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1. Introduction
As human activities increasingly impact on marine ecosystems, the marine acoustic envi-

ronment is changing significantly, posing a threat to marine life. Marine mammals rely on sound
for essential functions like navigation, communication, and prey detection (Edds-Walton, 1997).
Commercial shipping, offshore exploration, seismic surveys, and military sonar operations have
been identified as particularly harmful to marine fauna (Merchant et al., 2014), leading to ad-
verse effects including physical injury, hearing loss, altered behaviour, and disrupted social and
reproductive patterns (Weilgart, 2007; Merchant et al., 2014). Responses to these disturbances
vary depending on factors such as species, age, and previous exposure to noise, complicating
ecosystem management efforts (Weilgart, 2007; Gillespie et al., 2013). Despite growing research
attention (Gillespie et al., 2013), understanding of marine ecosystems and mammal responses
to disturbances remains limited (Zimmer, 2011; Correia et al., 2021).

Cetaceans emit a wide range of sounds spanning from low frequency (LF) to high frequency
(HF), covering 10 Hz to 100 kHz (Herman, 1980; Richardson et al., 1995). These sounds vary
in duration, modulation, and structure, ranging from brief calls to prolonged series lasting hours
(Sayigh, 2013). Baleen whales, distributed globally, produce unique acoustic calls, with LF
calls (< 500 Hz) being specific to this group (Harland and Armstrong, 2004; Nowacek et al.,
2007). Call types within species share similarities but may differ in duration, frequency, and
structure. For instance, fin whales often produce 20 Hz calls lasting 1-2 seconds, while blue
whales produce amplitude- and frequency-modulated calls with longer durations (Watkins et al.,
1987; McDonald et al., 2006). These calls are associated with social interactions or feeding
behaviours (Širović et al., 2014; Lewis et al., 2018), and their variations provide insights into
geographic and sub-population differences (Thompson et al., 1992; McDonald et al., 2006).
Acoustic detection and monitoring of these calls aid in species identification, subpopulation
assessment, and understanding migratory patterns (Stafford et al., 2001; Davis et al., 2020).

Several techniques have been developed for automatic detection and classification of cetacean
signals, considering factors such as background noise, species sound variability, and relevant
acoustic parameters (Marques et al., 2013). Performance of these techniques relies on species,
recording environment, dataset size, and extracted descriptors (Mellinger and Bradbury, 2007).
Evaluation metrics include precision, sensitivity, specificity, receiver operating characteristic
(ROC), recall (true positive rate), F-measure, and positive/false positive/false negative rates
(Sokolova and Lapalme, 2009; Knight et al., 2017). Various automatic detection algorithms
have been employed for detecting the LF calls of baleen whales. These include matched filters
(Stafford et al., 1998; Harris et al., 2013), energy detectors (Morano et al., 2012), and subspace
projection detectors (Socheleau et al., 2015; Leroy et al., 2016). However, spectrogram correla-
tion has emerged as the most widely used algorithm (Mellinger and Clark, 2000), implemented
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in various software (Figueroa and Robbins, 2008) and applied across diverse datasets (Balcazar
et al., 2015; Aulich et al., 2019).

