.

MROF em outros oceanos FORMS in other sites

Local	Aplicação
Site	Application
Borda oeste do Atlântico Norte	Modelagem Operacional
North Atlantic Western Boundary	Operational Modelling
Estreito da Sicília	Análise Dinâmica
Strait of Sicily	Dynamical Analysis
Baía de Monterey	Previsão em tempo real – verão de 2003
Monterey Bay	Real-time forecasting - summer 2003
Corrente do Brasil	Interação Meandro-Corrente-
Brazil Current	Ressurgência
Golfo Pérsico, Mar da Arábia e	Meander-Current-Upwelling Interaction
Mar Vermelho	Simulação das Monções
Persian Gulf, Arabian Sea, Red Sea	Monsoon Simulations
Águas Chilenas – Corrente Norte de Humboldt Chilean Waters - Northern Humboldt	Modelagem biofísica acoplada Nested Biophysical Modeling

Simulação Hidrodinâmica de Previsão

Forecasting hydrodynamic simulation

Previsão Acústica

Acoustic forecasting

Previsão

Química/Biológica

Campo Inicial de

Densidade

nitial density field

Simulação Acústica

Acoustic simulation

Simulação Química/Biológica

Chemical/biological simulatiion

Calado et. al 2008

$$C(x_j, y_j, t_j, x_i, y_i, t_i) = (1 - a^2)e^{(b^2 + c^2)}$$

nde

- 2

$$a^{2} = \frac{R_{x}^{2}}{X_{zero}^{2}} + \frac{R_{y}^{2}}{Y_{zero}^{2}};$$

$$b^{2} = -0.5\left(\frac{R_{x}^{2}}{X_{decay}^{2}} + \frac{R_{y}^{2}}{Y_{decay}^{2}}\right); \qquad \begin{array}{l} R_{x} = x_{p}\cos(\phi) + y_{p}sen(\phi) + \delta tu_{phase} \\ R_{y} = y_{p}\cos(\phi) + x_{p}sen(\phi) + \delta tv_{phase} \\ R_{y} = lc_{rot} - grid_{rot} \\ \delta t = t_{j} - t_{i} \\ x_{p} = x_{j} - x_{i}; \quad y_{p} = y_{j} - y_{i} \end{array}$$

Carter and Robinson, 1987

Calado et al 2008

Criando um campo inicial termohalino para simulação numérica

Creating an initial thermohaline field for numerical simulation

Calado et. al 2008

Calado et al 200

The second secon

Figura 1: Contornos da perda de propagação em um meandro, freqüência de 400Hz e fonte a 50m da superfície. No painel superior encontra-se o resultado da climatologia, seguido do obtido pelo modelo de feição e do oriundo de dados observados. (Small et al., 1997).

Figure 1: Contours of propagation loss on a meandering, 400 Hz and 50 m from the source surface. In the top panel is the result of the climatology, followed by the obtained by the Feature Model and come from the observed data. (Small et al., 1997).

Cenários simulados via MF para um regime de um perfil médio e de ressurgência costeira Scenarios simulated via a FM scheme for a medium profile and coastal

upwelling

Condicionamento da localização acústica de 🍣 fontes induzido por um regime costeiro de

ressurgência Conditioning location of sound sources induced by a coastal upwelling regime

O regime de propagação foi estudado inicialmente com o traçamento de raios de águas rasas para águas profundas e no sentido oposto, tanto para o perfil médio da velocidade do som, como para o campo da ressurgência.

The propagation scheme was originally studied with the ray path from shallow to deep waters and into the opposite direction, for the mean profile of sound speed as well as for the upwelling field.

Cenários simulados via MF para um regime de um perfil médio e de ressurgência costeira Scenarios simulated via a FM scheme for a medium profile and coastal

upwelling

Secão com perfil médio

Section with mean field

Secão com ressurgência utilizando MF Section with upwelling using FM

upwolli

Aquas rasas para águas profundas From shallow to dee water

Águas profundas para água rasas From deep to shallow water

Perdas de transmissão na propagação do sinal de águas rasas para águas profundas Signal propagation Transmission Losses from shallow water to

deep water

Cenários simulados via MF para um vórtice da CB Scenarios simulated via a FM scheme for a BC eddy

Scenario with an ocean eddy via FM

Tomografia acústica via Modelo de Feição

para a ressurgência de Cabo Frio

Feature-oriented acoustic tomography: Upwelling at Cabo Frio

Tomografia acústica via Modelo de Feição para a ressurgência de Cabo Frio Feature-oriented acoustic tomography: Upwelling at Cabo Frio

Tomografia acústica via Modelo de Feição para a ressurgência de Cabo Frio Feature-oriented acoustic tomography: Upwelling at Cabo Frio

<figure><figure>

Considerações finais Final Remarks

O esquema proposto apresenta a técnica dos MFs, aliada à modelagem numérica de previsão oceânica, como ferramenta que possibilita prever o ambiente acústico.

The proposed scheme presents the FM technique, added to numerical modeling for ocean forecasting, as a tool that allows predicting the acoustic environment.

Considerações finais Final Remarks

Modelos de Feições são ferramentas adequadas para previsões ambientais de usos múltiplos.

Essas ferramentas sugerem, com a incorporação de detecção de feições oceanográficas por sensores orbitais, que tal caracterização pode ser realizada em tempo real.

Feature Models are appropriate tools for environmental forecasting of multiple uses.

These tools suggest, with the incorporation of detecting oceanographic features by orbital sensors, such characterization can be performed in real time.

Sonar performance prediction in Cabo Frio

Nélson Martins¹, Leandro Calado², Sérgio Jesus¹ and Marcus Simões²

GNAL PROCESSING LABORATO

3

SQA

・ ロ ・ ・ 『 ・ ・ 『 ・ ・ ロ ・

¹Institute for Systems and Robotics Centro de Investigação Tecnológica do Algarve, Portugal

²Brazilian Navy Instituto de Estudos do Mar Almirante Paulo Moreira, Brazil

1st OAEx Workshop, March 2010

Problem: to determine the performance of an existing sonar, under different oceanographic conditions

$$o_D = ?$$

Underwater targets radiated noise

Sources of radiated noise on ships, submarines and torpedoes (Urick, *Principles of Underwater Sound*, 1983):

- Machinery noise
 - Propulsion machinery (diesel engines, main motors, reduction gears)
 - Auxiliay machinery (generators, pumps, air-conditioning equipment)
- Propeller noise
 - Cavitation at or near the propeller
 - Propeller-induced resonant hull excitation
- Hydrodynamic noise
 - Radiated flow noise
 - Resonant excitation of cavities, plates and appendages
 - Cavitation at struts and appendages

▲□▶▲圖▶▲≣▶▲≣▶ ≣ め�@

Ship source levels

45

[adapted from (Urick, Principles of Underwater Sound, 1983)]

(World War II measurements)

Submarines, torpedoes: even more restricted access

Detection threshold

1

Detection probability — Gaussian assumption

 $SNR = 10 \log \frac{S}{NL}$,

S: signal power in the receiver bandwidth; *N*: noise power in a 1-Hz band.

