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This paper considers the inversion of experimental field data collected with light receiving systems
designed to meet operational requirements. Such operational requirements include system
deployment in free drifting configurations and a limited number of acoustic receivers. A well-known
consequence of a reduced spatial coverage is a poor sampling of the vertical structure of the acoustic
field, leading to a severe ill-conditioning of the inverse problem and data to model cost function with
a massive sidelobe structure having many local extrema. This causes difficulties to meta-heuristic
global search methods, such as genetic algorithms, to converge to the true model parameters. In
order to cope with this difficulty, broadband high-resolution processors are proposed for their ability
to significantly attenuate sidelobes, as a contribution for improving convergence. A comparative
study on simulated data shows that high-resolution methods did not outperform the conventional
Bartlett processor for pinpointing the true environmental parameter when using exhaustive search.
However, when a meta-heuristic technique is applied for exploring a large multidimensional search
space, high-resolution methods clearly improved convergence, therefore reducing the inherent
uncertainty on the final estimate. These findings are supported by the results obtained on
experimental field data obtained during the Maritime Rapid Environmental Assessment 2003 sea
trial. © 2007 Acoustical Society of America. �DOI: 10.1121/1.2799476�

PACS number�s�: 43.30.Wi, 43.30.Pc, 43.60.Cg, 43.60.Pt �AIT� Pages: 3391–3404
I. INTRODUCTION

During the 1990s, the problem of simultaneously esti-
mating multiple ocean parameters by means of inversion of
acoustic data collected with vertical receiver arrays aroused
considerable interest in the underwater acoustic community.
Several studies with experimental field data have demon-
strated the viability of environmental inversion based on
matched-field processing �MFP� with multiple unknown pa-
rameters. MFP-based inversion techniques perform a com-
parison of the full pressure field �amplitude and phase� re-
ceived at an array of hydrophones with computer generated
field replicas, usually by means of a correlation.1,2

MFP, originally proposed for source localization, was
first formulated by Bucker3 as he used realistic environmen-
tal models, introduced the concept of ambiguity surface, and
demonstrated that there was enough complexity of the wave
field to allow inversion. The field complexity can be mea-
sured in terms of the number of contributing normal modes,
which is directly related to the degree of uniqueness of the
inverse problem’s solution. The number of contributing nor-
mal modes varies with physical parameters such as fre-
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quency and water depth, among others. The idea of using
vertical array is to spatially sample that normal modes struc-
ture.

Then it was recognized that MFP could be also applied
to environmental inversion problems, such as the inversion
of the ocean water column4 and bottom properties.5–8 As, in
general, direct inversion of the acoustic field is not possible,
the inverse problem is usually posed as a nonlinear optimi-
zation problem aiming at the maximization of the match be-
tween the measured acoustic field and the replica field cal-
culated for candidate parameter values. In most cases
multiple unknown parameters enter the optimization prob-
lem, therefore resulting in large search spaces. Thus, exhaus-
tive search is not a viable practice. Gradient methods are also
not viable due to the existence of many local extrema. This
requires employment of efficient global optimization meth-
ods such as genetic algorithms �GA� and simulated anealing
�SA�.

Collins et al. first proposed including environmental pa-
rameters in the search space in the context of range-depth
source localization as an attempt to overcome model
mismatch.9 In this study with synthetic data the optimization
was carried out with SA. There have been a number of pa-
pers on experimental results on inversion of acoustic data for
geometric and environmental parameters10–12 aimed at sup-
© 2007 Acoustical Society of America 3391�/3391/14/$23.00



porting source localization. Other experimental studies used
global optimization methods for the estimation of ocean-
bottom properties.5,6,13

In most of these studies, part of the success of MFP-
based inversion techniques is explained by the fact that most
acoustic experiments were carried out under highly con-
trolled conditions, employing acoustic reception systems
with a large number of receivers, moored arrays, and low
frequency acoustic projectors. In other words, acoustic sys-
tems traditionally employed are research directed apparatus,
bulky and difficult to operate for their deployment require-
ments, and are therefore not suitable for operational use.

Current developments of receiver systems go in the
sense of reducing their overall size along with the length of
the array itself and the number of receivers with the objective
of reducing the cost and deployment requirements of these
systems. The point is that if a sparse array is used then higher
order modes are undersampled, i.e., the spatial Nyquist cri-
terion is not taken into account, and MFP cannot effectively
take advantage of that field complexity. The result is that the
ambiguity surface, or hypersurface in the case of multiple
unknown parameters, will show many sidelobes spread over
the search space comparable with the main peak at the true
solution, leading to a severely ill-conditioned problem with a
large number of local extrema.14 When dealing with real
data, the inherent model mismatch and the presence of noise
create a situation where there is no assurance of existence of
an optimum solution in coincidence with �or even close to�
the true model parameters. An additional concern arises
when the optimization problem is solved with aid of meta-
heuristic methods such as a genetic algorithm �GA� even in
the absence of noise and model mismatch. The large number
of local extrema associated with the typically large search
space is a major difficulty factor to this class of search meth-
ods in attaining convergence to the true model parameters.

This problem leads to an important discussion in MF
approaches, which is on the ability of the processor to attenu-
ate sidelobes. In the past, much effort has gone into devel-
oping processor techniques with increased sidelobe attenua-
tion capabilities. One of the main topics was the debate on
incoherent and coherent processors, where it was claimed
that using coherent processors would allow for increased
sidelobe attenuation in comparison to the incoherent
counterparts.15–20 Another possibility would be the employ-
ment of high-resolution processors. However, this possibility
has not been significantly considered in the past due to the
generalized notion that those methods nave weak probabili-
ties of successful application with experimental data due to
there high sensitivity to model mismatch. This paper pro-
poses broadband and high-resolution MF processors for en-
vironmental inversion of acoustic data collected with the
Acoustic Oceanographic Buoy �AOB�,21,22 a light receiving
system with a sparse vertical array deployed in a free-drifting
configuration, where the signals were transmitted by a towed
acoustic source. Here, the application of high-resolution pro-
cessors to environmental inversion is motivated by their pos-
sibility to significantly improve the convergence of global
search algorithms due to their increased ability to attenuate

sidelobes. Simulation results show that in the case of an ex-
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haustive search, conventional processing is more capable of
correctly pinpointing the maximum at the true parameter
value than the proposed high-resolution methods. However,
both synthetic and experimental inversion results obtained
with a GA show that the high-resolution methods can signifi-
cantly improve convergence to the global solution of the in-
verse problem.

