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A novel approach to the estimation of seafloor geoacoustic parameters from the measurement of the
acoustic field in the water column is introduced. The approach is based on the idea of approximating
the inverse function that links the geoacoustic parameters with the measured field through a series
expansion of radial basis functions. In particular, Gaussian basis functions are used in order to
ensure continuity and smoothness of the approximated inverse. The main advantage of the proposed
approach relies on the fact that the series expansion can be computed off-line from simulated data
as soon as the experimental configuration is known. Data inversion can then be performed in true
real time as soon as the data are acquired. Simulation results are presented in order to show the
advantages and limitations of the method. Finally, some inversion results from horizontal towed
array data are reported, and are compared with independent estimates of geoacoustic bottom
properties. ©1996 Acoustical Society of America.
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INTRODUCTION

Geoacoustic seafloor properties are an essential requ
to properly predict acoustic propagation, especially in sh
low water wave guides and/or at low frequencies. Howev
their measurement or estimation with traditional techniqu
requires the deployement of instrumentation on or within
seafloor~such as geophone stations, coring, cone penetr
eters, etc.!, resulting in costly and time-consuming proc
dures. For this reason, there has been a growing intere
recent years in methods able to identify geoacoustic mod
from the measurement of the acoustic field in the water c
umn. This approach, that can be regarded as acoustic re
sensing of the seafloor, is characterized by two major
pects: one is experimental, and is concerned with the suit
design of sensors, sources, and at-sea procedures to
rately measure the acoustic field structure. The other is c
putational, and consists in the determination of a stable
version algorithm able to uniquely recover the geoacou
parameters from the measured field. This article is mai
concerned with the computational part of the estimat
problem, i.e., with the inversion strategy.

Realistic attempts at geoacoustic characterization fr
the acoustic field were started by Frisk and co-workers1–5

From the computational viewpoint, they mainly used a p
turbative inversion approach, i.e., a linearization of the
verse problem in the neighborhood of ana priori known
background geoacoustic model. If the background mode
sufficiently close to the true model, powerful methods
linear inverse theory can be employed and the true solu
can be found.3

a!Electronic mail: andy@dist.unige.it
b!A. Caiti is currently with DSEA, Univerisity of Pisa, Italy.
c!Electronic mail: sjesus@ualg.pt
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The background model can sometimes be establish
using historical data or independent measurements. Ho
ever, when a confident background model cannot be est
lished, the inverse problem is strongly nonlinear. In th
more general case, the estimation of the geoacoustic para
eters is usually stated as an optimization problem and glob
search strategies have to be employed. Collins and c
workers have successfully shown how the simulated anne
ing algorithm can be employed to estimate bottom
parameters.6,7 Further applications of the simulated annea
ing search have been reported by Dossoet al. and Chapman
et al.8,9

Another global search approach, the so-called gene
algorithms, was more recently introduced to the underwat
acoustic community by Gerstoft.10 Applications of this inver-
sion strategy to field data have also been reported~see Refs.
11 and 12!.

Although fairly general, a global search approach ma
also show some drawbacks. In particular, it requires tim
consuming computations and it is more difficult to determin
the reliability of the solution found. Efforts to increase the
computational efficiency of global search algorithms are r
ported in recent studies using eigenvalue/eigenvec
analysis,13 adaptation of the search intervals,14,15 combina-
tion of global and local algorithms.16 Comparison of error
estimates of linear inverse theory with those of genetic alg
rithms was reported in Ref. 17, while the importance o
Cramer–Rao bounds to assess the resolution/robustnes
the inversion strategy and the eventual need of reparame
zation of the search space was emphasized in Ref. 18.
ingenious attempt to reduce the nonlinearity of the proble
by a suitable selection of the cost function to be minimize
was proposed by Rajan,5 at the price of decreased resolution
in the estimate.

In this article we propose a novel approach that is bas
147300(3)/1473/9/$10.00 © 1996 Acoustical Society of America
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on the determination of anapproximatedinverse function
from a set of known correspondences of geoacoustic par
eters and acoustic fields. To fix the ideas, let us callm the
vector of geoacoustic parameters that we wish to ident
and let us callx the vector of measured acoustic data~where
the elements inx can be complex or real!. Let us also sup-
pose that all the other parameters influencing acoustic pro
gation ~water depth, sound speed in the water, sour
receiver configuration, etc.! are known. Ideally, one would
like to have available a closed formf of the inverse function,
such that

f~x!5m. ~1!