DT: ratio required for detection at some preassigned level of correctness of the detection decision

・ロト・日本・モート・ロークへの

Compare SNR to DT, for decision-making

		Dec	ISION
		Sig. present	Sig. absent
De	Sig. present	Correct detection $p(D)$	Miss $1 - p(D)$
facto	Sig. absent	False alarm $p(FA)$	Null decision $1 - p(FA)$
6	•		・ロ・ 4 母・ 4 母・ 4 日・ 4 日・

From source to receiver — propagation

Acoustic propagation modeling

Particular case: Cabo Frio

Signal loss by propagation

Oceanography of Brazil — Brazil Current system

Coastal and oceanic circulation features off southeast Brazil. Water masses: Tropical Water (TW), South Atlantic Central Water (SACW), Antarctic Intermediate Water (AAIW) and North Atlantic Deep Water (NADW). Eddies: Vitória (VE), Cabo de São Tomé (CSTE) and Cabo Frio (CFE)

[Reproduced from L. Calado, A. Gangopadhyay, I.C.A. da Silveira, Feature-oriented regional modeling and simulations for the western South Atlantic: Southeastern Brazil region, Ocean Modelling, Volume 25, Issues 1-2, 2008, Pages 48-64]

Simulated oceanography # 1: barotropic condition

(Princeton Ocean Model simulation)

Simulation scenario

Simulated oceanography # 2: cold-core vortex

Sound speed (m/s)

(Princeton Ocean Model simulation)

Acoustic target @ (280 km, 350 m) — barotropic

Acoustic target @ (280 km, 350 m) — vortex

(KRAKEN Normal Mode Model simulation)

・ロト・日本・日本・日本・日本・日本・ショーのへの

Acoustic target @ (280 km, 350 m) - vortex

Sonar equation

Signal excess: SE(FM, $r, z_r | z_s) = FM-TL(r, z_r | z_s)$

Detection probability (Gaussian fluctuating signals)

Environment fluctuations \Rightarrow random signal in random noise

$$p_D(SE) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{SE} \exp\left[\frac{-x^2}{2\sigma^2}\right] dx,$$

 σ : SE standard deviation (fluctuation indicator)¹

'Detection radius'

Which is the optimum depth for an horizontal array?

¹Ferla and Porter, *Receiver Depth Selection for Passive Sonar Systems*, JOE

Detection probability — unknown source depth Acoustic target @ (280 km, unknown depth)

FM = 80 dB

$$p_D^{\text{USD}}(\text{FM}, r, z_r) = \int_0^\infty p(z_s) p_D(\text{FM}, r, z_r | z_s) dz_s$$

 $p(z_s)$: probability density of target depth

 σ = 8 dB (from an archive of real-world detection exercises)²

$$R^{\text{USD}}(\text{FM}, z_r) = \int_0^\infty p_D^{\text{USD}}(\text{FM}, r, z_r) \, \mathrm{d}r$$

Simulation — numerical values

'Detection radius' - vortex

'Detection radius' — vortex

(Increases the detection probability)

Conclusion

- Brazilian current system imposes severe changes on propagation patterns
- Simulated cold-core vortex shown to increase 'detection radius'
- Sonar equation, if applied with climatologies, could fail
- ► Gain: incorporating acoustic-oceanographic prediction modules in Brazilian Navy computational tools

Classification of three-dimensional ocean features by two-dimensional acoustic sampling

N.E. Martins¹, F.O. Marin² and S.M. Jesus¹

Institute for Systems and Robotics University of Algarve, SiPLAB, Portugal

SIGNAL PRODESSING LABORATORY Instituto de Estudos do Mar Almirante Paulo Moreira, Brazil

Э

500

・ロ・・ 白・ ・ ヨ・ ・ ヨ・

1st OAEx Workshop, March 2010

Problem: to determine instantaneous three-dimensional water column properties

In particular: sound speed field (function of temperature and salinity)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Tomography: technical aspects

Acoustic field properties = function(water column properties)

Tomography: solves the equation w.r.t. the water column properties

Among many approaches, we find the detection-with-parameter estimation approach, *e.g.* Bartlett estimator:

$$\boldsymbol{P}(\boldsymbol{\theta}) = \frac{1}{K} \sum_{k=1}^{K} \mathbf{w}_{k}(\boldsymbol{\theta}, f_{k})^{\mathrm{H}} \, \hat{\mathbf{R}}(\boldsymbol{\theta}_{0}, f_{k}) \, \mathbf{w}_{k}(\boldsymbol{\theta}, f_{k}),$$

 θ : candidate water column properties f_k : frequency θ_0 : true water column properties \mathbf{w}_k : simulated acoustic distortion @ receiver points $\hat{\mathbf{R}}$: acoustic data correlation matrix estimate

Correlation structure \rightarrow acoustic (observable) match philosophy

Acoustic sensing -> acoustic tomography

- Relatively easy-to-deploy observation systems
- Fair to high accuracy in ocean geometric and water column properties estimation
- Complement to integral systems such as gliders, for intermediate-scale observation (tens of m–10 km)?

Ocean acoustic tomography demonstrations:

- Monterey Bay Experiment (Mercer, J. Acoust. Soc. Am., 1989)
- Gulf Stream Experiment—part of SYNOP (Chester, *The* Synoptician Newsletter, 1991)
- ► Heard Island Experiment (Baggeroer, *Physics Today*, 1992)
- ▶ INTIMATE '96 Experiment (Démoulin, SWAC'97, 1997)

Acoustic tomography: averages over the turbulent ocean

くしゃ 4 聞ゃ 4 聞ゃ 4 回ゃ

EOFs — concept

EOFs express joint variability.

For example, observations @ spatial points $P_1, P_2, ..., P_N$, along time, can be statistically characterized.

 $P_1, P_2, ..., P_N$ can lie on a straight line, a plane, the 3D space, etc.

Deaveraged data vector:

$$\mathbf{x} = \begin{bmatrix} x(P_1) \\ x(P_2) \\ \vdots \\ x(P_N) \end{bmatrix}$$
(1)

EOFs

___1 ___2

-0.1 0 Amplitude (m/s)

0.1

-0.2

(m) 100 Depth (m)

Correlation matrix: $E[\mathbf{x}\mathbf{x}^T]$

EOFs are the eigenvectors of the correlation matrix

53

Tomography example: 'bipolar' transect — RI approach

Sound speed representation:

$$c(z) = \overline{c}(z) + \sum_{k=1}^{2} \alpha_k E \hat{O} F_k(z),$$

 $\overline{c}(z)$: average profile; $E \hat{O} F_k(z)$: EOF estimates

EOFs:

- One-dimensional basis functions (orthonormal) for c(z)
- Eigenvectors of sound speed true correlation matrix

Why EOFs?

- Regularization of the acoustic inversion problem
 - Physically-meaningful solutions
 - Solution space search optimization
- I ow computational cost

Tomography example: 'bipolar' (2 sectors) transect -range-independent (RI) approach

Acoustic observation parameters:

- Transition @ 5 km
- Source @ 10 m
- 16 hydrophones, 4 m-spaced (AOB-type array), from 6 m, @ 10 km
- ► Frequencies: 500–1000 Hz, 50 Hz-spaced

true ones

Example: 'bipolar' transect — RD approach

In each m - th sector:

$$c_m(z) = \overline{c}(z) + \sum_{k=1}^{2} \alpha_{km} E \hat{O} F_k(z), \quad m = 1, 2$$

Example 2: 'tripolar' transect — RD approach

		Sec	tor 1	Sec	tor 2	Sec	tor 3			
		Coef. 1	Coef. 2	Coef. 1	Coef. 2	Coef. 1	Coef. 2			
	True	10	-20	30	-40	50	-60			
	Estimated	12.0	-22.8	29.5	-38.9	-66.0	42.9			
			Sound spee	ed estimation error [m/s]			•			
	Inversion	confidenc	e: 99.8% (y-incohere	nt Bartlett	fit)			
	Cood acquetic match a good detailed on vivonmental match									
	Good acous	sic match	⇒ yuuu u	etaneu en	wiionnen	aimaten				
うくで										

Limitations of one-dimensional EOFs

Three-dimensional (3D) EOFs

$$c(x, y, z) = \overline{c}(x, y, z) + \sum_{k=1}^{K} \alpha_k E \hat{O} F_k(x, y, z),$$

 $\overline{c}(x, y, z)$: average 3D sound speed field

 α_k : coefficients

 $E\hat{O}F_k(x, y, z)$: 3D k-th EOF estimate

Wrong solutions

- High computational cost: 2 parameters for each sector
- Non-representativeness of a single EOF set for all sectors

Oceanographic data

Oceanographic data

(2260 casts, no time information within month)

▲□▶▲□▶▲□▶▲□▶ = 三 のへで

Spatio-temporal Gauss-Markov interpolation

Correlation model parameters estimation — $\sigma_{\delta c}^2$

$$[R_{\delta c}]_{ij}(\Delta x, \Delta y, \Delta z, \Delta t) = \mathsf{E}[\delta c_i \ \delta c_j] = \sigma_{\delta c}^2 \left[1 - \left(\frac{\Delta t}{T}\right)^2\right] e^{-\frac{1}{2}\left[\left(\frac{\Delta x}{L_x}\right)^2 + \left(\frac{\Delta y}{L_y}\right)^2 + \left(\frac{\Delta z}{L_z}\right)^2 + \left(\frac{\Delta t}{T}\right)^2\right]},$$
$$\sigma_{\delta c}^2, L_x, L_y, L_z, T =?$$

$$\hat{\sigma}_{\delta c}^{2} = \frac{1}{K} \sum_{k=1}^{K} [\delta c(x_{k}, y_{k}, z_{k}, t_{k})]^{2}$$

= 52.3 m²/s².