The spectrogram correlation, like matched filters, evaluates spectrogram output pixels by
pixels rather than in time or frequency domains, by comparing image models or kernels directly
with spectrogram results. However, its effectiveness, as highlighted by Miller et al. (2021), fluc-
tuates according to factors such as signal-to-noise ratio (SNR) and other environmental vari-
ables such as acoustic propagation and call density. While this facilitates comparisons between
sites and time periods, manual verification may be required to deal with false positives, which
is problematic with large datasets. Then, deep neural networks offer a promising alternative
to spectrogram correlation detectors, potentially yielding superior performance (Usman et al.,
2020). These advanced algorithms not only resolve the uncertainties involved in estimating
call density, but also reduce the human effort required to confirm true positives and deal with
false positives. Despite their advantages such as pattern recognition capabilities, adaptability to
the environment and flexibility, neural networks have limitations, including the need for large
training datasets (Ibrahim et al., 2018; Rasmussen and Širović, 2021). Finally, the subspace al-
gorithm for LF calls detection, developed by Scharf and Friedlander (1994); Kraut et al. (2001),
offers accurate detection capabilities suitable for this study. Previously demonstrated by Soche-
leau et al. (2015) to significantly outperform XBAT (spectrogram correlation) by 15-20%, this
method adapts well to transient signals, which are important for detecting the temporal varia-
tions of whale calls in dynamic acoustic environments. Although it requires prior knowledge of
signal modes, unlike generally machine learning, this approach allows precise control of perfor-
mance, making it promising for the automatic detection of LF calls. The approach has to date
been applied exclusively to B. musculus and tested with real data (Socheleau et al., 2015; Leroy
et al., 2016).

Expanding this method to include additional baleen whale species to perform a library,
alongside B. musculus, is the focus of the study. We aim to develop an adaptable approach
for LF vocalization detection using acoustic gliders in a simulated marine environment, in the
context of the TRIDENT project (begins on June, 2024) at the Tropic Seamount (23.90°N, -
20.70°E). Acoustic gliders, known for their silent operation and ability efficiently to cover vast
distances, offer a valuable platform for passive acoustic monitoring (Baumgartner et al., 2020),
overcoming limitations of other marine monitoring technologies (Goldstein and Bentley, 2010).
We seek to assess its robustness and performance across various contexts, aiming to enhance our
understanding of marine acoustic biodiversity and provide effective tools for cetacean conser-
vation.
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2. Materials and methods
2.1. Study areas

Fig. 1. Tropic Seamount
bathymetry (23.90°N, -20.70°E).

The Tropic Seamount is set in the Canary Is-
lands seamount region, west of the Western Sahara
coast and southwest of the Canary Islands, north
of Cape Verde (23.90°N, -20.70°E). It rises to a
depth of 970 meters (Fig.1). Seamounts are rec-
ognized for their role in the functioning of vari-
ous underwater ecosystems, affecting the currents
and increasing the flow of prey, ultimately cre-
ating an ”oasis” of productivity (Pitcher et al.,
2007), where trophic cascades are triggered by at-
tracting a variety of marine megafauna (Morato
et al., 2008). Studies have identified cetaceans
and seabirds around seamounts, suggesting them
as ecological ”hotspots” (Yen et al., 2004; Gar-
rigue et al., 2015).

The Tropic Seamount is on the migration route of 3 major species of baleen whales in
Atlantic waters (Romagosa et al., 2020; Valente et al., 2019): B. musculus (blue whale), B.
physalus (fin whale), and B. borealis (sei whale). Baleen whales are known to utilize seamounts
extensively for various activities such as feeding, breeding, resting, and navigation, highlighting
the critical role of seamounts in their offshore habitat (Garrigue et al., 2015).

2.2. Simulated Environment

Fig. 2. Study problem diagram.

Here, our detection problem is applied in a simulated environment in which the different
LF calls of the 3 baleen whale species pass through an oceanic acoustic channel modeled using
BELLHOP (Fig.2). We aim to define a library of the LF calls and to test the performance of the
detector in discriminating among the calls in the library. This configuration provides a close-
to-reality scenario for evaluating the performance of our detection algorithm and its ability to
accurately identify whale calls in the complexity of the underwater acoustic environment.

3



Advancing Low Frequency Marine Mammal Calls Detection Algorithm

2.2.1. BELLHOP model
The BELLHOP model is a ray-tracing acoustic pressure calculation tool developed by Porter

(2011). It uses beam tracing techniques and employs Gaussian and hat-shaped beams with geo-
metric and physical spreading laws. In our case, we simulate our simulated environment, using
BELLHOP, by calculating the acoustic channel where whale LF calls pass through and are re-
ceived by a receiver. The model takes into account various environmental factors, such as sound
speed profile (SSP), ocean surface and bottom properties, bathymetry, and reflection coeffi-
cients. The model outputs transmission loss, eigenrays, arrival times, and received time data,
enabling thorough acoustic analysis (Fig.3). The model dynamically reads input files according
to the options selected in the environment file.