Note, incidentally, that in the global search approach a cl
of possible inverse functions is specified as

f~x!5m5arg$ min
m̃PM

E„x,x̂~m̃!…%, ~2!

whereE is a suitable cost function andx̂~m̃! is the replica
field associated with the choicem̃ of geoacoustic parameter
and computed with an appropriate forward model. Note a
that f does depend on the specific choices ofE and on the
model for the replica field computation.

Sincef is not known, we want to find an approximatio
f̂, where the approximating function has a prespecified str
ture. For instance,f̂ may be a series of known basis function
with unknown coefficients. Let us callw the vector of un-
known coefficients of the approximating function. Then w
have thatf̂5f̂~x,w!. The determination off̂~x,w! is a para-
metric problem, while the determination of the true inver
function f is a functional problem~and, as such, much harde
to solve!. Let us also suppose that we have available a se
N vector pairs$xi ,mi%i51

N such that, for each pair,f~xi!5mi ,
or, equivalently,x̂~mi!5xi . Then we can use theN pairs to
identify the coefficientsw of the approximating function, for
instance by imposing

w5argH min
w̃PW

(
i51

N

i f̂~xi ,w̃!2mi i
2J , ~3!

where the norm is the usual Euclidean norm. The accurac
the approximationf̂ will depend on many factors such as th
particular structure imposed, the set of known pairs, the a
ity of identifying the coefficient vectorw, etc. In Sec. I we
will discuss these issues in detail.

In recent literature, approximation schemes that take
form of series expansion, eventually nested~i.e., of the form

f̂~x,w!5( jwjf j~x!,

or

f̂~x,w!5( jwjf j~(kwkfk~••• !!,

are referred to as a neural network, or learning netw
schemes, since they can be implemented in hardware
network fashion. This usually leads to very efficient comp
tations once the coefficientsw are determined.

The advantage of a network approximation scheme
the kind just described over global search or linearized
version is that, by suitable selection of the basis functio
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the approximation has validity over the whole domain of
interest; hence the global solution will be found. Moreover,
if several data sets are recorded with the same experimental
configuration, the network coefficients do not need to be
changed, and the same network can be used to invert the
whole set of data~in contrast, a global search approach
would require a new search for each new data vector!.

The use of nested network schemes with sigmoid basis
functions was recently proposed for seismic inversion19 and
for acoustic tomography problems.20 In this work we pro-
pose and illustrate the use of radial basis functions~RBFs! of
the Gaussian kind. The theoretical foundation of RBFs has
been extensively described by Poggio and Girosi21 and by
Powell.22 The use of RBFs for the interpolation of sparse,
scattered marine sediment data was reported in Ref. 23. An
application of RBFs in the context of an elastic inverse prob-
lem was described in Ref. 24, while in the context of geoa-
coustic parameter estimation, some preliminary results on
this line of work were presented in Ref. 25.

The article is organized as follows. In Sec. I the basic
RBF approach to the approximation of the inverse function is
described in more detail the insertion of physical constraints
is discussed, and the acoustic data model is introduced. In
Sec. II inversion results on simulated data are reported, both
in the wave number and in the pressure versus range domain.
In Sec. III inversion results on field data are reported and
compared with estimates of the geoacoustic parameters ob-
tained with traditional methods. Finally, advantages and
drawbacks of the method are discussed and conclusions are
given.

I. RBF APPROXIMATION OF INVERSE FUNCTIONS

A. Basic theory

Let us suppose that we are given a knownforward rela-
tion that links the model parametersm to the measured data
x: F ~m!5x. Note that in our specific case the operatorF is
given by the wave equation. We also assume that all the
other environmental and geometric parameters that define the
acoustic propagation are known. Our goal is to determine an
inverse functionf such thatf„F ~m!…5m for everym belong-
ing to the space of physically admissible geoacoustic models.
As often happens in the case of inverse problems, the above
requirement is not sufficient to uniquely determinef, and
additional constraints on the structure off have to be im-
posed. The common regularization approach to inverse
problems26 prescribes the inverse to be bounded and continu-
ous in order to also guarantee some robustness with respect
to data perturbation. So the inverse function can be deter-
mined as the minimizer of the following costfunctional:

J~ f!5i f„F ~m!…2mi21lH~ f!, ~4!

where H is a smoothness constraining operator andl a
Lagrange multiplier. Note the similarity of the above equa-
tion with those usually appearing in linear inverse theory.27

However, Eq.~4! is minimized by a function, and not by a
vector, and its analytical solution is not known except for in
a very few special cases. Let us now suppose we have avail-
able thetraining setof input–output pairs$xi ,mi%i51

N , with

1474A. Caiti and S. M. Jesus: Estimation of seafloor parameters
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F ~mi!5xi , i51,...,N. We may use this set to find an a
proximation f̂ of the inverse functionf with the obvious re-
quirement thatf̂~xi! should be close tomi . So we impose

f̂5argHmin
f

H (
i51

N

i f~xi !2mi i21lH~ f!J J. ~5!