Correlation model parameters estimation $-L_z$

Correlation model parameters estimation — L_z

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Least-squares fit to $\hat{R}(0, 0, \Delta z, 0)$, according to the model, given $\hat{\sigma}^2_{\delta c}$

56

Correlation model params. estimation — L_x , L_y and T

$$\hat{R}(\Delta x, \Delta y, 0, \Delta t)$$

$$= \frac{1}{K} \sum_{k=1}^{K} \delta c(x_k, y_k, z_k, t_k) \delta c(x_k - \Delta x, y_k - \Delta y, z_k, t_k - \Delta t)$$

Model:

$$R_{\delta c}(\Delta x, \Delta y, 0, \Delta t) = \sigma_{\delta c}^{2} \left[1 - \left(\frac{\Delta t}{T}\right)^{2} \right] e^{-\frac{1}{2} \left[\left(\frac{\Delta x}{L_{x}}\right)^{2} + \left(\frac{\Delta y}{L_{y}}\right)^{2} + \left(\frac{\Delta t}{T}\right)^{2} \right]},$$

Correlation model params. estimation — L_x , L_y and T

▲□▶▲□▶▲三▶▲三▶ 三三 のへで

EOFs — eigenvalues

3D EOF plots

57

◆□ ▶ ◆酉 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● ● ● ● ● ●

・ロト・日本・モン・モン・モーショーのへの

3D EOF plots

3D EOF plots

Acoustic system

500-900 Hz, 100-Hz spaced

Acoustic inversion results

Mode: 0.587 $^\circ\text{C}$

Acoustic inversion results

Conclusion & further steps

Unsufficient coverage of the area with the 2D acoustic system

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

- Good oceanographic data set?
 - No time information, etc...

Further steps:

- Increase the number of EOFs
- Increase the number of vertical acoustic sections (more acoustic arrays)
- ► After success, choose optimum positions for the acoustic system (genetic algorithm), and frequencies → tool for acoustic sea trial planning

Outline	Introduction	Feature Model	Acoustic tomography	Results	Conclusions

Feature-oriented acoustic tomography: Upwelling at Cabo Frio (Brazil)

O. Carrière⁽¹⁾, J.-P. Hermand⁽¹⁾, L. Calado⁽²⁾, A. C. de Paula⁽²⁾, and I. C. A. da Silveira⁽³⁾

(1) Environmental hydroacoustics lab., Université libre de Bruxelles (U.L.B.), Belgium
 (2) Marinha do Brasil - Instituto de Estudos do Mar Almirante Paulo Moreira, RJ Brazil
 (3) Instituto Oceanográfico da Universidade de São Paulo, São Paulo, SP Brazil

OAEx Workshop, Arraial do Cabo, RJ , Brazil March 2010

Part of this work was presented at the IEEE/OCEANS 2009 conference, Biloxi, USA

O. Carrière, J.-P. Hermand, L. Calado, A. C. de Paula, I. C. A. da Silveira

Feature-oriented acoustic tomography: Upwelling at Cabo Frio (Brazil)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶

500

Outline	Introduction	Feature Model	Acoustic tomography	Results	Conclusions	Outline	Introduction	Feature Model	Acoustic tomography	Results	Conclusions
Outlin	e					Outlin	ie				
1	ntroduction					1	ntroduction				
2 F	eature Model					2 F	Feature Model				
3 A	Acoustic tomogr	raphy				3	Acoustic tomog	raphy			
4 F	Results					4 F	Results				
5	Conclusions					5	Conclusions				

イロト (日) (日) (日) (日)							(今) (日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(
O. Carrière, JP	P. Hermand, L. Calado, A. C	. de Paula, I. C. A. da Silveira	Feature-oriented acoustic tomography: Upwelling at Cabo Frio (Brazil)			O. Carrière, JP. Hermand, L. Calado, A. C. de Paula, I. C. A. da Silveira			Feature-oriented acoustic tomography: Upwelling at Cabo Frio (Brazil)			
Outline	Introduction	Feature Model	Acoustic tomography	Results	Conclusions	Outline	Introduction	Feature Model	Acoustic tomography	Results	Conclusions	
	•0	000	0000000	0000			0	000	0000000	0000		
Upwell	ling Front i	n Cabo Frio				Upwel	ling Front i	n Cabo Frio				

The coastal upwelling in CF $(23^{\circ}S)$ occurs when the South Atlantic Central Water, carried by Brazil Current (BC), "climbs" the shelf break, and the isotherms (as well as isopycnals) bend upwards in the vicinity of the continental slope.

AVHRR image from 10/01/2001. The blueish-yellow colors are associated with the cooler and fresher Coastal Water on the shelf, and the reddish colors mark the presence of the warmer and saltier Tropical Water.

 $\Delta T_{\rm surf}$ between the Brazil Current front and upwelled waters near the coast is most of the time greater than 10°C during the summer

AVHRR image from 10/01/2001. The blueish-yellow colors are associated with the cooler and fresher Coastal Water on the shelf, and the reddish colors mark the presence of the warmer and saltier Tropical Water.

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ 三臣 - のへで

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

AVHRR image from 10/01/2001. The blueish-yellow colors are associated with the cooler and fresher Coastal Water on the shelf, and the reddish colors mark the presence of the warmer and saltier Tropical Water.

- Oceanic forecasts require the best possible specifications of density initial conditions. Therefore, precise knowledge or monitoring of the synopticity of coastal and oceanic systems are fundamental for the initialization of oceanic numerical forecasting model ;
- Acoustics is the only measurement tool able to monitor large regions over the whole water column depth in a synoptical way ;
- Acoustic tomography should provide estimates that are suitable for data assimilation purposes ;
- This work investigates the use of oceanic feature model as a range-dependent parameterization scheme for the inversion of multifrequency acoustic transmissions in a coastal environment.

-											= 540	
O. Carrière, JP. H	lermand, L. Calado, A. C. de	Paula, I. C. A. da Silveira	a Feature-oriented acoustic tomography: Upwelling at Cabo Frio (Brazil)			O. Carrière, JP. I	O. Carrière, JP. Hermand, L. Calado, A. C. de Paula, I. C. A. da Silveira			Feature-oriented acoustic tomography: Upwelling at Cabo Frio (Brazil)		
Outline	Introduction	Feature Model	Acoustic tomography	Results	Conclusions	Outline	Introduction	Feature Model ●○○	Acoustic tomography	Results	Conclusions	
Outline						Feature	e-oriented r	egional mod	elling			
 Intr Fea 	roduction ature Model								Langhin 20	24 2 4 40 60 80 100 Distance from the coast [lon]		

3 Acoustic tomography

Carrière, J.-P. Hermand, L. Calado, A. C. de Paula, I. C. A. da Silveira

The main forcing of coastal up-

welling in CF is the persistent winds

northeast, that typically blow for

several days.