Fig. 3. BELLHOP model structure.
2.2.2. Channel design

The acoustic channel is an important factor when designing underwater acoustic detection
systems, as it plays an important role in signal propagation from the source. The acoustic channel
affects how signals travel through the water, influencing amplitude, phase and frequency due to
interactions with environmental parameters such as bathymetry, SSP and acoustic layer distribu-
tion. For the simulation of the Tropic Seamount region, the incorporation of detailed bathymetric
data from GEBCO (General Bathymetric Chart of the Ocean) and sound velocity profiles de-
rived from temperature and salinity profiles from HYCOM (HYbrid Coordinate Ocean Model)
enables accurate modeling of the environmental parameters of the channel. Considering the
source, receiver, boundary properties and distribution of the acoustic layer, the challenge is to
theoretically understand the potential impact of this channel between source s and x (Fig.2). This
will enable us to predict how the acoustic signal will be modified as it passes through the under-
water environment, and to optimize the detection parameters to improve the detector’s reliability
and accuracy under real-life conditions.
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2.3. LF Calls
2.3.1. ”AB”-Calls

Atlantic blue whale vocalizations, characterized by long, patterned sequences of very-low-
frequency chirps ranging from 15 to 30 Hz (Mellinger and Clark, 2003), exhibit a hierarchical
organization into phrases, each composed of one to four distinct unit types. Typically structured
as two-part phrases ”AB”, these sequences feature a monotonic ”A” segment around 19 Hz and
lasting approximately 8 seconds, followed by a slight frequency-modulated 1 Hz downsweep
”B” segment lasting approximately 11 seconds, recurring every 70 seconds (Mellinger and Clark,
2003). Variants may involve repetitions of only the ”A” or ”B” segment. Additionally, sequences
may include a hybrid ”AB” unit, called a ”C” unit, where the ”A” and ”B” units are combined
without a gap between them. Some phrases conclude with a final unit, ”D”, a monotonal 9-Hz
unit lasting a few seconds. Silent periods between sequences average slightly over 4 minutes
(Edds, 1982; Mellinger and Clark, 2003).

Monotonic units are the prevalent components found in every song, often accompanied by
downsweeps, while hybrid units frequently initiate phrases (Berchok et al., 2006). The 9-Hz
unit commonly follows hybrid units but may also occur after other unit types (Mellinger and
Clark, 2003). In our case, we can approximate the “AB” signal as a logistic model for the time-
frequency function f (t), as Socheleau et al. (2015) defined by:

f (t) = fc +
1

2π
dϕ(t)

dt
= fc +L+

U −L
1+ eα(t−M)

(1)

Here in Eq. 1, fc represents the central frequency of the signal, between fmin and fmax. The
upper (U) and lower (L) asymptotes of the sigmoid are defined respectively as : U = fmax − fc ;
L = fmin− fc. Then, α defined the slope of the downsweep. Finally, parameter M represents the
time shift (s) associated with fc, when downsweep occurs. In the case of a more accurate “AB”
signal description, α is set to 0.5 and M is given by 4

5 of the signal duration.

Fig. 4. ”AB”-Call waveform in time fre-
quency.
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2.3.2. Downsweeps
Downsweeps (DS) chirps are a prominent feature in the vocalizations of fin, sei whales.