Poggio and Girosi have shown, using variational argume
that, if H~f!5iRfi2, whereR is a linear, rotationally and
translationally invariant operator, thenf̂ takes on the follow-
ing form:

f̂~x!5CF~x1 ,...,xN ;x!1kR~x!, ~6!

whereF is aN-dimensional vector, whosei th component is
given by the functionf~ixi2xi!, i.e., a radial basis function
C is am3N coefficient matrix, with elementsci j , andm is
the dimension of the vectorm; kR is am-dimensional vector
function whose components span the null space of the op
tor R. Moreover, the functionf is Green’s function of the
self-adjoint operatorR*R.21 The expression of equation~6!
can be shown to be thebest approximantto the true inverse
function given the knowledge of the training set.28

A most useful property of RBF theory is that, for seve
constraint operators, the analytic form of Green’s functionf
is known. In particular, whenR5( i51

` ] i /]xi , we have
Gaussian RBFs, i.e.,f(r )5exp~2r 2/s2!; in this case also
the termkR can be ignored. Other cases are discusse
detail in Ref. 21.

From the point of view of the inversion, Gaussian RB
are particularly appealing because they automatically put
approximated inverse in a smoothness class that enforce
desired regularity properties. In the following we will alwa
use Gaussian RBFs. It has to be clear, however, that
choice may be debatable: If one would like the inverse fu
tion to belong to a different smoothness class, a differ
choice of RBFs would be required. An example of such
instance, although in a different context, may be found
Ref. 24, where it is shown how Gaussian RBFs are abl
recover the shape of rigid objects in contact with an ela
surface, except for the case of objects with discontinu
edges, where sigmoid-based networks give better result
that case, the regularity of the Gaussian basis functions
drawback instead of an advantage.

As a last point, it is important to emphasize that t
RBF’s expansion is fully nonlinear, but, in contrast w
other network schemes, islinear in the coefficients. This
property allows for easy identification of the matrixC. By
imposing the relations

f̂~xj !5CF~x1 ,...,xN ;xj !5mj , j51,...,N, ~7!

one gets a system of linear equations in the unknown c
ficientsci j that can easily be solved with standard metho

Note, however, that the linearity in the coefficients
sumes that the RBF centers and variances have been de
a priori. If one wants to determine the optimal position
the centers and the optimal variance, the RBF approxima
also becomes nonlinear in the parameters, posing nontr
computational problems. In the algorithm described in t
article, we have employed the linear-in-the-coefficient v
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sion of the algorithm: the centers have been randomly se
lected, and the variances have been tuned by trial and erro
taking advantage of the fact that, at least for this specific
problem, the approximation is not sensitive to the variance
value but only to its order of magnitude.

B. Choice of the forward model

The development of Sec. I A is fairly general, and it can
be applied to different data sets~broadband/narrow-band
sources, vertical/horizontal receivers, etc.!. In order to gen-
erate the training set, however, a specific forward modelF

has to be selected. This situation is identical to that encoun
tered in the global search approaches, where one has to sel
a forward model and determine the best fit to the data usin
that specific model. It has to be clear that the inversion re
sults strongly depend on the choice of the forward model
whatever specific algorithm~RBFs, global/local search, trial
and error! is used. If the forward model is incorrectly chosen
~if, for instance, it neglects scattering effects, and the sourc
frequency is in the range of tens of kHz!, the inversion re-
sults will certainly be dubious.

In the simulated and field data applications presented i
Secs. II and III we have supposed that acoustic propagatio
takes place in a horizontally stratified range-independent en
vironment. The seafloor is treated as a viscoelastic stratifie
medium.