This paper is organized as follows: Section II develops
broadband and high-resolution matched-field processors;
Sec. III presents a synthetic study aimed at understanding the
difficulties in applying high-resolution processors and com-
paring them with the conventional processor; Sec. IV gives a
description of the MREA’03 sea trial, and presents experi-
mental results obtained with the proposed matched-field pro-
cessors; finally, Sec. V draws final conclusions.

II. MATCHED-FIELD PROCESSORS FOR PARAMETER
ESTIMATION

In order to cope with the difficulty that arises from using
a sparse array to collect acoustic data in conjunction with
meta-heuristic search methods, the following proposes vari-
ous broadband �BB� matched-field processors. There are at
least two issues that can contribute to alleviate the ill-
conditioning of the inversion problem: One is to efficiently
use the spectral components of the acoustic field by exploit-
ing field coherence across the spectral band, which has been
claimed in the literature as a means of exploiting additional
information contained in the acoustic field; the other is the
application of matched-field processors based on a BB data
model exploiting that cross-frequency coherence. The fol-
lowing matched-field processors are considered herein:
A BB Bartlett processor;2,1 a BB minimum-variance �MV�
processor;23,2,1 and a subspace based method, the BB Mul-
tiple Signal Classification �MUSIC� processor.24 The MV
and the MUSIC processors are high-resolution methods, with
an increased ability for attenuating sidelobes in comparison
to the Bartlett processor.

A. The broadband data model

The broadband data model for the acoustic data received
at an L-receiver array is written as a concatenation of K
narrow-band signals Y��k� at discrete frequencies of interest
�k:

Y = �YT��1�, . . . ,YT��k�, . . . ,YT��K��T = H���S̃ + N �1�

in order to introduce, as much as possible, a common frame-
work for the narrow-band and broadband cases �see Ref. 20
for a detailed discussion�. This data model allows for ac-
counting for the field coherence across frequencies. The vec-
tor � represents the channel parameters and matrix H��� is

the channel response matrix given as
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H��� = �H��1,�� ¯ 0k−1 ¯ 0K−2

01 ¯ H��k,�� ¯ 01

0K−2 ¯ 0K−k ¯ H��K,��
� ,

�2�

where the H��k ,�� is an L-vector representing the channel
response at frequency �k ,k=1, . . . ,K. 0k is a vector with kL
zeros. This channel matrix is analogous to that used in clas-
sical array processing models for multiple emitters. In the
present case, each column is relative to a frequency �k, how-
ever, the channel vectors do not overlap across the columns,
in order to keep frequencies separated. The channel matrix

has KL rows and K columns. The vector S̃ has entries
S��k����k�, i.e., the source spectrum multiplied by a random
perturbation factor at each frequency �k� ��1 ,�K�. The ran-
dom perturbation factor ���k� appears as an attempt to ac-
count for unmodeled ocean inhomogeneities.20 The vector N
represents the noise, which is assumed Gaussian zero mean,
and follows the same notation as Y in Eq. �1�. Let

CYY = E�YYH� = HCSSHH + �N
2 I �3�

be a generic definition of the spectral density matrix �SDM�
for Y defined in Eq. �1�, where CSS is the signal matrix given

by E�S̃S̃H�, and �N
2 the noise variance. The dimensions of the

SDM CYY are KL�KL consisting of L�L cross-frequency
SDMs CYY��k1 ,�k2�. The SDMs for k1�k2 are noiseless ac-
cording to Eq. �3� since it is assumed that the noise is uncor-
related both across space and frequency. Concerning the sig-
nal component, if the signal receptions are fully coherent,
then it just happens that CSS=SSH, which has rank equal one.
On the other hand, if the emitted wave form is a random
signal, then CSS=diag��S

2��1� , . . . ,�S
2��k� , . . . ,�S

2��K��, with
�S

2��k�=E��*��k����k�S*��k�S��k��. In that case the rank of
the signal matrix is equal to K. Note that for this case the
SDM CYY consists only of block matrices in the diagonal.
The intermediate case is that where the rank of the signal
matrix can vary between 1 and K, representing partial fre-
quency cross correlation. This model is the most generic in
the framework of a full broadband data model. At this point
we stress the relevance of the rank of the signal matrix: From
the signals’ point of view, the ocean represents a system with
a response that may have features of random nature. In other
words, a sequence of deterministic emissions is generally
received as a random sequence. The degree of randomness
seen at the receivers may depend not only on ocean inhomo-
geneities such as sea surface roughness, but on small motion
of the receivers. There may be a significant contribution re-
lated to the variability in the geometry of the experimental
setup caused by drifts both of the emitter and the receivers.
In terms of the BB data model, it should be noted that the
channel response is assumed to be deterministic, but in prac-
tice there are both channel random features and parameter
variability over the observation window, which is to be ac-
counted for by the introduction of the random perturbation
factor. These phenomena may have an impact on the coher-
ence across the spectral band and therefore on the rank of the
CSS signal matrix. Next, the three above-mentioned proces-

sors will be derived using the BB data model.
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B. The BB Bartlett processor

Conventional or Bartlett matched-field processors are
the most popular in underwater acoustic estimation prob-
lems, since they have been used in virtually every study on
MFP. The frequency domain Bartlett processor, also called
linear processor, performs matched-field beamforming by
weighting the output of the array elements at different fre-
quencies and summing over all elements:

PB��� = E�tr�wH���Y��0�YH��0�w����� , �4�

where w is a weighting matrix with K columns. Note that it
is assumed that the acoustic field is zero mean without loss
of generality. Replacing with Eq. �3� and by performing a
few ordinary algebra steps to maximize this criterion with
respect to w��� under the constraint tr�wH���w����=1 the
following function is obtained:

PB��� =
tr�HH���CYYH���CSS�

tr�HH���H���CSS�
. �5�

This is the BB Bartlett processor for generic assumptions on
the emitted signal component in terms of the cross-frequency
structure. Other functions can be obtained by working out
assumptions on CSS comprehending either uncorrelated or
fully correlated frequency components.