- 4 Results
- **5** Conclusions

Figure: L. Calado et al., "Feature-oriented regional modeling and simulations (FORMS) for the western South Atlantic: Southeastern Brazil Region." *Ocean Modelling*, vol. 25, pp. 48–64, 2008.

Carrière, J.-P. Hermand, L. Calado, A. C. de Paula, I. C. A. da Silveira

Carrière, JP. Hermand, L. Calado, A. C. de Paula, I. C. A. da Silveira line Introduction Feature Model	Image: Conclusion construction construction Feature-oriented acoustic tomography: Upwelling at Cabo Frio (Brazil) Acoustic tomography Results Conclusions	O. Carrière, JP. Hermand, L. Calado, A. C. de Paula, I. C. A. da Silveira Outline Introduction Feature Model	Feature-oriented acoustic tomography Upwelling at Cabo Frio (Brazil) Acoustic tomography Results Conclusions
	(1) 2 2 3 4 표 2 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
	• χ : e-folding half-width of the front $(= L/2)$.		• χ : e-folding half-width of the front $(= L/2)$.
	• $\theta = \operatorname{atan}(h/x)$: slope of the front ;		• $\theta = \operatorname{atan}(h/x)$: slope of the front ;
is a meld function.	 T_i(z)/T_o(z): inshore/offshore temperature profile ; 		 T_i(z)/T_o(z): inshore/offshore temperature profile ;
$m(\eta, 2) = 0.3 \pm 0.3$ tann $\left[\frac{\chi}{\chi}\right]$	 <i>T</i>(η, z): upwelling frontal temperature distribution ; 		 <i>T</i>(η, z): upwelling frontal temperature distribution ;
$m(n, z) = 0.5 \pm 0.5 \tanh \left[\frac{\eta - \theta z}{\eta} \right]$	 z: positive vertically upward ; 		 z: positive vertically upward ;
where	 η: cross-frontal distance from the axis of the front ; 	where the parameter γ varies between 0 (no up- welling, i.e. horizontally stratified environment) and 1 (maximal upwelling).	 η: cross-frontal distance from the axis of the front ;
$T(n, z) = T_{0}(z) + [T_{i}(z) - T_{0}(z)]m(n, z),$	L	$m(\eta,z)=f(\gamma),$	L
An upwelling feature model is derived from the continental shelf-slope front feature model developed by Gangopadhyay, 2002.	$\eta = 2$ $\eta = 0$ $\eta = 2$	The meld function $m(\eta,z)$ is rewritten as	$\eta = 2$ $\eta = 0$ $\eta = 2$
The feature model approach enables the representation of the complex coastal feature in a low-dimensional scheme.			

- Define several radials across the environment ;
- Invert acoustic data to provide a picture of the upwelling feature on the different radials (vertical slices);
- Combine the radials with appropriate correlation length to reconstruct the 3D-picture of the sounded area ;
- Assimilate the results in a multi-scale analysis.

Define several radials across the environment :

- Invert acoustic data to provide a picture of the upwelling feature on the different radials (vertical slices);
- Combine the radials with appropriate correlation length to reconstruct the 3D-picture of the sounded area :
- Assimilate the results in a multi-scale analysis.

- Range-integrated SSP is not meaningful;
- Vertical slice tomography can resolve range-dependent features by constraining the inverse problem (*range-resolving* tomography); with a resolution suitable for DA in regional models ;
- For a specific oceanic feature, the integration of the *a priori* can be done with a feature model for the parameterization of the environment (feature-oriented acoustic inversion).

-												
O. Carrière, JP. Hermand, L. Calado, A. C. de Paula, I. C. A. da Silveira			Feature-oriented acoustic tomography: Upwelling at Cabo Frio (Brazil)			O. Carrière, J.	P. Hermand, L. Calado, A.	C. de Paula, I. C. A. da Silveira	Feature-oriented acoustic tomography: Upwelling at Cabo Frio (Brazil)			
Outline	Introduction	Feature Model	Acoustic tomography ○●○○○○○	Results	Conclusions	Outline	Introduction	Feature Model	Acoustic tomography ○○●○○○○	Results	Conclusions	
Featu	re model as	s a narameter	ization schem	าค		Chara	cteristics o	f acoustic pro	nagation			

- Range-integrated SSP is not meaningful;
- Vertical slice tomography can resolve range-dependent features by constraining the inverse problem (*range-resolving* tomography); with a resolution suitable for DA in regional models ;
- For a specific oceanic feature, the integration of the *a priori* can be done with a feature model for the parameterization of the environment (feature-oriented acoustic inversion).

O. Carrière, J.-P. Hermand, L. Calado, A. C. de Paula, I. C. A. da Silveira

Figure: Coherent transmission losses (in dB) in absence of upwelling (top) and with a strong upwelling (bottom) for three frequencies [220 Hz, 440 Hz, and 880 Hz]. The corresponding temperature fields of the vertical slice are shown on the left side

Feature-oriented acoustic tomography: Upwelling at Cabo Frio (Brazil)

4 AL 1 A B N 4 B N

= 000

Figure: Synthetic acoustic configuration for a vertical slice of the Cabo Frio coastal area. The temperature field (in $^{\circ}$ C) depicts a typical upwelling feature.

The dynamics of the environment (parameters) and the resulting acoustic measurements are embedded in a Gauss-Markov state-space model.

$$\begin{aligned} \mathbf{x}(t_k) &= \mathcal{A}[\mathbf{x}(t_{k-1})] + \mathbf{w}(t_k) \\ \mathbf{y}(t_k) &= \mathcal{C}[\mathbf{x}(t_k)] + \mathbf{v}(t_k) \end{aligned}$$

- x: state vector (FM parameter) ;
- y: acoustic measurements ;
- \mathcal{A} : dynamical model ;
- \mathcal{C} : measurement model ;
- w(t_k), v(t_k): zero-mean Gaussian random vectors of covariance R_{ww} and R_{vv}, respectively.

_	・ロット語・ 小田・ 山田・ 山口・		・ロ・・西・・川・・田・ 田・ ろんの		
O. Carrière, JP. Hermand, L. Calado, A. C. de Paula, I. C. A. da Silveira	Feature-oriented acoustic tomography: Upwelling at Cabo Frio (Brazil)	O. Carrière, JP. Hermand, L. Calado, A. C. de Paula, I. C. A. da Silveira	Feature-oriented acoustic tomography: Upwelling at Cabo Frio (Brazil)		
Outline Introduction Feature Model	Acoustic tomography Results Conclusions ○○○○○●○ ○○○○○	Outline Introduction Feature Model	Acoustic tomography Results Conclusions ○○○○○○● ○○○○○		
Bartlett representation		Kalman processor			

The N-frequency acoustic measurements are merged into a Bartlett processor, defined as

$$\phi(\gamma) = \frac{1}{N} \sum_{n=1}^{N} \frac{\mathbf{p}^{\dagger}(\gamma, \omega_n) R(\omega_n) \mathbf{p}(\gamma, \omega_n)}{||\mathbf{p}(\gamma, \omega_n)||^2 ||\mathbf{d}(\omega_n)||^2}$$
(1)

• γ : model vector ;

O. Carrière, J.-P. Hermand, L. Calado, A. C. de Paula, I. C. A. da Silveira

- p(γ, ω): predicted (replica) field vector of the acoustic-pressure observations across the VA at frequency ω;
- $\mathbf{d}(\omega)$: vector of acoustic-pressure measurements across the VA at frequency ω ;
- $R(\omega)$: spatial correlation matrix of the complex acoustic data at frequency ω

$$R(\omega) = \mathbf{d}(\omega)\mathbf{d}^{\dagger}(\omega).$$

Figure: Diagram of the EKF algorithm in a predictor-corrector form. The matrices A and C are the Jacobians of the transition and the measurement function, respectively. The EnKF algorithm shows a similar structure, but covariance matrices and Jacobians are replaced by stochastic ensemble of realizations.