Atlantic fin whale calls exhibit two typical downward sweeping: ”20-Hz” downsweep (DS-20),
from 28 to 15 Hz and ”40-Hz” downsweep (DS-40), from 75 to 40 Hz, both lasting approximately
1 s and may occur as single events, short irregular series, or long regular series lasting over 24
hours (Watkins et al., 1987; Castellote et al., 2012; Romagosa et al., 2021). Similarly, Atlantic
sei whale vocalizations feature downsweeps (DS-Sei) lasting around 1.4 seconds, spanning from
82 to 34 Hz on average, extending from an average maximum frequency of 90 to 105 Hz down to
an average minimum of 35 to 42 Hz over 1.6 seconds, with a peak frequency occurring between
65 and 70 Hz. Recorded sei whale calls encompass a frequency range from 30 Hz to 129.4 Hz,
often observed in pairs but also occurring as triplets or single calls (Baumgartner and Fratantoni,
2008; Español-Jiménez et al., 2019). Thus, downsweeps can be described as a hyperbolic decay,
as indicated by Eq. 2, in which fini represents the beginning frequency of the signal and fend the
ending frequency:

f (t) =
1

2π
dϕ(t)

dt
=

fini fend

fend +
(

fini − fend
)

t
(2)

Fig. 5. Waveform in time-frequency of 3 downsweeps: 20-Hz (left), 40-Hz (middle) and
sei whale (right).

2.3.3. ”D”-Call Downsweeps
Downsweeps chirps characterized as ”D”-Call is emitted by blue whales with a wide fre-

quency range from 80 to 30 Hz and durations spanning between 0.6 to 3s (Schall et al., 2019;
Romagosa et al., 2020). In our study, we approximate the ”D”-Call downsweep similarly as Eq.

1, in which α = 2, but the sequence is focused on the downsweep without considering the mono-
tonic parts with signal duration. Monotonic segments are present as the duration increases, but
in the case of the ”D” downsweep of a relatively short duration, these segments are not included.
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Fig. 6. ”D”-Call waveform in
time frequency.

In regions where blue whales coexist with fin
or sei whales, their overlapping downsweep calls
make acoustic identification challenging. This over-
lap can lead to misidentification, complicating pas-
sive acoustic monitoring and potentially affecting
conservation efforts. Accurate species identification
is essential for understanding population distribu-
tions, ecological interactions, and implementing ef-
fective conservation strategies.

2.4. Matched Subspace Detector
2.4.1. Detection problem

A fundamental approach to the analysis of baleen whale chirps in the Tropical Seamounts
region is provided by the Matched Subspace Detector (MSD) method (Scharf and Friedlan-
der, 1994). The algorithm consists of the design of a signal subspace using signal patterns. In
particular, considering an observation window of N samples, the observation vector y ∈ CN is
expressed as follows:

y = µx+w (3)

Based on y the noisy observation model (Eq. 3), our detection problem is to determine
whether µ is 0 or 1, indicating respectively the absence or presence of signal x. The decision
must be made in the presence of Gaussian white noise w.

2.4.2. Subspace design
MSD are generally used when the noisy observation (Eq. 3) includes a signal x which is a

linear combination of p modes. In this case, x is represented by xxx === HHHθθθ , where H is a known
N× p matrix and θ is a p×1 vector containing the coordinates of signal. The p modes parameter
represents the number of variations in amplitude and phase of the signal. For each signal type
described in previous section, the function iterates over p subspaces, calculating the complex ex-
ponential component ei·ϕ(·), resulting: hl =

[
eiϕ(l⌊N/p⌋) eiϕ(l⌊N/p⌋+1) . . . eiϕ((l+1)⌊N/p⌋−1)