The SAFARI code29 was used for the computation of the
forward problem. The deterministic sound pressure at th
receiver location (r ,z), r being the range from the source
andz the depth with respect to the sea surface, is given as th
solution of the wave equation for a narrow-band point
source:

p~v,r ,z,m,s!5E
0

`

g~k,v,m,s!J0~kr !k dk, ~8!

wherev is the source frequency,m is the vector of geo-
acoustic parameters,s is a known vector of all the quantities
influencing the acoustic propagation~sound speed profile in
the water column, source depth, etc.!, k is the horizontal
wave number, andg~ ! is Green’s function of the depth sepa-
rated wave equation. In testing the RBF’s inversion we hav
used as acoustic data vectorx either one of the following:

xp5@ up~v,r 1 ,z,m,s!u,...,up~v,r q ,z,m,s!u#T, ~9!

or

xg5@ ug~k1 ,v,m,s!u,...,ug~k r ,v,m,s!u#T, ~10!

i.e., the amplitude of the pressure field sampled atq locations
in range, or the amplitude of Green’s function sampled atr
points in the horizontal wave number space. The superscrip
T stands for the vector transpose.

These two specific data vectors, and theSAFARI model
itself, were chosen because they perfectly suit the exper
mental configuration treated in Sec. III, that is, they are a
horizontal array of receivers at a relatively short distance
~less than 1000 m! from the source. The short source–
receiver distance is emphasized because it justifies the a
sumption of a range-independent environment and also th

1475A. Caiti and S. M. Jesus: Estimation of seafloor parameters
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fact that in our simulations and in the field data inversi
noise is not an issue, being the signal to noise ratio~SNR! is
always particularly favorable. In the field experiment, f
instance, SNR was estimated to be approximately 20
Note that, if the noise level is much higher, it would be bet
to use a training set which is also corrupted by noise~see the
discussion in Ref. 24!.

C. Selection of the geoacoustic parameters

In the sequel we assume that the seafloor can be
cretized in l layers of known thickness. In general laye
thickness is not known, however the environment can
discretized in layers of equal thicknesszv each, selectingzv

as the minimum thickness that can be resolved at the
quencyv. Also, the number ofl layers can be selected b
taking into account the maximum penetrationzmax of the
acoustic field into the bottom at the given frequencyv, and
then choosingl5zmax/zv . Note that, theoretically, the acous
tic field lasts to infinity; however, it is well known in practic
that, for a given frequency, the measured acoustic field in
water is not sensitive to variation of the geoacoustic prop
ties of the layers below the cutoff depthzmax.

One problem in fixing the thicknessa priori is that the
effective resolution and penetration of the acoustic field,
pending on the wavelength, are not known, and must
fixed accordingly to some preliminary sensitivity stud
However, as specified later, a sensitivity study is in any c
required for a meaningful selection of the geoacoustic
rameters to be estimated. One advantage of fixing the th
ness is that, in some cases, this information is indeed kno
then it can be easily incorporated in the inversion strateg

The geoacoustic parameter vectorm with M elements is
in general given by

m5@cp
T ,cs

T ,ap
T ,as

T ,rT#T, ~11!

wherecp andap are the subvectors of compressional wa
speed and attenuation,cs andas are the subvectors of shea
wave speed and attenuation,r is the subvector of density
Each subvector has, in general,l elements, and each eleme
in position j refers to the corresponding parameter of thej th
layer.

It must be emphasized that not all of the above para
eters have the same influence on the acoustic field. This
flects the physical fact that, in a given situation, not all t
geoacoustic parameters need to be known accurately~or at
all! to predict the acoustic propagation. For instance, depe
ing on the source frequency, unconsolidated marine s
ments may be treated as a fluid medium, and shear prope
can be safely neglected.30

In order to obtain a meaningful result out of the inve
sion~whatever strategy is used!, a preliminary analysis of the
problem is required in order to select a parametrization of
seafloor environment that is significant with respect to
problem at hand. The discussion of this kind of sensitiv
analysis is beyond the scope of the present article. Exam
can be found elsewhere.16,18,31In the examples of Sec. II it
will be shown how the accuracy of the estimate is affec
by the influence of the various parameters on the acou
field.

1476 J. Acoust. Soc. Am., Vol. 100, No. 3, September 1996
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D. Selection of the training set

The accuracy of the RBF approximationf̂ depends, in
principle, only on the number of pairs in the training set.
Specifically, there are several convergence results that sho
that, under certain regularity assumptions on the function t
be approximated,f̂→f asN→`.22 However, these results are
mainly of theoretical interest. For the purpose of the presen
article, there are two considerations that need to be taken in
account. The first is that the pairs in the training set do no
need to be taken in any particular order: RBFs are goo
interpolants of scattered data points in multidimensiona
spaces. This makes it possible to select the model vectorsmi

in the training set through random generation.
The second, more important, consideration is that

through the training set, we can impose additional physica
constraints on the approximated inverse. This can b
achieved in several different ways and depends on the sp
cific a priori knowledge, if any. One can bias the random
generation of models by forcing some specific structure, like
a positive gradient of some of the parameters as a function o
depth, or by allowing only weak negative gradients etc. It is
up to the designer of the network to choose what sort o
constraints, if any, is best suited for the specific problem h
has at hand. Note in particular that, depending on the param
etrization chosen, known correlations among the paramete
can also be inserted at this stage.