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ▲□▶

Feature-oriented acoustic tomography: Upwelling at Cabo Frio (Brazil) 0. Carrière, J.-P. Hermand, L. Calado, A. C. de Paula, I. C. A. da Silveira Feature-oriented acoustic tomography: Upwelling at Cabo Frio (Brazil)

[・]ロト・4団ト・4三ト・4三ト 三 のQの

Outline	Introduction	Feature Model	Acoustic tomography	Results	Conclusions	Outline	Introduction 00	Feature Model	Acoustic tomography	Results ●○○○	Conclusions
Outline						Wind-dr	iven scenar	rio			

The upwelling in Cabo Frio is strongly correlated to the wind force and direction. For this preliminary study, the simulation scenario for the variation of the upwelling parameter γ is based on real wind data (Jan-Feb 2001). These typical wind variations were found to initiate the upwelling feature and increase gradually its force.

Figure: (a) Wind force and direction during 51 hours. (b) Upwelling parameter deduced from the wind data.

(日)											▶ ≣
O. Carrière, JP. Hermand, L. Calado, A. C. de Paula, I. C. A. da Silveira			Feature-oriented acoustic tomography: Upwelling at Cabo Frio (Brazil)			O. Carrière, JP. Hermand, L. Calado, A. C. de Paula, I. C. A. da Silveira			Feature-oriented acoustic tomography: Upwelling at Cabo Frio (Brazil)		
Outline	Introduction	Feature Model	Acoustic tomography	Results	Conclusions	Outline	Introduction	Feature Model	Acoustic tomography	Results ○○●○	Conclusions
Bartlett sensitivity					Simul	ation result	S				

Typically, the cost function is multimodal.

1 Introduction

2 Feature Model

A Results

(5) Conclusions

- Higher frequencies show more and higher local peaks (\sim more ambiguity) ;
- Lower frequencies show larger peaks (\sim higher uncertainty).

Use of multiple frequencies = trade-off between these two opposite features.

The gray line is the tracked value (global maximum).

Figure: Simulation results for the tracking of the upwelling parameter γ using an EKF (dashed green line) and EnKF (solid red lines), with the joint filtering of seven third-octave frequencies between 220 Hz and 880 Hz. The EnKF tracking with a single frequency (440 Hz) is shown in blue. The true value of γ is the gray solid line.

▲□▶▲□▶▲□▶▲□▶ □ シタの

Carrière, J.-P. Hermand, L. Calado, A. C. de Paula, I. C. A. da Silveira Feature-oriented acoustic tomography: Upwelling at Cabo Frio (Brazil) 0. Carrière, J.-P. Hermand, L. Calado, A. C. de Paula, I. C. A. da Silveira Feature-oriented acoustic tomography: Upwelling at Cabo Frio (Brazil)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

-			< □ > <	□ > 	ト 目 のへで		・ 日・ < 国・ < 国・ < 国・ < 国・ < 国・ のへの
O. Carrière, JP. Hermand, L. Calado, A. C. de Paula, I. C. A. da Silveira			Feature-oriented acoustic tomography: Upwelling at Cabo Frio (Brazil)			O. Carrière, JP. Hermand, L. Calado, A. C. de Paula, I. C. A. da Silveira	Feature-oriented acoustic tomography: Upwelling at Cabo Frio (Brazil)
Outline	Introduction	Feature Model	Acoustic tomography	Results	Conclusions		
	00	000	0000000	0000			
Conclı	isions						

- The tracking of the main feature of a coastal upwelling can be carried out by the sequential filtering (Kalman) of acoustic measurements on a vertical array ;
- The joint inversion of several frequencies reduces the error estimates and stabilizes the filter ;
- Ensemble methods (EnKF) are required to track continuously the upwelling parameter, outperforming the standard EKF ;
- Further work is currently done to apply the feature model on realistic ocean predictions (ROMS).

Geoacoustic inversion and source passive localization in shallow water

M.SC. DISSERTATION CC(CA) LUSSAC PRESTES <u>MAIA</u>

ADVISOR: **PR DSC CARLOS EDUARDO PARENTE RIBEIRO** CO-ADVISOR: **PR PHD JEAN-PIERRE HERMAND**

SUMMARY

- Introduction
- Objectives
- Theoretical ground
- Metodology
- Experiment I
- Experiment II
- Bibliographic references
- Conclusion

INTRODUCTION

- Sound propagation on shallow water >> bottom and sediments layer properties
 - o att-sed, c-sed , att-bot, c-bot and densities
- Geoacoustic inversion
 - Non-destructive way
- Passive source localization
 - requires some knowledge of the seabed
 - o discrete

80

INTRODUCTION

- Inversion techniques >> estimate physical parameters
 - Geometric parameters
 - × SD, RD, SR-range, tilt, depth, thickness
 - o Geoacoustic parameters
 - × Att, speeds and densities
- focalization small search space where there are knowledge (measurement eqpt., earlier exp.)

OBJECTIVES

- Wave theory for geoacoustic inversion and passive source localization
- Two experiments
- Real data recorded on MREA/BP'07 (SE Elba Island, off coast Italy) [J.R.P., NATO document]
- Use:
 - × matched field techniques
 - × genetics algorithms optimization

69

THEORETICAL GROUND

Helmholtz equation

$$k^{2}(r) \psi(r, \omega) + \nabla^{2} \psi(r, \omega) = 0$$

$$\left[k^{2} + \frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial}{\partial r}\right) + \frac{\partial^{2}}{\partial z^{2}}\right]\psi(r, z) = P_{\omega}\frac{\delta(r)\delta(z - z_{s})}{2\pi r}$$

- Waveguide: boundary conditions
 - Continuity of pressure
 - Continuity of vertical particle velocity
- Shallow water after crit. angle >> waveguide
- Multiple reflections (bottom, free surface), long distance propagation

THEORETICAL GROUND

- Range-independent env., far field
- Solution: separation of variables $\Psi(r, z) = \varphi(r)\zeta(z)$
 - (or option: wavenumber integration)
- Normal modes model ideal waveguide of rigid bottom

$$p_m(r) = \frac{i}{4\rho} \zeta_m(z_s) H_0^{(1,2)}(k_{rm}r) \qquad H_0^{(1)}(k_{rm}r) \cong \sqrt{\frac{2}{\pi k_{rm}r}} e^{-i\left(kr_m - \frac{\pi}{4}\right)}$$

$$p(r,z) = \frac{i}{2\rho\sqrt{2\pi}} \frac{e^{-i\pi/4}}{\sqrt{r}} \sum_{m=1}^{\infty} \zeta_m(z_s) \zeta_m(z) \frac{e^{ik_{rm}r}}{\sqrt{k_{rm}r}}$$

THEORETICAL GROUND

• More realistic Pekeris waveguide – two fluid layers

Modes: poles of the transcedental equation $\tan(k_{z,1}D) = -\frac{i\rho_2 k_{z,1}}{\rho_1 k_{z,2}}$ (discrete spectrum k2<kr<k1)

Solution $\psi(r,z) \cong -\frac{iP_{\omega}}{2D} \sum_{s}^{M} \left[a_m(k_{rm}) \sin(k_{zm}z) \sin(k_{zm}z_s) H_0^{(1)}(k_{rm}z_s) \right]$

$$r)\Big] \qquad p = -\rho \frac{\partial^2 \psi}{\partial t^2}$$

(indicial notation)

THEORETICAL GROUND

- Results: optimum value of cost function (processor)
- Cost function in this work [Gerstoft, 2007]: p = obs; q = predicted

Incoherent in frequency

2

- MFP Bartlett multifrequency Coherent in space $R_{jl,i} = E[p_{ij} p_{il}]^{H}$ $\phi = \sum_{i=1}^{N_{freq}} \sum_{j=1}^{N_{hd}} \left[R_{jj,i} q_{ij}^{*} \sum_{l=1}^{N_{hd}} R_{jl,i} q_{il} \right]$

- Big search space >> global optimization (simulated annealing, genetic algorithms,...)
- Correlations and optimization >> numerical model SAGA
- Prepare data and plotting >> Matlab pre/post-processing rout.