]T
the

l-th basis vector of size N/p and ϕ(·) the time-varying phase.
Thus, the <H> subspace library of LF calls is defined according to the following nomen-

clature: <HAB>, <HDS−20>, <HDS−40>, <HDS−Sei> and <HD> . The projection matrices onto
<H> is defined as: PPPH === HHH(((HHHTHHH)))−1 HHHT enabling the isolation and analysis of each signal
of interest within the subspace detector framework. According to Socheleau et al. (2015), the
model described by xxx === HHHθθθ serves as an approximation of reality, yet it remains valid due to the
significant portion of LF call energy concentrated within the subspace <H>. Essentially, when
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projecting signal x onto subspace <H>, denoted as xxxTPPPH xxx, a considerable portion of its total en-
ergy xxxTxxx is captured, particularly when p, the dimension of the subspace, is adequately chosen.
In our simulated case, with no real whale call data, p is set to 1, simplifying our <H> subspace
to a single dimension. This choice, based on simulated signals, avoids accounting for all signal
variations, easing calculations for the projection matrices PH . While real whale calls vary in
amplitude, frequency, and phase, using a single mode here allows us to focus on the theoretical
evaluation of our detector’s performance without the complexity of real signal variations. It is
important to note that while the energy ratio increases with larger values of p, the ability of the
model to distinguish between different signals decreases. In the extreme case, where p = N, any
random signal of size N will satisfy xxxTPPPH xxx = sssTxxx.

2.4.3. Detection statistic test
Detectors can be affected by background noise, interference and mismatched models, lead-

ing to errors or false alarms. The initial detection problem is defined in terms of a constant false
alarm rate statistic T , compared with a threshold η for detecting LF call chrips. However, it is
impossible to use signal x in the real case where there are only noisy observations y recorded by
receivers, as defined by the model (Eq. 3). This statistic is given by the following relation:

T (y) =
yyyTPPPH yyy
yyyTPPP⊥

H yyy
≥ η ⇐⇒ ∥PPPT

H yyy∥2

∥PPP⊥
H yyy∥2

≥ η (4)

Where PPP⊥
H ===(((III−−−PPPH))) is the orthogonal projection matrix. The T statistic measures the ratio

of the energy of the noisy observation vector y in the whale-call subspace <H> to the energy in
the orthogonal noise <H⊥>. In our detection framework, the test statistic T (y) follows a Fisher
distribution F2p+2,N−2p−2. To set the detection threshold, we consider the probability of false
alarm PFA and the noise variance σ2. Thus, η is given by:

η(σ2,PFA) = σ2 χ2
inv(1−PFA, 2p+2)

χ2
inv(1−PFA, N −2p−2)

(5)

If T (y)≥ η , the MSD concludes that µ = 1 with presence of the interest signal; otherwise,
it concludes that µ = 0. In a simulated environment, σ2 can be easily defined. In the real case,
the true value cannot be known, so it is necessary to estimate it, in this case with P-percentile
method. The method is defined by the statistic P, generally 10 ≤ P ≤ 20%, to ensure that we
avoid including the signal component, which is expected to have higher energy than the noise.
It is important to rank |y|2 in order, as the lowest values are, by hypothesis, only characterized
by noise from which the first P values are taken to estimate the noise variance. The P-percentile
method is more accurate when the N samples of y are sufficiently large (Jesus, 2019).
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3. Simulated data results
3.1. BELLHOP Acoustic channel

Fig. 7. Acoustic channel in the Tropic Seamount region modeled with BELL-
HOP (latitudinal section at 23.9°N): simulation of transmission loss due to en-
vironmental factors with a source at 100 m (left) and at 4000 m (right).

In an ocean acoustic channel, factors such as bathymetry, SSP, attenuation, source depth
and propagation distance significantly influence signal transmission. The bathymetry affects
the trajectories of acoustic rays through reflections and refractions, while the SSP causes depth-
dependent variations in sound velocity, bending the rays. As a result of absorption and scattering,
attenuation reduces signal intensity over distance. Source depth and transmission angle affect
reflections on the surface and seabed, and longer distances increase signal loss. For deep sources,
acoustic rays may be absorbed or reflected by underwater reliefs (Fig.7), limiting coverage. For
shallow sources (0-100 m), rays can travel further, reducing attenuation. These factors affect
signal properties such as amplitude, phase and frequency, which in turn affect detection and
analysis, and also affects the time arrivals of the rays received, depending on their direct or
non-direct path (Fig.8).