In some of the simulations presented in Sec. II we have
imposed the additional constraint of a positive gradient o
compressional and shear velocity with respect to depth. Th
was in fact the situation expected for the field test describe
later. In the simulations it will also be shown how, for the
cases considered, a training set consisting of 800 pairs
sufficient to achieve a certain degree of accuracy.

E. Test set: Checking the accuracy of the
approximation

Once the geoacoustic vectorsmi of the training set have
been generated, the corresponding acoustic fieldxi is calcu-
lated by a suitable forward model~SAFARI in our case!. The
training set thus obtained is used to identify the coefficient
of the RBF network. In order to check the accuracy of the
approximation, another set of pairs$xj ,mj %j51

K , the test set, is
generated accordingly to the same rules employed in the ge
eration of the training set.

The computed acoustic field in the test set is given a
input to the RBF network, and the corresponding modelsm̂j

computed as

m̂j5 f̂~w,xj !, j51,...,K. ~12!

The results of the RBF inversion are then compared to th
true valuesmj . As a figure of merit, we have used, for each
of the parameters in the vectorm, the mean relative error
um̂j2mj u/umj u averaged over the test set, and its variance. I
is important to evaluate the accuracy in retrieving every
single parameter since not all the parameters may, or need
be determined with the same precision.

In this phase, it is possible to determine the effect of
varying some of the network parameters on the accuracy o

1476A. Caiti and S. M. Jesus: Estimation of seafloor parameters
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the results. In particular, the variance of the Gaussian RB
can be tuned. In our specific case, the Gaussian variance
tuned manually, that is, without any analytical or numeric
attempt to determine the optimum variance value. Howev
we have noted the following properties.

~1! Different variances need to be used depending on
specific subset of geoacoustic parameters considered;
have used the variance value of 104 for theP velocities, 103

for theS velocities, and 100 for P attenuations.
~2! The inversion result is sensitive only to the order

magnitude of the variance value chosen.
The test set has to be generated over the whole par

eter search space since we wish to evaluate the RBF app
mation over its global domain. We remark again that t
figure of merit of the RBF inversion is the ensemble avera
over the errors of each single element in the test set.
mean error thus obtained can be considered as the lo
bound of the mean estimation error when the RBF invers
is applied to real data, and the error variance a measur
the stability of the result. In the examples reported, the s
K of the test set has been fixed at 100.

F. Summary of the RBF inversion scheme

We give here a brief summary of the steps needed in
RBF inversion procedure.

~1! Fix the experimental configuration, choose a da
representationx, a geoacoustic model vectorm, and a for-
ward acoustic modelF such thatF ~m!5x.

~2! Generate the training set$xi5F ~mi!,mi%i51
N by ran-

domly selecting the vectorsmi in the search space of phys
cally admissible parameters. If additionala priori knowledge
is available in terms of certain features of the expected so
tion, force each elementmi to exhibit these features.

~3! For each parametermk in the vectorm, identify the
RBF coefficients cki by using the known relations
(mk) j5( i51

N cki exp~ixj2xii
2/sk!, j51,...,N. A system ofN

linear algebraic equations has to be solved for each ge
coustic parameter.

~4! Generate a test set, and compute the mean rela
error and variance of the RBF inverse solution on the test
If not satisfied, go to step~2! and increase the numberN of
pairs in the training set.

~5! Apply the RBF inversion to the data.

II. SIMULATED DATA INVERSION

Some results of the RBF approach were repor
earlier.25,32Here we report two illustrative examples, one
show the decrease in the approximation error as the num
of pairs in the training set is increased, the second to ill
trate the network design employed on the field data in S
III. In both cases acoustic propagation at low frequency i
shallow water channel is considered.