THEORETICAL GROUND

- Foward-model (shallow water range-independent, far field) >> numerical model SNAP [Jensen&Ferla,1979]
- Inversion with matched field: correlation between predicted fields and observed field

- Bayesian inference $p(m/d) = \frac{p(d/m)p(m)}{p(d)} \propto \pounds(m)p(m)$
- pdf a posteriori = £(m) * pdf a priori
- Inversion results
 - *a Posteriori* Probability Distribution(PPD)
 - multidimensionality plotting 1D marginal PPD
 - Optimum values:
 - × MAP or bestfit– maximize pdf *a posteriori*
 - × ML or most likely maximize likelihood function
 - × Mean mean marginal PPD

• Emmited signals

MULTITONE CW (32 tones, 260-1560Hz, 6s)
LFM MF (800-1600Hz, 1s) and LFM LF (300-800Hz, 3s)

METODOLOGY

Basic geometry

- Water column (110m) sediment layer (8m) bottom (halfspace)
- o Source ~89m
- Ocean acoustic array (ULB) ~ 4 hyd (each 5m)
- SR range decreases slowly (~1630 to 1130m in 32 minutes)

[LE GAC & HERMAND, 2008]

EXPERIMENT I

- Thirty-two emissions of signal MULTITONE CW each minute
- o 6s, 32 tones, 260-1560Hz

 $\overline{2}$

- Pre-processing for expectation of correlation matrix
- Signal divided in 11 part with 50% overlap, Tukey window, mean of 11 correlation matrices >> expectation
- Cost function Bartlett MFP multifrequencies
 - Coherent in space, incoherent in frequency
- Optimization: genetic algorithms
- Inverted physical parameters (15) (*focalization)
- SD/ RD/ SRR*/depth/ 3 EOF coeficient from SSP databank*/ att-sed/ c-sed/ rho-sed/ att-bot/ c-bot/ rho-bot/ thickness/ tilt

Ping number 25 (e.g.) Marginal *a posteriori* probability distributions

Green – mean marginal PPD Blue – maximum a posteriori Dashed blue – most likely

EXPERIMENT II

- Thirty-two emissions of signal LFM LF each minute • 3s, 300-800Hz
- 502 samples of LFM LF signal (1st each sequence)
- Cost function MBMF on frequency domain version
 - Coherent in frequency
- Optimization: genetic algorithms
- Inverted physical parameters (15) (*focalization)
- SD/ RD/ SRR*/depth/ 3 EOF coeficient from SSP databank*/ att-sed/ c-sed/ rho-sed/ att-bot/ c-bot/ rho-bot/ thickness/ tilt

EXPERIMENT II

Ping number 22 (e.g.) Marginal *a posteriori* probability distributions

Green – mean marginal PPD Blue – maximum a posteriori Dashed blue - most likely

3

EXPERIMENT II Comparison ping 22 - MPF Bartlett and MBMF freq domain - mean marg. PPD Parâmetro físico MFP Bartlett - p22 MBMF dom freq - p22 SD 89.7m (+-0.02) 88.8m (+- 0.05) RD 19.7m (+-0.08) 19.9m (+-0.04) 1340.3m (+-0.01) SR-range 1321.3m (+-0.03) Depth 110.6m (+-0.1) 110.9m (+-0.07) 1455.1m/s (+-0.1) 1453.9m/s (+-0.1) C-sed Rho-sed 1.57g/cm3 (+-0.13) 1.42g/cm3 (+-0.1) 2.32g/cm3 (+-0.21) 2.15g/cm3 (+-0.15) Rho-hottom 0.07dB/λ (+-0.036) 0.01dB/\.(+-0.003m) Att-sed Att-bottom 0.79dB/λ (+-0.4) 0.27dB/\lambda (+-0.2) 1578.47m/s (+-0.2) 1562.8m/s (+-0.1) C-bottom 8.08 m (+-0.2m) 7.57 m (+-0.14m) Thicknes Tilt 1.24m (+-0.01m) 1.70m (+-0.04m)

• Comparison ping 22 for ssp - MPF Bartlett and

EXPERIMENT II

Plotting pattern PLEDS for 32 distributions MBMF frequency domain version – Geoacoustic Parameters

EXPERIMENT II

Plotting pattern PLEDS for 32 distributions MBMF frequency domain version – Geometric Parameters

BIBLIOGRAPHIC REFERENCES

- GERSTOFT, P., 1994, "Inversion of seismoacoustic data using genetic algorithms and a posteriori probability distributions", *Journal of Acoustical Society of America*, v. 95, pp. 770-782.
- GERSTOFT, P., 2007, SAGA user manual 5.4: An inversion software package In: SACLANTCEN and Marine Physical Laboratory report, San Diego, CA, U.S.A.
- HERMAND, J. P., GERSTOFT, P., 1996, "Inversion of broad-band multitone acoustic data from the Yellow Shark Summer Experiments", *IEEE Journal of Oceanic Engineering*, v. 21, n. 4, pp. 324-346.
- JENSEN, F. B., FERLA, M. C., 1979, "SNAP : The SACLANTCEN normal-mode acoustical propagation model". In: SM-121 report of SACLANT Undersea Research Centre, La Spezia, Italy.
- JENSEN, F. B., KUPERMAN, A. W., PORTER, M. B., SCHIMIDT, H., 1994, *Computational Ocean Acoustics*. 1 ed. New York, American Institute of Physics Press.
- LE GAC J-C., HERMAND, J-P., 2008, "Subseafloor geoacoustic characterization in the kilohertz regime with a broadband source and a 4-element receiver array". In: *Oceans o8 MTS/IEEE Quebec Conference*, Quebec, Canada.

BIBLIOGRAPHIC REFERENCES

- GUIMARÃES, L. G., BARREIRA, L. M., PARENTE, C. E., SANTIAGO, R. B., 2006, "Theory to multiple reflection contributions to sound propagation on Pekeris waveguide". In: *Proceedings of the 8th European Conference on Underwater Acoustics*, v. 1, pp. 137-142, Carvoeiro, Portugal.
- HAMILTON, E. L., 1987, "Acoustic properties of sediments", *Acoustic ocean bottom C.S.I.C*, pp. 3-58.
- MEYER, M., HERMAND, J-P., 2006, "Backpropagation techniques in ocean acoustic inversion: time-reversal, retrogation and adjoint modeling a review". In: *Acoustic sensing techniques for the shallow water environment*, Ed. A. Caiti, N.R. Chapman, J-P. Hermand, S. M. Jesus, Springer.
- SOARES, C., 2001, *Matched-Field Processing: Acoustic focalization with data taken in a shallow water area of the Strait of Sicily*. Dissertação de M.Sc., Programa de Engenharia Elétrica e Ciências de Computação, Laboratório de Processamento de Sinais, Universidade do Algarve, Faro, Portugal.
- TOLSTOY, A., 1993, *Matched Field Processing for Underwater Acoustic*. 1 ed. Danvers, MA, World Scientific Publishing Co. Pte. Ltd.

CONCLUSION

• And others ...

