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Outline of Module 1

e Parameter estimation
(1) the problem
(2) example of estimators
e The underwater channel as a linear system
(1) data model and assumptions
(2) the space-time filter: real data example
e Data model and optimality
(1) the discrete data model
(2) deterministic signal in noise: the optimal noise enhancer
(3) the generalized matched filter (GMF)
(4) the correlated noise case
(5) the multichannel optimal receiver
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A parameter estimation problem

Assume de discrete time observations
x' = [2(0),z(1),...,x(N —1)] (1)

that depends on some parameter # that we want to estimate.

Estimator 6 of 6 can be written as a deterministic function g of the observed data
set

0= g(x) (2)
Our goal is to determine ¢ that provides “the best estimator 0 of 0"

= best in which sense ?

= how to determine g ?
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Example: the mean of a time series

Distant ships

Our data model in this case will appopriately be z(n) = A 4+ w(n), where A is a
constant to be determined and w(n) is a zero-mean random process.
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An intituitive estimator of A would be

N—-1

~ 1
A=5 w(n) (3)

n=0

in fact if the model is true, in a mean

N—-1

BlA] == 3" Ble(n)] = A (@

n=0

Estimator fl is said to be unbiased. But there are many other estimators of A as for
example, A = z(0). Which one of this estimators is the best estimator of A 7
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Example: the mean of a time series (cont.)

Let us assume that w(n) : N(0,0?), then

ElA] = Elz(0)] = A+ Elw(0)] = A (5)

which basically says that A is also unbiased. So, we have to resort to second order
statistics...

(6)
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while for A

and therefore the variance of A is smaller than that of A by a factor V.

= search for the Minimum Variance Unbiased Estimator (MVUE)
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Minimum Variance Unbiased Estimator (MVUE)

Minimum variance and no bias are estimator characteristics but do not tell us how
close we are from the true value = mean square error (MSE).

MSE() = E[(6 — 0)7 (8)
but

MSE®) = E|[(0- E) + (B[] - 0)]

so, for unbiased estimators b(#) = 0 and therefore minimum variance means minimum

MSE.

An MVUE does not always exists and if it exists it is not ensured to be able to

find 1t.
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How to find the MVUE

1. determine the Cramer-Rao Lower Bound (CRLB) and check if some estimator satisfies
it - that is the MVUE.

2. if no estimator satisfies the bound, use a sufficient statistic and apply the Rao-
Blackwell-Lehmann-Scheffe theorem.

3. restrict the class of estimators not only unbiased and of minimum variance but also
linear in the data so that ¢ is a linear function. This is the Best Linear Unbiased
Estimator (BLUE), which may coincide with the MVUE if it happens to be linear.
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CRLB

The CRLB states how well a given parameter can be estimated. That ability depends
on the sharpness of the Probability Density Function (PDF) against the parameter given
the data.

PDF of data dependence on a given parameter, assuming Gaussian

a0 A) = s exp |~ (al0] - 4)? (9
V(o] > ! (10)

- 92 1n p(x;0)
B[

Assume data model, hypothesis on signal(s), noise and interferences.
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Distant ships
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Problems and applications

e Direct problem: determine acoustic pressure — propagation model(s)

e Geometric inverse problem: determine source characteristics

— 18 there a source present ¢ detection problem
— where 1s the source emitting from ¢ estimate source position,
— what s the source emitting ¢ estimate emitted signal

e Environmental inverse problem: monitoring / exploring the environment

— tomography: estimate water column temperature in 3D and time
— bottom properties: estimation bottom properties in 3D

Short Course on Underwater Acoustic Signal Processing S.M.Jesus



The underwater channel as a linear system

s(1) Channel | P(%:0) TN y(t,0)
> > >
h(t.0) N
w(t)
(£.0) = h(t,0) * s(t)
{ 5(7579) = p(t,0) + w(t) (11)

e h(t,0) : channel impulse response, 6 is a vector with geometric and environmental
known, unknown or partially known parameters, assumed deterministic or random

e s(t) : emitted signal, assumed known, unknown, random or deterministic.

e w(t) : observation additive noise, non-correlated with signal, zero mean, space-time
correlated or uncorrelated
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The underwater channel as a space-time filter

Example from the MREA /BP'07 sea trial...