Fig. 8. Time arrivals of signal from a source
(at 100m), calculated with BELLHOP, re-
ceived by receiver (at 175 km from the
source): the peaks correspond to an arrival,
so overlapping is possible.
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3.2. Theoretical detector performance

Fig. 9. Probability of detection
(PD) versus probability of false
alarm (PFA) for the MSD detec-
tion of the “D”-Call signal.

In a signal detection context, an experimental
assessment of the performance of the detector is fun-
damental to optimize its ability to perform in sig-
nal analysis. The receiver operating characteristic
(ROC) curve is used to measure the sensitivity of the
detector to discriminate between signal and noise.
Our ROC analysis for the MSD gives an overview
of the performance of the detector under different
signal-noise ratios (SNR), as following:

SNR = 10 log
(

x̄ 2

σ2

)
(6)

Here, Eq. 6 describes signal quality relative to noise using a logarithmic scale in decibels
(dB), comparing mean signal power x̄ 2 to σ2. High SNR indicates better signal quality. At 0
dB, the ROC curve is the lowest (Fig.9), indicating difficulty in detecting weak signals (Fig.11).
At 10 dB SNR, the ROC curve is the highest, showing effective detection of strong signals with
minimal false alarms.

Fig. 10. Detection probability
(PD) as a function of SNR for the
MSD detection of the “D”-Call
signal.

Additionally, as PFA increases, our MSD be-
comes less strict, detecting weaker signals at the cost
of more false alarms (Fig.10). For a low PFA of 0.01,
the detector needs a higher SNR to maintain a high
PD, indicating high reliability but lower sensitivity
to weak signals. For a moderate PFA of 0.05, the de-
tector balances sensitivity and reliability, requiring a
moderately high SNR for reasonable PD. For a high
PFA of 0.1, the detector is highly sensitive, detect-
ing signals at lower SNR, but this increases the false
alarm rate.
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Fig. 11. ”D”-Call signal with noise as function of time: SNR at 0 dB (left) and
at 10 dB (right).

3.2. Discriminatory performance
Our subspace detector performs best in high SNR environments and can be adjusted for

higher detection rates by accepting more false alarms. Ongoing tests evaluate the MSD’s ability
to discriminate LF calls from the library (Fig.12), using a fixed SNR and PFA. However, the dis-
crimination results, for each whale call with all PH matrices, indicate that all signals are perfectly
detected. A discrimination problem remains between each signal. The hypothesis is proposed to
assess the issue: the projection matrices are not sufficiently different to be discriminating. Thus,
to test the hypothesis, we use the Grassmann distance method to have the degree of similarity of
the PH matrices, as following:

dist(PHa , PHb) =

√√√√ k

∑
n=1

θ 2
i (7)

Where θi are the principal angles based on the singular values of the SVD (Singular Value
decomposition) for the two projection matrices PHa and PHb , while k is the number of singular
values.
Tab. 1. Discrimination performance of PH matrices: Grassmann distance for pairwise
comparison of the similarity distance of PH matrices.

PPPAB PPPD PPPDS−20 PPPDS−40 PPPDS−Sei

PPPAB 0 118.592 118.592 118.592 118.591

PPPD 0 47.124 47.124 47.123

PPPDS−20 0 27.162 27.176

PPPDS−40 0 27.175

PPPDS−Sei 0

11
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Here, as shown Tab.1, PAB has a significantly high value (118) compared with the other
matrices, indicating high dissimilarity and therefore meaning that it is distinct from the others.
Likewise, the PD matrix indicates a more moderate dissimilarity (47) with PDS−20, PDS−40 and
PDS−Sei. This score indicates a moderate distinction between the different downsweeps of the
blue whale and those of the fin and sei whale. Finally, the distinction between each DS with
PDS−20, PDS−40 and PDS−Sei is relatively poor (27), indicating a slight similarity between these
different fin and sei whale calls. The result is consistent with the approximation of the mathe-
matical formulation of DS (Eq. 2), which is similar between these 3 calls.