C. The BB minimum-variance processor

The Bartlett processor generally has important limita-
tions in terms of sidelobe attenuation. This might become a
major difficulty in multiparameter estimation problems,
when several unknown parameters are considered. As an at-
tempt to alleviate such limitation Capon23 proposed a proces-
sor commonly known as Minimum Variance Distortionless
Response �MVDR� processor. The derivation of the broad-
band MV processor is well documented in the literature and
follows a similar notation as that for the above-presented BB
Bartlett processor resulting as

P��� =
tr�HH���H���CSS�

tr�HH���CYY
−1 H���CSS�

. �6�

With regard to calculations, the MV processor presents the
need to invert the SDM CYY, which can be done in a straight-
forward fashion provided that the SDM is of rank KL. In
practice, this requires the number of snapshots of the re-
ceived signal Y to be equal or larger than KL for calculating
the sample SDM. Otherwise, it may be necessary to diagonal
overload the SDM, as suggested in Ref. 25.

D. The BB MUSIC processor

The BB data model has been discussed in Sec. II A in
the context of channel variability and ocean inhomogene-
ities, raising the question of the rank of the signal matrix CSS,
which is equivalent to the signal subspace dimension. His-
torically, the subspace approach has been reported in the
framework of classical beamforming for direction-of-arrival
estimation and detection of emitters where the signal sub-
space dimension is the number of independent emitters de-

tected. The present case consists of a single emitter radiating
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at several frequencies. In this context the dimension of the
signal subspace is related to the degree of spectral coherence
of the acoustic field at the discrete frequencies of interest—
hence a measure of the cross correlation of those spectral
components, while the number of frequencies considered is
always known. In general the SDM defined in Eq. �3� can be
expressed in terms of the eigendecomposition

CYY = US�SUS
H + �N

2 UNUN
H, �7�

where the data space is separated into signal and noise sub-
spaces. This is an ordinary eigenfactorization with the fact
that the eigenvalues and eigenvectors appear separated, with
the subscripts S and N denoting signal subspace and noise
subspace, respectively.

The idea would be to hypothesize a geometric solution
for the eigenproblem, in particular, concerning the signal
subspace represented by �S and US. However, since the data
model assumes an arbitrary signal subspace dimension vary-
ing from 1 to K, the best that can be asserted is that the span
of the signal subspace is the same as that of the columns of

H��0�CSS
1/2

	tr�H��0�CSSHH��0��
. �8�

The dimension of the signal subspace is equal to the rank of
CSS. This defines the signal subspace in agreement with Eq.
�3�, but according to Schmidt24 the signal subspace can also
be defined by its orthogonal complement—the noise sub-
space. This is acceptable due to the orthogonality between
the columns of US and UN in Eq. �7�, i.e., USUN=0. Thus, as
the span of US is that of Eq. �8�, the condition

UN
H H��0�CSS

1/2

	tr�H��0�CSSHH��0��
= 0 �9�

is verified. The eigenvectors of the SDM CYY are separated
into signal and noise eigenvectors as in Eq. �7�, and the so-
called orthogonal projector onto the noise subspace is given
as ��=UN

HUN
H. The MUSIC processor is defined as

PMUSIC��� =
tr�HH���H���CSS�

tr�HH�����H���CSS�
, �10�

such that the solution parameter occurs at the maximum of
PMUSIC���. The degree of the solution uniqueness will cer-
tainly depend on the dimension of the signal subspace since
the orthogonality in Eq. �9� works as a constraint of the
solutions satisfying that condition. The smaller the signal
subspace dimension the larger the dimensionality of that con-
straint, thus, reinforcing the solution uniqueness. The dimen-
sionality of the noise subspace will in general be high. In
theory, estimates of an arbitrary accuracy can be obtained if
the observation time is sufficiently long, if the signal-to-
noise ratio �SNR� is adequate, and if the signal model is
sufficiently accurate. The main limitations of this method are
the failure to correctly estimate the parameter with a low
number of observations and a poor SNR. This method has

been credited as being highly sensitive to model mismatch.
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Finally, it should be noted that in practice only a sample

SDM ĈYY is available. Thus, in Eqs. �5� and �6� CYY must be

replaced by ĈYY, and in Eq. �10� �� must be replaced by

�̂�.

E. Estimating the signal matrix

Earlier, three matched-field processors based on the
broadband data model were developed. However, the devel-
opment was carried out assuming full knowledge of the sig-
nal matrix. In practice, knowledge of the emitted signal is
often not available, or such knowledge may be useless due to
unmodeled ocean inhomogeneities or variability in the chan-
nel response. This leads to the requirement of estimating the
signal matrix CSS, which is analogous to deconvolution.26,27

Classical deconvolution assumes full knowledge of the
source location and environmental parameters, which is not
the case in environmental estimation problems.

The estimation of the signal matrix can be based
on the signal subspace. Let CXX=HCSSHH be the signal
component of the SDM defined in Eq. �3�. This can be esti-
mated together with �N

2 . Using the eigenvalue representa-
tion �1� . . . ��M and the orthonormal eigenvectors ui,
�i=1, . . . ,M� of CYY��0� spanning the signal subspace, and
assuming that �M ��M+1= ¯ =�KL=�N

2 , one can write

CXX = 

i=1

M

��i − �N
2 �uiui

H,

where M is the dimension of the signal subspace. Optimum
estimates of the eigenvalues �i and the eigenvectors ui can be

obtained from the sample SDM ĈYY��0�, and an optimum
estimate of �N

2 can be obtained by28

�̂N
2 =

tr ĈYY − 
i=1

M
�̂i

KL − M
, �11�

which is equivalent to the arithmetic mean of the KL−M

smallest eigenvalues �i , i=M +1, . . . ,K of ĈYY. Now the es-
timate �̂N

2 can be used in Eq. �11� to estimate CXX. Finally,
the estimate of CSS proceeds by filtering out the channel
response:

ĈSS = H+��̂0�ĈXX�H+��̂0��H. �12�

In Eq. �12� one problem persists: Generally �0 is un-
known, and the deconvolution algorithm cannot be com-
pleted. In the framework of parameter estimation one can

replace �0 with �, making ĈSS dependent on �, and then
replacing it in the processor expressions obtained earlier. It
has been observed with synthetic data that the lack of knowl-
edge on the emitted wave form will lead to a drawback in the
parameter estimation performance. Knowledge on the struc-
ture of the emitted wave form can be seen as a priori infor-
mation entering the parameter estimation algorithm.