CONCLUSION

- Shallow water acoustic propagation >> somewhat complicated process in a difficult environment for accurate modeling
- Acoustic inversion experiments >> sensitive to modeling errors (support of measuring equipments: CTD, pressure sensors, echobathimetry, ...)
- Space coherent MFP Bartlett multifrequency processor >> capable to reach reasonable results even on sparse array (4 hyd.)
- Frequency coherent MBMF in frequency domain version processor >> suitable for dense sampling of LFM signal and sparse array, good for operational employment

Summary

- Objectives
- Workplan 2009/2010
- Tasks on DoW for 2009-2011
- Perspectives on Sea trial planning and execution
- News

Workplan 2009/2010

- 1. The Cabo Frio environmental model
- 2. Water Column activities
 - 1. Environmental invertion for upwelling
 - 2. Environmental inversion for source localization

Work plan visits IEAPM to CINTAL (Fall 2009) (proposal)

1 The Cabo Frio environmental model

- The work actually being put in place in the contect of OAEx, leads to the idea of conducting an accusic experiment in the Cabo Frio area during Fall of 2010, as mentioned in the project forant Agreement Annex I. Most of the work during this first project year is directed towards: i) getting acquainted with the accusit modeling tools and the techniques for environmental inversion; ii) the environmental modeling to the target area and running of forward / inverse accusits simulations using the modelicd environment, iii) make an exploratory assessment of the equipment.
- make an exploratory assessment of the equipment requirements for the experiment. The environmental modeling work was arbitrary durided in bottom and water colum. Bottom work would deal with the recollection of historical and in set acquired cal information work would go the environment of the environment of the deal information would take into account battyretic data and go togogoal information. In situ acquired data would group scienci records, bottom sampling, cores and bottom deleterivity surveys. Water column would group essentially all previously acquired XBT, CTD, XCTD, thermistic chain and equivalent water sampling measurements, including dataset notices. Oviversky, this study would serve as the basis for extracting meaningful camonal sciencies for acoustic model ing jourcestion.
- 2 Water column activities

2.1 Environmental inversion for upweling

2.1 Environmental inversion for uprevening does not prevene the second secon

2.2 Environmental inversion for source localization

In this part of the study the environmental model will be used for extracting relevant forward accounts responses for simulating the acoustic field at selected locations so as to determine source localization / detection performance. Again, any suitable acoustic

Objectives

The main objective of the OAEx exchange programme is to enhance collaboration and fill the scientific and technological gap to specifically define methodologies, technologies and procedures for the implementation of underwater acoustic environmental monitoring and communication networks to be integrated in the surveillance and monitoring of critical at

sea infrastructures.

In particular, this exchange will focus on the following:

- **1.** Investigation of the performance characteristics required for acoustic
- 2. environmental monitoring and data transmission over underwater acoustic channels;
- 3. Definition of the requirements and suggestion of methodologies for the implementation of a generic monitoring network in Cabo Frio (Brazil);
- 4. Experience exchange regarding the NEPTUNE network requirements, methodologies and specific algorithms for integration, data transmission and overall network infrastructure.

5. Experiments on Cabo Frio site

Tasks on DoW for 2009-2011

Task	Description	Lider	Partners
1.1	Work preparation in Brazil (kick off meeting)	CINTAL	CINTAL, ULB, COPPE, UVIC e IEAPM.
1.2	Plans for development of an underwater acoustic network	UVIC	CINTAL, ULB e UVIC.
2.1	Simulation study	UVIC	CINTAL, COPPE, ULB e IEAPM.
2.2	Sea trial planning and execution	IEAPM	CINTAL, ULB, COPPE e IEAPM.
2.3	Communication equipment testing.	UVIC	CINTAL, ULB e UVIC
2.4	Real data analysis.	IEAPM	CINTAL, ULB, UVIC, COPPE e IEAPM
3.1	Acoustic inversion aspects	ULB	CINTAL, COPPE, ULB e IEAPM.
3.2	Communication aspects (scientific and technological)	CINTAL	CINTAL, ULB, UVIC, COPPE e IEAPM.
3.3	Underwater acoustic networking	UVIC	CINTAL, ULB e UVIC

- U-14 "Asp Moura Research Vessel"
- New set of equipment for:
 - Acoustics
 - Oceanography
 - Geology and Geophysics
 - Hidrography
 - Biology

- <u>Communication Systems</u>
- VHF DSC, Sailor mod. RT 4822
- VHF GMDSS Jotron (3 units)
- VHF Shipmate, mod. 8400
- Navtex, mod ICS Nav- 5
- Inmarsat Mini-M, mod. NERA worldphone, data,fax.
- Intercom and PA system
- Video surveillance, all open deck and engine rooms
- Propulsion

•

- Main Engine : MAN / 9L 20/27. 892 kW (1213 BHP) 1000 rpm
- **2 x Aquamaster :** Rolls Royce/Ulstein. 360^e, US 401/2000, mech. power transfer
- Bow Thruster: Brunvoll 150 Hk (Tunnel)
- Auxiliary engines : 3 x Scania 14/14 M. 223k W /1500rpm
- Alternator: 3 x 210 kV A 150 Hz/380V 3-phase
- Service Speed : 9 knots
- Fuel: 2.8m³ per day
- Lube Consumption: 20Ltr per day
- Endurance : 10 days
- Range : 2.160 n/miles @ service speed

U-14 "ASP Moura Research Vessel"

U-14 "ASP Moura Research Vessel"

- Tank/s Capacity
- Bunker capacity : 33m³
- Drinking water : 30m³
- Sewer: 4,5m³
- Ballast : 64,4m³
- Accomodation
- Marine Crew: 8 crew in 3x doubles & 2x single cabin
- Captain, 1st Mate, 2nd Mate, Chief Engineer, 2nd Engineer, ETO, Cook (AB/Wiper)
- Clients: 11 people in 5x doubles & 1x single cabin
- Air-conditioning : Independent units
- Air heating : Electrical, independent units and central unit
- Deck Space
- Deck Space Area with A Frame
- Deck Space Area without A Frame
- With A-Frame module: 94.3m²
- Without A-Frame module: 113m

- Survey Equipment Installed
- Survey equipment setup
- On/Off Line Room Layout
- Multibeam echosounder : Simrad EM 3000 D
- Multibeam echosounder : Reson Seabat 8160 3,000m range, 50 kHz, 1.5 x 1.5 degree beams
- Motion sensor : 1xMRU Seatex Seapath 200
- Data storage : 1x Sun station
- DGPS : Trimble 5700
- Network : 6xPC's, notebooks, printers
- Software : Merlin, Neptune, Poseidon, Triton, C-Floor, PDS 2000, Olex chart plotter, interface with EM 3000 D (real time), Navipac survey navigation and data acquisition. Note; use of Navipac requires a valid software key which can be client supplied or rented. RIB Work Boat : Model; Polarcirkel 24, Length 7.3m, Width 2.7m, Weight 1000kg, Max cargo 1200kg, Max persons 12. Outboard Mariner 150hp, Simrad CE 40 Chart plotter-differential GPS antenna-echo sounder.

U-14 "ASP Moura Research Vessel"

- Deck Mounted Equipment
- RIB / Deck Crane : 7TM, max reach 6.4m, max load at 6.4m = 1,000kg
- A-Frame Jib Doppler Deployment Pipe Cargo Hoist Plans (<u>Click Here</u>) (.pdf)
- Container Plan (<u>Click Here</u>)
- Hydrographical winch : Double section slip-ring winch (8mm wire 1000m)
- A-Frame: (Aft) : (SWL 995kg) for handling of Klein sonar or sampling. 1,000m (8mm) WIRL
- A-Frame : (Port side) : (SWL-5t) for clearance work, grab sampling, ROV launch etc. Inc: double drum (2x5t) hydraulic winches on gantry.
- 500mm Gate Valve-Penetration in cargo hold.
- **Jib:** (Stb Side) (SWL 1.5t) with hydraulic power block (28") for handling ROV umbilical, ropes etc.
- **Doppler Deployed Pipe:** (Stb Side)
- Cargo Hold Hoist : (SWL 2t)
- Container deck sockets: 10' & 20'

U-14 "ASP Moura Research Vessel"

- <u>Research & Over The Side Equipment</u>
- Multi parametric sounder : 1x Midas CTD + 6000m Titanium
- Current profiler : 1x ADCP RDI worhorse long ranger 75kHz
- Side Scan Sonar : Klein 3000
- ROV : Seaeye Falcon 300m depth, extended frame + manipulator. On / Off line survey operations room
- Work Facilities
- Small client office
- **Recreation / Meeting room :** 42" flat screen for video/digital presentation, film, TV channels.
- Auxiliary engine room: Mechanical/Engineering work shop, aluminium and steel welding.
- Cargo hold : Storage space, storage for samples and cargo total area approx 30m²

U-14 "ASP Moura Research Vessel"

Diving Equipment

- Suits : 2x Viking HD dry diving suits
- Masks : 2x KMB communication masks
- Communication : 2-lines Dive-phones including 2x divers phone cables
- UW-scooter : 2x UW scooters
- Accessories : Fins, weight belts, gloves, harnesses, uw lights, instruments, tools etc.
- Air Supply : Air-cylinders with back-pack.
- First Aid : Oxygen breathing apparatus and ventilation kit.
- HP Compressor : Bauer HP compressor, 100l/min, 200 BAR
- Pick-up Boat : NORSAFE pick up/rescue boat, cradle, davit, 25hp outboard.