Fig. 12. Spectrogram of 5 LF calls SNR at 10 dB, Kaiser window (128, 18), FFT length
(256 points), window overlap (75%): ”AB”-Call (top left), ”D”-Call (top middle), ”DS-
20” Call (top right), ”DS-40” Call (bottom left) and ”DS-Sei” Call (bottom right).

12



Advancing Low Frequency Marine Mammal Calls Detection Algorithm

4. Discussion
The MSD detector algorithm, based on the subspace method, is implemented to detect and

identify different LF calls of baleen whales from a library of Mid-Atlantic species, described in
literature (Mellinger and Clark, 2003; Schall et al., 2019; Romagosa et al., 2021). By working in
a fully simulated environment, we can control all parameters influencing the detector, enabling
us to optimize it realistically for experimental detection scenarios. The theoretical performance
of the MSD highlights its efficiency under optimal noise conditions, becoming more effective
with high SNR ratios (Fig.9-10). Distinguishing signals in a noisy environment is challeng-
ing. Theoretically, by increasing the SNR, the signal from the whale is more distinct from the
noise, and therefore the discrimination is significantly greater. In our case, the results indicate
an absence of discrimination for each subspace, independent of the value of SNR and PFA. Ac-
cording to the degrees of similarity between each pair of PH matrices (Tab.1), it is possible to
discriminate the signals on the basis of this factor alone. This poor discrimination can be ex-
plained hypothetically by the fact that the η detection threshold is ill-suited to the detection of
several different signals. For each noisy signal containing a different whale sound, to which the
variance of the noise is estimated, this threshold is approximately identical between each signal,
and therefore doesn’t allow the whale sounds to be dissociated. Thus, it is necessary to further
estimate an adaptive detection threshold for each whale signal, in order to complement the dis-
criminant qualities of the PH matrices. Meanwhile, the degree of similarity of PH shows that
the approximation of the downsweeps ”DS-20”, ”DS-40” and ”DS-Sei” with the same equation
(Eq. 2) on relatively close frequency ranges, will also be a problem to be managed a posteriori
of the adaptation of detection thresholds, to avoid the confusion of these signals produced by fin
and sei whales. In addition, Socheleau et al. (2015) addressed interferences in their work, recog-
nizing that signals similar to whale calls can disrupt detection performance in subspaces. In our
study, we opted to simplify the problem by focusing solely on an observation y that includes the
LF calls and noise. This simplification is crucial for evaluating performance in basic scenarios.
Future work will build on this foundation by considering more complex cases, including external
sources that interfere with the signals of interest.

The effectiveness of the MSD detector depends on a number of factors, including noise
and the complex nature of the acoustic environment. By modeling the acoustic channel using
BELLHOP, a comprehensive examination of environmental variables such as bathymetry, SSP,
attenuation, source depth and propagation distance is performed, enabling us to understand their
collective influence on signal transmission (Fig.7-8). These variables modulate signal proper-
ties. The amplitude is reduced due to attenuation, particularly at HF. The signal may also show
a frequency shift due to the Doppler effect, and a dispersion that extends the spectrum. Multiple
reflections cause phase shifts and reverberations, altering the original temporal structure. In ad-
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dition, ambient background noise is added to the signal, reducing the SNR and making certain
parts of the signal less distinct. These combined impacts modify the initial characteristics of the
signal, significantly affecting detection and analysis performance (Stojanovic and Preisig, 2009).
However, it is imperative to note that performance in real acoustic environments has yet to be
tested, which represents a critical step in the final evaluation. In our study, the absence of testing
for the x = s signal, implies that its representation may not fully capture post-acoustic channel
signal behavior. Furthermore, the inherent complexity of realistic marine environments suggests
potential challenges for the MSD detector compared to fully simulated conditions. In the real
case of an ocean acoustic channel, environmental parameters significantly control signal trans-
mission dynamics. The simulations performed by BELLHOP are an approximation, to which
the inputs and outputs of the model only reflect a vision of the reality of the simulated region
and therefore of the acoustic channel. This holistic understanding underlines the importance of
evaluating the performance of the MSD method in real acoustic channel scenarios with at-sea
trials, recognizing the complex interplay between environmental factors and signal features.