III. SIMULATIONS

In Sec. II, three matched-field processors based on a

broadband data model were developed. The Bartlett proces-
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sor is simply based on correlations—its implementation is
straightforward. The MV and MUSIC high-resolution pro-
cessors go beyond simple correlations and their computation
requires additional steps. The computation of the MV pro-
cessor involves the inversion of the SDM matrix, which has
been noted as a difficulty in the MFP literature. The MUSIC
processor involves splitting the data into signal and noise
subspaces, whose correct estimation is fundamental for its
success. So far, high-resolution methods have not been ap-
plied to experimental data with the purpose of performing
environmental inversions. The objective of the following is
to perform a simulation study in order to compare the three
proposed processors covering issues such as sidelobe struc-
ture; performance for different data model assumptions; and
the influence on the genetic algorithm’s performance. Al-
though all three processors will be analyzed with the same
depth, the Bartlett processor will be seen as the reference in
terms of performance and some more focus will be on the
high-resolution methods, since these somewhat constitute a
novelty for this application.

The synthetic data are generated using an environmental
model for a shallow water scenario similar to that of the
North Elba site. The forward problem is solved using the
normal modes propagation model C-SNAP.29

A. Portraying MF processors as cost functions

A matched-field processor can be seen as a function of
the hypothetical parameter vector �, and is usually called
cost function in the context of inverse problems. Concerning
the behavior of a processor, assuming absence of noise and
model mismatch of any type, one of the key characteristics is
the ratio between the maximum value of the processor and
the sidelobes, which has traditionally been considered an im-
portant issue in the context of a processor’s robustness
against noise. Herein the importance of that issue is rein-
forced in the context of the optimization problem with aid of
a genetic algorithm. The main interest is to illustrate how the
matched-field processors obtained in Sec. II compare in
terms of sidelobe attenuation and resolution, and how the
assumptions of known or unknown wave form, or the as-
sumption of coherent or incoherent signals impact on these
characteristics. This can be carried out numerically by calcu-
lating each cost function as a function of physical parameters
of interest for a given scenario example. The source was
supposed to be at a 6 km range and at a 60 m depth, and
receivers were at depths 15, 60, and 75 m �L=3�. The acous-
tic field was considered for frequencies 400, 450, and

500 Hz �K=3�. The spectral density matrix was computed
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using Eq. �3�. The noise power �N
2 was set as the mean of the

first K eigenvalues �k of the CXX matrix �the SDM of the
signal component� in order to obtain autofrequency SDMs
with the same SNR, in both coherent and incoherent cases.
The noise is assumed uncorrelated both across space and
frequency. Note that under the assumption of coherent sig-
nals the eigenvalues of CXX�1�0 and �2= ¯ =�K=0, and
for the incoherent case, in general, �k�0. Note also that for
computing the SDM, CSS=1 for the coherent case, and CSS

=I for the incoherent case. Some more remarks are necessary
before proceeding: �a� In Sec. II, the emitted wave form will
always be represented by second-order statistics, i.e., by ma-
trix CSS; �b� in Sec. II A, for computing the cost functions,
and, in particular, for estimating the signal matrix or for es-
timating the noise subspace, it is assumed that the dimension
of the signal subspace is known, which is 1 in the coherent
case and K in the incoherent case.

The cost functions were computed as a function of two
coefficients �1 and �2 used to parametrize the temperature
profile �see the following details� with ��1�2�T= �00�T as true
parameter values. Figure 1 shows the matched-field response
of the three BB processors computed for the case assuming
coherent spectral components and unknown signal structure.
The three plots respectively correspond to implementations
of Eqs. �5�, �6�, and �10�, together with Eq. �12� for estimat-
ing the signal matrix. Observing Fig. 1, the plot on the left
contains a very smooth function as is typical for the Bartlett
processor, with a variation between minimum and maximum
values of 6 dB. The plot in the middle corresponds to the
coherent MV processor, which is clearly superior to the Bar-
tlett processor in terms of sidelobe attenuation, with values
ranging by about 15 dB. Finally, a plot corresponding to the
MUSIC processor was computed. This processor has the best
sidelobe attenuation performance of all, with values ranging
between −20 and 0 dB. The reader might ask how this was
done if this processor approaches 	 as the parameter vector �
approaches the true value, under the conditions used for gen-
erating the synthetic data. It is possible to portray the MU-
SIC processor such that its maximum is 1 by

PMUSIC,1 =




 +
1

PMUSIC

. �13�

It can be seen that PMUSIC,1→1 as PMUSIC→	. This modi-
fication has two effects: �1� The maximum value that can be
attained is a known finite value; and �2� implementation al-
lows for smoothing the processor. Small values for 
 will

FIG. 1. �Color online� The behavior of
the broadband processors for the co-
herent case assuming an unknown sig-
nal matrix.
produce a peaky function, while large values for 
 will pro-
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duce a smooth function. In this study, 
 has been always set
to 0.01.

Table I summarizes the results obtained in terms of
peak-to-surface average ratio for different combinations of
coherent/incoherent and known/unknown signal matrix. This
measure is the ratio between the surface maximum and its
average MF response. It is easy to conclude that there is an
increasing discriminating potential when presenting the de-
veloped methods in that sequence. The coherent MV proces-
sor shows the highest effectiveness in comparison with its
incoherent counterpart. For the other two processors coher-
ent processing with unknown signal gives similar perfor-
mance to incoherent processing with known signal.

B. Error performance

The next issue to be investigated is how the coherent
processors perform against the number of signal snapshots N
for a given SNR. Here the parameter to be estimated is �1,
whose true value is 0. Once again the three frequencies/three
receivers case is taken with a SNR=0 dB. Figure 2 shows
plots with computations of the RMSE as a function of the
number of snapshots N based on 100 estimates of the param-
eter. In no case is the Cramer-Rao lower bound attained.
Figure 2�a� shows the RMSE with known signal matrix and
signal subspace dimension. The MUSIC and Bartlett proces-
sors perform similarly for a known signal matrix. The MV
processor has poor performance for low number of snapshots
and recovers comparatively to the others as the number of
snapshots increases. Finally, in the case of unknown signal
matrix and signal subspace dimension, Fig. 2�b� shows how
the low number of snapshots can impact on the performance
of subspace-based methods, in particular, on the separation
of the subspaces, in a conjunction with low SNR and low
number of snapshots. For the other two processors, working
with unknown signal slightly increases the RMSE.