U-14 "ASP Moura Research Vessel"

S

08

Ø

Ó

U-14 "ASP Moura Research Vessel"

S

S

Q	List of equipment	on .	Acous	tic Lab
Item	Descrição do Equipamento	QTD		
	Transformador de Impedância Modelo-133			
02	Amplifier Modelo 7500 (Krohn-Hite)	01	Itom	Decorio
03	Power Supply Modelo P-11 Série 81 (Ithaco)	01	27	Descriç
04	Eletronic Filter Modelo 4113 (Ithaco)	03	37	Jogo de chave
05	Amplier Modelo 453 (Ithaco)	03	- 38	Sugador de sol
06	Hidrofone ITC-1032 № de Série > 529 sem pré-amplificador	01	39	Alicate de cort
07	Hidrofone ITC-8073C № de Série > 054 com pré-amplificador alimentação 12VDC	01	40	Alicate de pres
08	Hidrofone ITC-6080C № de Série > 1525 e 1526 com pré-amplificador	02	41	Notebook HP
	alimentação 24VDC		42	PRC Motorola
09	Hidrofone ITC-1001 № de Série > 275 sem pré-amplificador	01	43	Carregador de
10	Hidrofone PI 00-153-8229 (Equipamento do Submarino Amazonas)	30		
	Transdutor do Sonar EDO-610 da MOFRAG F DEFENSORA	10		In acc
12	Fonte Geradora (equipamento do IPqM)	01		Hydrophones]
	Transdutor Sonar (equipamento do IPqM)	01		TSS 2 SS Tun
-14	Osciloscópio Tektronix TDS 2004B			100-200 Typ
	Placa de Áudio NI USB 6211	02		Ampliner cdi .
16	Rádio Infinium Transmiter	01		Underwater ac
	Rádio Infinium Receiver	02		
18	Fonte de Alimentação 117VCA / 12 VDC	02		
	Antena Direcional	02		
20	Cabo Hidrofone DSS-2 emprestado pelo CASOP	300 M		
	Cabo AWG 22 (cabo achado)	800 M		
22	Multímetro Analógico	01		
	Multímetro Digital	01		
24	Alicate Amperímetro			
25	Capacímetro Digital	01		
26	Estação de Solda	01		
27	Máquina de Furar	01		
28	Impressora Multifuncional HP C4280	02		
29	Monitor AOC 19" LCD	03		
30	Computadores Intel Co 262 DUO E 4500	03		
31	No Break SMS 600 VA Net Station	04		
32	Alicate de Bico Redondo	01		
33	Alicate Universal	01		
34	Jogo de chave tor	01		
35	Jogo de chave de fenda	01		
- 36	Jogo de chave Allen	01		

Item	Descrição do Equipamento	QTD
37	Jogo de chave de relógio	01
38	Sugador de solda	01
39	Alicate de corte de 6"	02
40	Alicate de pressão 10"	03
41	Notebook HP Compac	01
42	PRC Motorola EP-450	02
43	Carregador de Bateria Lento	01
	In acquisitions on USA	Qtd
	Hydrophones ITC 6080	2
	TSS-2 SS Type hydrophone cable	2400 n
	Amplifier cdi 2000	
	Underwater acoustic transducer LL-1424	

quipment	Description	CNE	Deliver place	Time delivery	Manufacturer
Binocular	Binóculo de Visão Noturna NVBNVYGRCI 12553-180 Voyager- CGTI (Gen. 2+) 4,5x forstørrelse	CNBE	Navio (Sandefjord - Noruega)	10 days	ATN / OPTLINE - Norueg
СТР	MiniCTD Profiler	CNBE	CNBE	7 weeks	Valeport / Reino Unido
ROSETTE + CTD	Citadel CTD Sensor, Rosette Sampler, 12 liter Niskin bottle	CNBW	CNBW	12 weeks	Teledyne / EUA
СТР	MIDAS CTD+ Multi-Parameter CTD + Termosalinógrafo	CNBE	CNBE	6 weeks	Valeport / Reino Unido
Cable & Winch	DT MODEL DT1020EHLW AS PER ATTACHED SPECIFICATIONS	CNBW	CNBW	6 weeks	DT MARINE / EUA
XBT system	MK21 USB/DAQ Ass'y, Surface; LM-3A Hand Held Launcher with 100 FL Cable; 96 un T-4 XBT Probe; 96 un T-5 XBT Probe; 96 un T-7 XBT Probe; T-10 XBT Probe	CNBW	CNBW	60 days	Lockheed Martin Sippican EUA
piston core	KC-Denmark A/S (piston corer) Piston core Model 13.600 (270Kg)	CNBE	Brasil	4 weeks	KC-Denmark A/S (piston corer)
Box Core	KC-Denmark A/S Box Core Model 80.100-50 (1.000 cm2/penetration 50cm) (2.000cm2)	CNBE	Navio (Sandefjord - Noruega)	10 days	KC-Denmark A/S (Van-Vee KC-Denmark A/S (Box cor
Van-Veen	KC-Denmark A/S Van-Veen Bottom Grab (2.000cm2)	CNBE	Navio (Sandefjord - Noruega)	10 days	KC-Denmark A/S (Van-Vee KC-Denmark A/S (Box cor
ECDIS	xxx	DSAM	xxx	xxx	×××
Diver suite	Conjunto de mergulho para 04 pessoas	CNBE	Navio (Sandefjord - Noruega)	7 days	SMS Group Norway AS
Diving Compressor	Compressor de mergulho, sistema de cascata, cilindro extra e tanque de segurança	CNBE	CNBE	20 days	Tecnisub
ROV	SeaLion-2 ROV with 1,000 toot depth rated housing builkhead connectors, 250 foot cable, topside control console with built-in 15 inch monitor, front and rear NTSC format color	CNBW	CNBW	2 weeks	JW FISHERS MFG., INC EUA
Multibean	Post Processing Software, Training in Brazil,.	CNBE	Brasil	1 semana	Eiva / Denmark
Mulitbean SW and Training	Navigation Planning and Control System, Remote Helmsman Display, Kongsberg EM 3000, Reson SeaBat 8160, Installation, Setting to Work	CNBE	Navio (Sandefjord - Noruega)	1 semana	Eiva / Denmark
Current Meter		CNBE	CNBE	5 weeks	Nortek
Fluxometer		CNBE	CNBE	15 days	KC Denmark S/A
Microscope	Microscópio Axio Scope A1 com acessórios	CNBE	CNBE	60 days	Zeiss
Amplifier Lens	Corpo de estereomicroscópio Discovery V.8 com sistema de aumento Zoom 8:1 (10x 80x)	CNBE	CNBE	60 days	Zeiss
urifying Water System		CNBW	CNBW	60 days	Millinore Corporation

News

- Two new PhD courses aproved (UALG and COPPE) one M.Sc (Miami University) and 3 proposal submited;
- Upgrade on the acoustic work force (four New civilian emploees);
- BB.BICE (Brazilian Bureau for Enhancing the International Cooperation with the European Union) proposal oportunities
- Brazilian funding agency oportunities for new projects throughout SECCTM (Navy Science and Technology Secretary)