5. Conclusions
The MSD detector algorithm, based on the subspace method, demonstrated theoretical ef-

ficiency in detecting and identifying various LF calls of baleen whales from a Mid-Atlantic
species library. The controlled, fully simulated environment allowed for realistic optimization,
highlighting the detector’s effectiveness under optimal noise conditions, particularly with high
SNR ratios. However, in noisy environments, the current detection threshold proved inadequate
for multiple signals, necessitating adaptive thresholds for better discrimination. Similar down-
sweeps “DS-20”, “DS-40”, and “DS-Sei” require refined detection strategies to avoid confusion.
External interferences can disrupt detection, emphasizing the need for more complex scenario
testing. Acoustic channel modeling with BELLHOP provided insights into how environmental
variables like bathymetry, SSP, attenuation, source depth, and propagation distance influence
signal transmission, affecting amplitude, frequency, dispersion, phase shifts, and background
noise. While BELLHOP simulations offer a close approximation, real-world trials are essential
to evaluate MSD performance in actual marine environments. This approach will enhance un-
derstanding of baleen whale behavior in the Tropic Seamount region, aiding conservation and
sustainable ocean management.
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Résumé

Les activités humaines affectent de plus en plus les écosystèmes marins. Il est essentiel de
comprendre leurs effets sur la vie marine, en particulier sur les cétacés, pour en assurer la conser-
vation. Les baleines à fanons s’appuient fortement sur des appels à basse fréquence pour com-
muniquer et naviguer, chacun ayant des caractéristiques distinctes. En utilisant des techniques
avancées de modélisation acoustique telles que BELLHOP, cette étude représente avec précision
l’environnement acoustique sous-marin de la région du mont sous-marin Tropic. En utilisant le
Matched Subspace Detector (MSD), l’étude vise à isoler les appels de baleines du bruit ambiant,
mais rencontre des difficultés pour discriminer efficacement les catégories d’appels (« AB », «
D », et « DS »). Si les similitudes entre les formes d’onde contribuent à ces difficultés, un seuil
de détection insuffisant pour chaque signal peut également jouer un rôle. Les recherches futures
devraient se concentrer sur l’adaptation des seuils de détection, en tenant compte des effets de la
modélisation du canal acoustique par BELLHOP. Malgré ses limites, cette étude jette les bases
d’une recherche plus approfondie sur le comportement acoustique des baleines à fanons pendant
la migration et ses implications pour les efforts de conservation marine.

Mots clés : Appels de Baleines, Basses-Fréquences, Environnement simulé, Détecteur par Sous-
espaces

Abstract

As human activities increasingly impact marine ecosystems, understanding their effects on
marine life, particularly cetaceans, is vital for conservation. Baleen whales rely heavily on low-
frequency calls for communication and navigation, each with distinct characteristics. Using ad-
vanced acoustic modeling techniques such as BELLHOP, this study accurately represents the
underwater acoustic environment of the Tropic Seamount region. Employing the Matched Sub-
space Detector (MSD), the study aims to isolate whale calls from ambient noise, but encounters
challenges in effectively discriminating between call categories (”AB”, ”D”, and ”DS”). While
waveform similarities contribute to these challenges, an insufficient detection threshold for each
signal may also play a role. Future research should focus on adapting detection thresholds, tak-
ing into account the effects of acoustic channel modeling by BELLHOP. Despite limitations, this
study lays the groundwork for further investigation into the acoustic behavior of baleen whales
during migration and its implications for marine conservation efforts.

Keywords: Baleen Calls, Low-Frequency, Simulated Environment, Matched Subspace Detector
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