The difficulties seen with the high-resolution methods
are related to poor estimates of the eigenvalues �i. The data
model assumes that the eigenvalues associated with the noise
subspace are all equal. However, if N is finite, those will be
different with probability 1. The MV processor requires in-
version of the SDM, whose accuracy depends on the eigen-
values’ estimates. Since it weights the eigenvector associated
with the smallest eigenvalue most heavily, and this is the
least stable vector because it has the least energy and must be
orthogonal to all others, a small N is certainly a source of
relatively poor performance. Concerning the MUSIC proces-
sor, the problem arises when the signal space is to be split

TABLE I. Peak-to-surface average ratio obtained for the different proces-
sors.

Coherent
known
signal

Coherent
unknown

ignal

Incoherent
known
signal

Incoherent
unknown

signal

Bartlett 2.23 1.86 1.64 1.58
MV 17.9 14.5 6.08 5.41
MUSIC 53.0 41.9 41.9 37.2
into the signal and noise subspaces. This important issue is
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illustrated in Fig. 3, which shows in �a� the computed eigen-
values for two particular cases, one using 9 signal realiza-
tions, and the other using 11. The signal subspace dimension
is estimated using the MDL criterion.30–32 The former case
yields a signal subspace with dimension eight, although a
deterministic signal component is used for data generation.
Note that the smallest eigenvalue has a very high ratio to its
predecessor. The latter case, N=11, yielded a signal subspace
with dimension one—in that case the ratios between contigu-
ous higher-order eigenvalues are reduced. Figure 3�b� shows
the average eigenspectrum when the number of realizations
varies from 9 to 20. For each case 100 realizations of the
eigenspectrum were computed and averaged. On average, the
eigenspectrum tends to become flattened as N→	. Finally,
Fig. 3�c� shows the average order estimate obtained using the
same data as in Fig. 3�b�, applying the MDL information
criterion. For the minimal number of signal realizations �9�
the average order obtained is about 3; for 10 realizations it is
about 2; for 11 realizations or more it estimates on average
the correct value, which is 1. This exercise illustrates the
potential impact of the number of signal realizations on

FIG. 2. RMSE as a function of the number of snapshots for the three
processors and the coherent model Cramer-Rao lower bound under compari-
son: �a� With known signal matrix and �b� with unknown signal matrix and
signal subspace dimension.
methods relying on the eigendecomposition of the data.
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C. Global search

In Sec. III A it is shown that all three proposed MF
processors significantly differ in their ability of attenuating
sidelobes. The next case study is to conclude about the com-
parative performance of the processors when the environ-
mental estimation problem includes multiple unknown pa-
rameters. This problem is usually solved with the aid of a
global search method such as a genetic algorithm. The idea is
to find out whether high-resolution methods can improve the
convergence of meta-heuristic search methods due to their
reduced sidelobe structure. Sidelobes competing with the
main peak may be seen as false attractors that cause difficul-
ties to any meta-heuristic search method in converging to the
solution maximizing the cost function.

The data are generated and inverted 50 times using a
genetic algorithm. The inversion search space regarded the
water column and the seafloor properties, but array tilt was
also included. The signal matrix and the signal subspaces
dimension were known. The general conditions for synthetic
data generation are the same as those used earlier with SNR
of 0 dB and 16 snapshots.

A posteriori distributions can provide insight into the
performance of the environmental inversion process. These
distributions emphasize the variability of each parameter
over the search interval, which is intimately related to the
ambiguity pattern of the cost function used and the sensitiv-
ity to each parameter. Figure 4 shows the a posteriori distri-
butions obtained for the three methods. To obtain these dis-
tributions the individuals of the last generation of all
independent populations are merged and histograms are
computed from the parameter vectors represented by those
individuals.

The idea of showing all these distributions is to obtain a
global comparison of the three processors in terms of con-
vergence rather than performing a detailed analysis. The
MUSIC processor clearly has the narrowest distributions. In
fact, that processor contributed to improving the convergence
of the genetic algorithm, supporting the belief that a massive
sidelobe structure causes difficulties in terms of the popula-
tion convergence. The MV processor appears to be more
uncertain, which is rather attributed to the problem of invert-
ing the SDM with a small N than to the sidelobe structure.
Finally, the distributions obtained with the Bartlett processor

FIG. 3. Eigenspectra for finite number of signal observations: �a� Comp
eigenspectrum for a varying number of signal realizations; and �c� average
are significantly more spread out over the search interval
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than the others, which is attributed to its massive sidelobe
structure causing difficulties for the search algorithm in con-
verging to the true solution. From the a posteriori distribu-
tions, model estimates based on the distribution peak, called
Maximum A Posteriori �MAP� estimates, can be obtained.
The MUSIC processor produced more reliable MAP esti-
mates, since its parameter distributions are the most com-
pact, and all parameters, except sediment upper speed and
subbottom density, have a posteriori distributions with a
peak close to the true parameter value �indicated by the gray
asterisk�.

IV. ENVIRONMENTAL INVERSION OF EXPERIMENTAL
DATA

A. The MREA’03 sea trial

The Maritime Rapid Environmental Assessment 2003
�MREA’03� sea trial took place from 26 May to 27 June
2003, in the Ligurian Sea, with target areas North and South
of Elba Island. This paper considers only the acoustic experi-
ment held on 21 June 200333 whose area of operation was
North of the Elba Island as shown in Fig. 5.

1. The deployment geometry

On 21 June, the AOB was deployed on a free drift con-
figuration with very favorable weather conditions in an area
of mild bottom range-dependency, attaining a variability of
20 m over some acoustic tracks. The experimental setup con-
sisted of a towed acoustic source and a free drifting vertical
line array with receivers at nominal depths of 15, 60, 75, and
90 m. Figure 5�b� shows the bathymetry in the interior of the
white box depicted in the map of Fig. 5�a� together with the
source ship navigation and AOB drift estimated from GPS
recordings. The acoustic buoy was deployed at 09:01 GMT
and recovered at about 15:16 GMT. During this time the
buoy drifted about 1.7 km away to the Southeast of the point
of deployment, at approximate average displacement of
4.5 m/min �white dashed line�.