In the example 1, the geoacoustic parameter vectorm is
formed by the compressional velocities of a five-layer se
loor, where each layer has a 5-m thickness. All the ot
parameters are assumed known and are reported in Tab

The data vectorx is the amplitude of Green’s function a
a frequency of 100 Hz, sampled at 64-equally spaced po

1477 J. Acoust. Soc. Am., Vol. 100, No. 3, September 1996
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in the horizontal wave number space. The undersampling of
Green’s function has been considered to resemble the ap-
proach of Collinset al.7 In the generation of the training and
of the test sets, the sound speed in every layer is allowed to
vary between 1500 and 2000 m/s. A positive gradient of
compressional velocity versus depth is forced, so that the
velocity in layer i is always greater than or equal to the
velocity in layer i21. Training sets consisting of 50, 100,
200, 400, and 800 pairs, were considered; the same test set of
100 pairs was used in all the above examples.

In evaluating the inversion result, it is important to re-
member that we report, for each geoacoustic parameter, the
mean error over the whole test set. For this reason, the usual
representation of the results~‘‘true’’ versus ‘‘estimated’’!
would not be feasible or even significant in this case.

In Fig. 1 the mean approximation error over the test set
is reported for each layer as a function of the number of pairs
in the training set. It can be seen that, as expected, the mean
error decreases at an increasing in the training set, and that,
in the case of a training set of 800 pairs, the error for every
layer is below 0.7%. In looking at the result, one has to take
into account that, by generating the solution at random~but
with the constraint of positive gradient versus depth!, the
relative error is of the order of 10%.

TABLE I. Geometric and environmental information for example 1. The
data vector to be inverted is the amplitude of the undersampled Green’s
function. The geoacoustic parameters to be retrieved are the compressional
wave velocities in five layers of equal thickness. The search interval is
1500–2000 m/s for each layer.

Water depth~m! 140

Source frequency~Hz! 100

Source depth~m! 100

Receiver depth~m! 100

Sound speed in water~m/s! 1500

Layer thickness~m! 5

FIG. 1. Example 1. Mean percentage error over the test set for each layer as
a function of the number of pairs in the training set. The number on each
curve is referred as to the layer number.

1477A. Caiti and S. M. Jesus: Estimation of seafloor parameters



FIG. 2. Experimental configuration of the field experiment.
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We note, incidentally, that a number of training data
the order of 103 of magnitude is not critical either from th
point of view of the network coefficient determination
from the required forward model runs. The generation of
training set of 800 pairs always required less than 2 h on our
nonoptimized implementation on an HP 735 workstat
with multiple users.

Example 2 was part of a preliminary assessment of
technique for application to the experimental data reporte
Sec. III. This explains some of the similarities with the e
perimental situation. An horizontal towed array of 40 e
ments, at 4-m spacing, is the receiving system, so the
vector x is in the amplitude of the pressure field at the
ceivers position. The experimental situation is conceptu
similar to that of the sea trial, and is reported in Fig. 2. T
source is transmitting a 100-Hz tone signal; the other
evant geometrical and environmental parameters~slightly
different from those of the experiment! are reported in Table
II.

The bottom was discretized in three layers of 5-m thi
ness each, the geoacoustic model vector to be retrieved
in the compressional and shear velocities for the three lay
and the compressional wave attenuation of the first two
ers, for a total of eight parameters. The search space
each parameter are reported in Table III.

A training set of 800 pairs was generated, forcing a po
tive gradient versus depth for both compressional and s
speeds. No assumptions were made for the attenuation.
results over a test set of 100 pairs, generated with the s
assumptions used for the training set, are reported in T
IV.

TABLE II. Geometric and environmental information for example 2. T
data vector to be inverted is the amplitude of the pressure field on a
element horizontal array. Elements spacing is fixed at 4 m. The geoaco
parameters to be retrieved are the compressional and shear wave velo
each layer, plus the compressional wave attenuation in the first two la

Water depth~m! 140

Source frequency~Hz! 100

Source depth~m! 100

Receiver depth~m! 100

Source–1st receiver distance~m! 200

Sound speed in water~m/s! 1500

Layer thickness~m! 5
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The results of this simulative test show that, at least in
this case, the accuracy of the RBF inversion is physically
consistent with the relative influence of each parameter on
acoustic propagation. One would especially expect the
acoustic field to be most sensitive to the compressional ve-
locity, to be fairly sensitive to any shear velocity of the order
of magnitude of 400 m/s and above, and possibly to show
some sensitivity to the compressional attenuation. By look-
ing at the results in Table IV, one can see that compressional
velocities are all estimated with a mean error of less than
1%; the shear velocity of the third layer, being on the aver-
age higher than those of the first two layers~remember that
the shear velocity is forced to have a positive gradient w.r. to
depth!, is also better retrieved. As for compressional wave
attenuation, the standard deviation values show that, in this
case, the RBF approximation is not able to produce any
meaningful result, confirming the expectation that the acous-
tic field is least sensitive to this parameter.