10°42' 10°45' 10°48' 10°51"
ACTIVE ACOUSTIC RUN REP2 ™~ -
30 APRIL 2007 S
3] UTC Time : 08:55 - 14:00 S
g N
N\
~
N
B ‘
@\ 14:00
14:00
3 08:55
g ~A0B21 |
08:

L \

E \
© (o] 2 LeonardoI &
5 N 3

A S

o Q. o 7

01 Meters \\“ ’\Q\ | =
= 1000 D 1000 200&:5‘\’931 Meters”
‘ ‘ ) \}\\\ \\‘J T
10°42' 10“‘45' 10“‘48' 10°51" 10°54' 10°57"

Short Course on Underwater Acoustic Signal Processing S.M.Jesus



Received signals in the AO Buoy 1 @ 7km

2000

1000 -

AOB21

Im -
14:111 -1000

-2000
0

Hdm

59111 2000

54111 = 1000

H9m .
T4dm

Tgm -1000 -

ballast 10K g 2%, 5 10 15 2 2 30

Short Course on Underwater Acoustic Signal Processing S.M.Jesus



Received signals in the AO Buoy 2 @ 11km
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Data model and optimality (1)

Continuous to discrete time data model

o R et R (A
p'(0) = [p(0,0),p(1,0),...,p(N —1,0)] _
 R(0,0) 0 0 ht((:),e)
o - | MO K000
_h<Ni1,9) h(Niz,e) h(d,e)_ ht(NE—1,9)
st = [5(0),5(1),...,8(N —1)]

w is [0, C, ] if time correlated, C,, = o°I if time uncorrelated.

y is [p(#), C,] if deterministic signal
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Data model and optimality (2)

Objective: find filter g(t) to optimally reduce noise on the received acoustic pressure.
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Generalized Matched Filter (GMF)

L] L] e a 9 2
Signal-to-noise ratio in: Pin — g)[ﬁw)y‘g]
L] L] L] 9 2
Signal-to-noise ratio out: Pout = gﬁgv)”g]
o

Instantaneous SNR out:

p(n,0) =

= Find G so as to maximize p(n,0)
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GMF: the white noise case

Assuming: temporally white noise, C,, = o°1

Cgmp@) gt n)p®)P
0 = Blgimyws] ~ g (n)Ewwilg(n)
1 Ig (n)p(0)?
gt(n)g(n)

in virtue of the Schwartz inequality ]Xtyfz < |X‘2‘y‘2 with equality iff X = Ay,
p(n, 9) will be maximum for
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GMF: the correlated noise case (1)

Assuming: temporally correlated noise, E[ww'!| = C,,, with C,, definite positive
C;l = D!D, with D non-singular, therefore

y(#) = y(0) = Dy(0)

S/‘(@) Is said to be a pre-whitened version of the observation vector y(@).

o EBOF 8 mpO)
Pn:0) = Elgm)w?] ~ & (n)DE[ww]DE(n)

RGP 8 mBO)

& (nDC. D)~ gm)an)

Short Course on Underwater Acoustic Signal Processing S.M.Jesus



GMF: the correlated noise case (2)

As before j(n,6) will be maximum for g(n) = Ap(#), since g(n) = D'g(n) we

have

g(n) =Ap(9) = ADp(0)
g(n) =AD'Dp(0) = \C,'p(0)

in practice the GMF is a time-reversed replica of the signal

g(N —1—mn,0) = Ap(n,0), n=0,...,N—1

g(n,0) =Ap(N —1—n,0), n=20,...,N—1

= filter by a time-reversed signal = correlate with that signal.
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GMF: the multichannel (spatial) version (1)

Let us assume K sensors, — K N sample augmented vector

yo(0) = [y'(0,0),y"(1,0),....y" (N — 1,0)]

with y(n,#) a K-dimensional vector with the K sensor entries at time n,

y'(n,0) = [y1(n,0),y2(n,0),...,yx(n,0)

is the temporal-ordering. Similarly the spatial ordering is

v (0) = [yi(0),y5(0), ..., y%(0)]

with

ytk(e) — [yk(ov 9)7 yk(la (9)7 st 7yk(N o 17 ‘9)]
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GMF: the multichannel (spatial) version (2)
The augmented data model (spatially-ordered)
yva(0) = Hy(0)s + wy,

with
H,(0) = [H1(0)[H2(0)] . .. [Hx(0)]"

and the appropriate notation for w,, allows for the multichannel GMF,

ga(n) — Apa(e)

= AH,(0)s
(n8) = 3 g (w)y(,0) = 3 gh(n)y(®)
n’=0 k=1
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