The acoustic source was deployed immediately after the
acoustic buoy and towed by the RV Alliance to West where it
was stalled between times 09:53 and 11:05 GMT. Then RV
Alliance steadily moved to the East and performed the ge-
ometry shown in Fig. 5�b� �white solid line� until source

n of two eigen-spectra using N=9 �gray� and N=11 black; �b� average
estimation for a varying number of signal realizations.
ariso
order
recovery. Figure 6�a� shows the GPS estimated range be-
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param
tween source and receiver and Fig. 6�b� the source depth.
The acoustic source was deployed at a variable depth, be-
tween 54 and 106 m, depending on ship speed.

2. Acoustic signals

The emitted wave forms consisted of 2-s LFM chirps
emitted in two frequency bands. The A1 and A1double chirps
are in the band 500–800 Hz. The signals differ in terms of
repetition interval and duty cycle: A1 lasts for 2 s and has a
repetition interval of 8 s hence a duty cycle of 25%;
A1double lasts for 4 s and has a repetition interval of 10 s
hence a duty cycle of 40%. The objective of emitting the
A1double wave form was to increase the number of signal
realizations in a given observation interval, which may sig-
nificantly impact on the performance of some matched-field
processors. The A2 chirp is in the band 900–1200 Hz. Table
II shows the emission schedule indicating the periods during
which each wave form was emitted. The signals were re-
ceived at a vertical array containing four hydrophones at
nominal depths of 15, 60, 75, and 90 m. Figure 7 shows an
example of receptions of the A2 chirps at time 11:45 GMT
collected at the third receiver. The data are extremely clean
without blanks and interruptions, which results from the
AOB’s local storage capability. However, it was found that
the acoustic data collected by the deepest hydrophone was

FIG. 4. A posteriori probability distributions for each parameter based on
processors entering the comparison. The gray asterisks indicate the correct
very noisy most of the time, possibly due to deployment
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issues that were not well understood. For this reason it was
decided to not consider that hydrophone in the present work.
A final remark is that a channel fading effect that signifi-
cantly reduces the signal received on the top most hydro-
phone was noticed, probably due to the effect of the ther-
mocline.

3. Environmental data measurements

Regarding the inversion of the acoustic data collected on
21 June, 95 conductivity-temperature-depth �CTD� measure-
ments taken during the days 16, 17, and 19 June taken at the
positions marked by the black circles in Fig. 5 are considered
in this study. No CTD measurements were performed during
that acoustic experiment since RV Alliance was towing the
source. There is a significant difference in scale between the
acoustic �white box� and the oceanographic survey, as the
latter was set up for different purposes. Those CTD measure-
ments are being taken as an attempt to cope with the diffi-
culty in sampling the ocean volume, both in time and space,
and obtain representative a priori oceanographic data as an
input to the acoustic inversion problem. It is of concern to
what extent these historical data collected several days be-
fore may be representing the oceanography of the target day.
Figure 8 shows the measured temperature profiles with two
empirical orthogonal functions �EOF� representing more

st generation of 50 independent populations. Each column corresponds to
eter value.
the la
than 80% of the water column variability. The water column
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�white dashed curve� during the deployment of 21 June.

A1, A2, and A1double denote the wave forms emitted in each interval.

J. Acoust. Soc. Am., Vol. 122, No. 6, December 2007 Soares et
temperature is then modeled as a sum of the mean tempera-
ture �thick curve� and the two EOFs weighted by associated
EOF coefficients �n. It is useful to measure the coefficients
for the historical data available in order to obtain hints on
their range of variation. In the present case �1 varied in the
interval from −15 to 15, and �2 varied in the interval from
−5 to 5 temperature profiles considered.

4. The environmental model

One of the tasks with the largest impact on the final
result is the choice of an adequate environmental model to
represent the propagation conditions of the experiment. This
choice is generally the result of a compromise between a
detailed, accurate, and parameter full model and a light
model ensuring a rapid convergence during the processing.
The baseline computer model adopted for the MREA’03 was
built based on the segmentation of archival bathymetric in-
formation along the source-receiver cross sections at differ-
ent times. As shown in Fig. 5 the bathymetry in the experi-
mental area is accurately known. The water depth at the
AOB deployment site was approximately 120 m and the
maximum depth at the emitting source was 140 m. The base-
line geoacoustic properties were drawn from previous studies
in that area.10,34 The baseline model consists of an ocean
layer overlying a sediment layer and a bottom half space
with the bathymetry assumed range dependent, as shown in
Fig. 9. The sound-speed profile was calculated using the
Mackenzie formula with the mean temperature and mean sa-
linity profiles as inputs �see Fig. 8�.

For the purposes of the inversion the forward model was
divided into four parameter subsets—water column tempera-
ture, sediment, subbottom, and geometric parameters. The
temperature in the water column is parametrized by the two
EF coefficients as discussed earlier.

B. Results

The following reports on environmental inversions of
the experimental acoustic data for water column and seafloor
properties using the broadband processors proposed in Sec.
II, and the comparison of their estimation performance.

TABLE II. Signal emission schedule on 21 June. The times are in GMT.

Al A2 A1double

Start 09:40 12:14 14:07
End 11:47 14:01 14:44
FIG. 5. �Color online� The Maritime Rapid Environmental Assessment 2003
�MREA’03� experimental area: �a� Black circles indicate the sampling grid
setup for the CTD measurements used in this study, and the dashed white
box limits the area where the acoustic experiment of 21 June took place and
�b� GPS estimated source ship navigation �white solid curve� and AOB drift
FIG. 6. Source range �a� and depth �b� measured during the deployment of
21 June. The curves are broken indicating change of the emitted wave form.
FIG. 7. Example of an A1 chirp received on the AOB.
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1. Frequency clustering

The proposed BB matched-field processors are based on
the KL�KL SDM CYY measuring cross correlations of the
acoustic field across space and frequency. Both the MV and
MUSIC processors require CYY to be full-rank, i.e., N�KL.
If an observation window of 80 s is taken, then the
MREA’03 data set provides N=10 for the A1 and A2 inter-
vals, and N=16 for the A1double interval. Given a number of
receivers L=3 and N=10, one can choose a number of fre-
quencies K=3 in order to assure that full-rank SDMs are
obtained in all emission intervals. In order to use an in-
creased number of frequencies while assuring that the SDM
is full rank one can use an alternative matched-field proces-
sor output given as

PNg��� =
1

Ng


n=1

Ng

P��,�n� . �14�

This is an incoherent average over Ng coherent fre-
quency clusters �n, where P�� ,�n� is a given matched-field
processor. The question is how to choose the frequency clus-

FIG. 8. CTD-based data used for temperature estimation taken during 16,
17, and 19 June Temperature profiles with mean profile in solid black �left�
and representative empirical orthogonal functions �EOF� computed from the
temperature profiles �right�.