III. FIELD DATA INVERSION

We will now describe the results obtained with the RBF-
based inversion on towed array data in a shallow water en-
vironment. This data set was acquired during an experiment
that took place in February and March 1995 in the Adventure
Bank area of the Strait of Sicily in the Mediterannean Sea.
The experiment focused on at-sea testing of operational pro-
cedures to estimate geoacoustic parameters in shallow water
with a moderate aperture towed array. A 40-hydrophone,
4-m spaced, horizontal array was employed, together with a
flextensional sound source operated at low frequency in cw
mode. Both source and receivers were towed from the same
platform at 4 knots, with the geometric configuration of Fig.
2. The relative position of the source-receiving array geom-
etry was monitored at regular intervals by acoustic means.

0-
stic
ty in
rs.

TABLE III. Parameter search space for example 2. The training set has
generated by randomly selecting the geoacoustic parameter values in inter-
vals noted with the constraint of positive compressional and shear velocity
gradients versus depth.

Layer No.
P velocity

~m/s!
S velocity

~m/s!
P attenuation

~dB/l!

1 1500–1900 80–400 0.1–1

2 1500–2000 80–600 0.1–1

3 1600–3000 150–1500 •••
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TABLE IV. Mean relative error and standard deviation of the RBF inversion result over the test set for examp
2.

Layer No.

P velocity S velocity P attenuation

Mean ~%! s.d. ~%! Mean ~%! s.d. ~%! Mean ~%! s.d. ~%!

1 0.4 0.3 4.0 6.5 24 86

2 0.7 0.8 7.2 12.8 22 37

3 0.8 1.6 3.3 4.1 ••• •••
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The deformation of the towed array was constantly mo
tored in real time by means of nonacoustic sensors. Gro
truth information was obtained by independent measu
ments through gravity cores, geophone data, and a sha
seismic survey, integrated with Hamilton’s tabulation34 and
geological information on the area. The independent ge
coustic model thus obtained is reported in Table V, toget
with the relevant water column information. It is importa
to underline that the information on the last sediment la
was derived through the use of Hamilton regression eq
tions, and not by direct measurements. The sediments in
area are generally described as sandy sediments rich in
bonate content.

A detailed description of the experiment, including th
system setup, will be described elsewhere. A cruise and
report can be found in Ref. 32. For the purpose of the pres
article, we are satisfied in reporting the results obtained
verting a subset of the whole data set that can be dire
compared with the geoacoustic model of Table V. For t
set of data, the acoustic source was transmitting at 110
As mentioned earlier, the SNR during the experiment w
estimated of the order of 20 dB.

The data set to be inverted consisted of 15 ‘‘snapshot
each one the amplitude of the 110-Hz pressure field as
ceived at the 40 hydrophones. The snapshots were colle
at different instants in time during the tow. Before the inve
sion, the data were smoothed with a 4-point moving avera
The smoothed data set is reported in Fig. 3.

The 15 snapshots were acquired over a range of 600
in an environmental situation that could be fairly describ
as range independent. However, as can be seen, the
show some relevant variability from one snapshot to
other.

Using the information on the receiver’s position~both in

TABLE V. Geoacoustic model of the experiment site obtained through
dependent measurements and Hamilton’s regression curves. Depth i
sumed 0 at the water surface.

Depth
~m!

P velocity
~m/s!

S velocity
~m/s! Description

0–118 1508 0 water column

118–124 1550 230 recent sediments—sand

124–126 1585 275 transition—sand

126–136 1610 290 quaternary sediments—san

>136 1700 360 quaternary sediments—san
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depth and range!, source depth~40 m! and source-first re-
ceiver distance~535 m!, a RBF inversion network was built
with the methodology described in Sec. I and with the same
discretization and training rules of example 2 in Sec. II. Note
that, although known, we have not included the true layer
thickness in order to have a sort of ‘‘blind’’ or semiblind
application of the method.

Each of the 15 snapshots was inverted by the same net-
work. The results of the inversion for each snapshot were
averaged, and the average values, together with the standard
deviation, are reported in Table VI. These results can be
directly compared with those of the independent Hamilton-
based geoacoustic model. Moreover, the standard deviation
gives an indication on the variability of the estimates. Note
that this variability can be due both to the approximation
inherent in the RBF approach and to the variability of the
data themselves.