FIG. 9. Baseline model for the MREA’03 sea trial. All parameters except

water depth are range independent.
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ters. As the idea is to use coherent processors one can carry
out an optimization aimed at finding SDMs CYY��n� with the
most coherent frequencies. Ideally, one would cluster per-
fectly coherent frequencies, which results in a signal sub-
space with dimension equal 1. Thus, it appears natural to
implement an optimization scheme based on the minimiza-
tion of the signal subspace dimension, using an information
criterion as cost function. Since these criteria are not reliable
for N�KL it was decided to choose Ng cluster with the
largest �1 /�2—the ratio between the two largest eigenvalues
of CYY��n� is a simplified measure of the signal’s coherence.

This is a preprocessing step that performs a selection of
frequency combinations based on a coherence criterion. In
this study a number of clusters Ng=7 will be used, and the
optimization was carried out using a frequency resolution of
4 Hz. In order to assure spectral diversity, frequencies in a
cluster are separated by at least 52 Hz.

2. Data processing procedure

Several steps are performed until the inversion is com-
plete:

�1� Frequency selection based on the �1 /�2 optimization cri-
terion.

�2� Acoustic field inversion for water column and seafloor
properties, and geometric nuisance parameters.

�3� Inversion validation by means of source localization
with large search bounds using the estimated environ-
mental models.

�4� Reconstruction of physical parameters of interest using
only environmental estimates validated in step �3�.

In step �2� the unknown parameters are divided into water
column ��1 and �2 EOF coefficients�, sediment �upper and
lower compressional speeds, density, attenuation, and thick-
ness�, and subbottom �compressional speed, density, and at-
tenuation�. Additionally, geometric parameters, array tilt, and
receiver depth are included. These parameters are regarded
as nuisance parameters, since there is no interest in their
estimates once the inversion is finished. The inversion is
posed as an optimization problem solved with aid of a ge-
netic algorithm �GA�.35 The parameter vector is coded into a
68-bit chain, which results in a search space size approxi-
mately equal to 2.95�1020. The GA settings are summarized
in Table III. Since there is a new time bin every 80 s only a
single population is used for each inversion, which is suffi-
cient to achieve the main objective of comparing the pro-

TABLE III. GA settings for environmental inversion.

Parameter Setting

Generations 30
Population size 200
Independent populations 1
Mutation probability 0.004
Crossover probability 0.9
Number of crossover points 4
posed MF processors’ inversion performance.
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Step �3� is to validate the model estimates obtained in
step �2� by means of range-depth source localization. This
step is based on the accurate knowledge on source range and
depth available and on the fact that source position is on top
of the parameter hierarchy. It is assumed that if the environ-
mental estimates are not accurate then the source cannot be
properly located. Performing source localization with large
search bounds should give an indication on the quality of a
given environmental estimate.

Finally, step �4� is to produce the final environmental
estimates using only those estimates validated in step �3�.

3. Environmental inversion: Comparison of three MF
processors

Here, the three BB processors will be applied to experi-
mental field data. The whole data set collected on 2l June
will be inverted with each processor. In Sec. III C, inversions
on synthetic data with a GA indicated that high-resolution
processors may contribute to improve the convergence to the
true solution. The comparison performed here may also serve
the purpose of understanding how these processors behave in
a real situation with the inherent model mismatch. The maxi-
mum source-receiver range is 9 km, which is more than 70
water depths, possibly giving rise to environmental mis-
match.

The inversion is carried out assuming an unknown sig-
nal matrix CSS. Since the frequencies are optimized in the
sense of clustering those with highest coherence, it is as-
sumed that the signal subspace dimension is always one,
although source and receiver are moving most of the time.
The processing is, therefore, considered broadband coherent
with unknown wave form.

No ground truth measurements are available for evalu-
ating the inversion performance achieved. Thus, one can re-
fer directly to step �3�, the validation step, and analyze those
results. Source localization along time was performed within
search bounds from 1 to 10 km in range, and from 1 to
110 m in depth. The source is admitted as correctly localized
if the error both in range and depth is simultaneously less
than 5% of the search interval amplitude. In other words the
maximum must fall in a 0.9-km-long and 11-m-wide rect-
angle centered on the true location. Table IV shows the rate
of successful localization achieved with each processor. The
localization rate was computed for each emission interval
due to the different signal characteristics, and then summa-
rized on the rightmost column as an overall result. Consid-
ering the overall results, the MUSIC processor clearly out-
performs the other two processors, as the localization rate
increases with the processors’ resolution. A more detailed

TABLE IV. Rates of successful localization �%� for the different processors
and different wave forms.

Processor A1 A2 A1double Overall

Bartlett 22.7 38.3 51.9 32.7
MV 22.7 29.6 85.2 35.1
MUSIC 39.0 53.1 70.4 48.3
analysis of the result allows for making the following re-
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marks: �i� The A1 interval was the most difficult. Close in-
spection shows that the localization rate is clearly lower with
the source stalled at 105 m �during time 10:00 to 11:00� in
the three cases. �ii� The MV processor performed remarkably
well during the A1double interval. It appears that this pro-
cessor performed particularly well with the number of signal
realizations N=16 provided by that data portion, while show-
ing difficulties in the other data portions providing N=10
�which is consistent with the synthetic study�. �iii� The
source was located both in range and depth at ranges up to
9 km, as indicated by the black asterisks in Fig. 10.