It can be noted that the results obtained are fairly close
to that of the independent geoacoustic model, taking into
account the differences in methodology. The compressional
velocities estimated with the RBF inversion are higher than
those of the Hamilton-based model, particularly in the last
layer. Note, however, that the RBF estimate is closer to what
may be expected for a carbonate sand sediment, and that in
the same area it was already reported, at least for shear ve-
locity, that there was a discrepancy between Hamilton-based
expectations andin situmeasured values.24

FIG. 3. Amplitude of the pressure field as received at the hydrophones for
the fifteen snapshots.

-
as-
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The high values of the standard deviation for the she
velocity are an indication of a poor performance of the in
version scheme or of a strong lateral variability of she
properties in the area~or both!. It has to be taken into ac-
count that the data do display variability, and that perha
even averaging the estimates on a relatively short path m
lead to incorrect conclusions.

For sediment classification purposes, it may be intere
ing to compare the estimatedP velocity versusS velocity
ratio to those reported by Hamilton.33 This was done by con-
sidering the ratio of the mean estimates and the maxim
and minimum ratio compatible with the standard deviatio
reported. The results are reported in Fig. 4, together w
Hamilton’s curves. Note that we estimate interval velocitie
for a three-layer model, where each layer has a thickness
5 m. Note also that again Hamilton’s tabulation holds for fin
sand, since he had insufficient data to examine soft, unlit
fied calcareous sediments.33 For consolidated and/or lithified
bottoms, Hamilton reports velocity ratios between 1.71 a
2.06, with only one exception at 2.66~see Ref. 33, Table III!.
Looking at Fig. 4, it is possible to see that our estimate
ratios, even taking into account the relevant standard dev
tion in the shear velocity, allow for an unambigous classi
cation of at least the second and third layers as uncons
dated sediment, slightly harder than water saturated fi
sand. By combining this information with the compression
velocity estimates alone and the data in Ref. 34, the sedim

TABLE VI. Result of the RBF inversion, averaged over the data set of F
2.

Depth
~m!

P velocity S velocity

Mean
~m/s!

s.d.
~m/s!

Mean
~m/s!

s.d.
~m/s!

118–123 1576 30 184 142
123–128 1660 86 353 140
>128 1850 73 373 154

FIG. 4. Compressional versus shear velocity ratio as a function of dep
Dotted line with stars: inversion results, together with error bars due to
uncertainty in the estimate. Continuous line: typical profile for fine san
~from Ref. 34 and Table II!. Dotted line: typical profile for silt clay~from
Ref. 34 and Table I!.
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can be classified as a low porosity coarse sand.

IV. DISCUSSION AND CONCLUSION

The RBF approach to geoacoustic inversion was intro-
duced, and has proved feasible on simulated data. The first
attempt to use this inversion technique on field data has
given results that are in qualitative and, to a certain extent,
also in quantitative agreement with independent estimates of
the same quantities. It has also to be noted that we have not
attempted any particular optimization of the RBF procedure
tailored to the specific experimental situation. Our purpose
here is to show the results of the technique in its standard
formulation. We are currently exploring optimization proce-
dures with the goal of not loosing, or loosing only in part, the
generality and the simplicity of the method.

From the point of view of computational efficiency, the
inversion of the fifteen data sets required 900 runs of the
forward model~as many as needed by the trainingand the
test set!, plus the solution of the linear algebraic systems for
the coefficient identification. If one wants to compare this
with the number of forward model iterations needed for a
global search strategy, one has to consider that a new global
search should be done for each of the fifteen snapshots in the
data set. By using, for instance, the amount of forward model
computations reported for typical runs of the genetic
algorithms,13 one gets 10 000 runs of forward models for a
single search with the standard algorithm, and 1000 runs
~still for a single search! with the hybrid version.

The saving in computational time may seem evident;
however care should be taken in comparing the two methods
only on the basis of numerical efficiency. The RBF approach
is well suited for all applications in which the same experi-
mental configuration is used to survey different areas, and
particularly if the experimental setup is known in advance. In
this case, the network coefficient can be identified before the
experiment, and the inversion can be performed in real time.
Geophysical surveys with a towed array, like the one of the
experiment in Sec. III, are an example of such a situation.

However, one has to remember that, even in the best
case, the RBF scheme is inherently anapproximation. When
accuracy in the result is a critical parameter, global search
strategies should still be preferred.
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