Figure 11 shows the environmental inversion results ob-
tained with the MUSIC processor. The reason for showing
the run performed with the MUSIC processor was its overall
superiority in terms of source localization, and the belief that
this means that the environmental estimations are also of
superior quality in comparison with those obtained with the
other processors. The circles filled with an asterisk corre-
spond to inversions with successful localization.

It can be seen in plot �a� that from time 10:00 to time
11:00 the estimate of the �1 EOF coefficient, a leading pa-
rameter, varies over the entire search interval. When the
source moves and goes up to approximately midwater col-
umn, the variability substantially reduces, with the estimates
becoming confined in the interval −10 to 10. During A2 the
estimates continue in the interval −10 to 10 at the beginning
but then during the remaining part the estimates are in the
upper half of the search interval between 0 and 15. Finally,
the �1 estimates in the A1double period are clearly in the
interval −10 to 10. The second EOF coefficient was searched
in an interval with amplitude less than half of that for the
first one. The EOFs used to model the water column differ
significantly only in the first third of the water column, while
they coincide for the remaining depth. On the other hand

FIG. 10. Source localization obtained with the MUSIC processor. Source
range �a� and source depth �b�. True location is given by the black curve in
the background. The gray curves with circles are the source localization
results. The black asterisks indicate the successful localizations.
only one receiver is in place in the first third of the water
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or su
column. In Ref. 36 it is shown that these circumstances lead
to an ambiguous cost function regarding the �i coefficients,
resulting in a poor solution uniqueness.

Concerning the seafloor parameter estimates, most of
them appear to be unstable, making it nearly impossible to
draw some value from the plots of Fig. 11. Nevertheless, the
compressional speeds in sediment and subbottom appear to
be fairly restricted to subintervals in the search interval with
aid of the source localization step. In order to obtain a single
estimate for each of the seafloor parameters, a posteriori
distributions based on the individuals of the last generation
of each inversion allowing for correct source localization �43
out of 81 inversions� were computed considering only the A2
emission period �see Fig. 12�. Sediment and subbottom com-

FIG. 11. Model parameter estimates obtained via acoustic data inversion usi
subbottom ��h�–�j��. The black asterisks indicate model estimates allowing f
pressional speeds, and sediment attenuation are relatively
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compact, each with a peak close to the baseline value. Also,
sediment density and thickness show an outstanding distri-
bution peak. The sediment attenuation distribution, although
compact, is concentrated at the upper search bound far from
the baseline value. Table V contains the MAP estimates for
the seafloor parameters, together with the baseline values and
a measure of the estimation reliability, which is the standard
deviation of the a posteriori distribution divided by the
search interval length. The MAP estimates of the compres-
sional speeds are in fair agreement with the baseline values.
Sediment density and thickness are also credible.

Finally, it can be remarked that during the A2 emission
period, the MUSIC processor produced the most reliable en-
vironmental estimates. During the A1double emission period

BB MUSIC processor. Water column ��a� and �b��; sediment ��c�–�g��; and
ccessful source localization in the validation step.
ng the
the most reliable environmental estimates were produced by
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the MV processor. This supports the close relation between
the rate of source localization and the quality of the environ-
mental estimation, and the choice of source localization as a
validation tool.

V. CONCLUSIONS

Acoustic data were collected using a prototype of a light
acoustic receiving system, an AOB, developed to meet op-
erational requirements such that it consisted of a vertical line
array with only three operating receivers. One of the objec-
tives of these acoustic data was to evaluate the performance
of newly adapted field inversion methods for the estimation
of water column and geoacoustic properties using such a
light acoustic receiving system.

The application of genetic algorithms for the estimation
of model parameters has been shown to be very effective on
several occasions. However, when a sparse receiving array is
used the inversion problem becomes heavily ill-conditioned.
Traditionally, the difficulty of solving an ill-conditioned
problem has been associated with model mismatch and
noise, which may lead to the situation where the optimum is
not in coincidence with �or even close to� the true model
parameters.

This paper associates this difficulty with the application
of a genetic algorithm to carry out the optimization, specifi-
cally due to the existence of many local extrema in concur-
rence with the main peak, together with the typically large
search space of a multiple environmental estimation prob-
lem. In order to cope with this difficulty broadband matched-
field processors, specifically, high-resolution processors, are
proposed for their increased ability in attenuating sidelobes.

A Bartlett, a minimum-variance, and MUSIC processor,
all truly broadband rather than a superposition of multiple
frequencies since they are based on a broadband data model,
were first compared in terms of estimation performance with
synthetic data. It was concluded that in the case of an ex-
haustive search of the unknown parameter, the high-
resolution processors were unable to outperform the Bartlett
processor. The main difficulty of the application of the high-
resolution processors is related to a reduced number of signal
realizations to compute the sample spectral density matrix
�SDM�. In the case of a multiparameter inversion problem

TABLE V. Baseline seafloor parameters, parameter MAP estimates on 43
GA populations, and a reliability measure.

Mode parameter Baseline MAP Reliability

Sediment
Up comp speed �m/s� 1520 1527 0.22
Lo comp speed �m/s� 1580 1570 0.17
Density �g/cm3� 1.75 1.48 0.27
Attenuation �dB/�� 0.13 0.44 0.20
Thickness �m� 2.5 4.92 0.27
Subbottom
Comp speed �m/s� 1600 1618 0.14
Density �g/m3� 1.80 1.29 0.31
Attenuation �dB/�� 0.15 0.40 0.29
the comparison shows that the high-resolution methods
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clearly contribute to improve the convergence of the genetic
algorithm to the true model parameters, therefore reducing
the inherent uncertainty.

The inversion results with the experimental data are con-
sistent with those obtained with the synthetic data in terms of
processor performance comparison. The inversion algorithm
included a source localization step with large search bounds
aimed at discarding model estimates upon wrong localization
result. As no concurrent environmental ground truth data
were available the processor performance was evaluated by
means of the rate of correct source localization. Based on
that criteria, the MUSIC processor achieved the best overall
performance. Note that this processor was applied assuming
that the dimension of the signal subspace was one, since a
coherence optimization step was performed before. This con-
tributed to avoiding a major difficulty with this processor—
the estimation of the signal subspace dimension. The
minimum-variance processor achieved an exceptional perfor-
mance in an emission interval where a larger number of sig-
nal realizations were available. With this data set successful
source localization results were obtained for ranges up to

FIG. 12. A posteriori probability distributions for the seafloor parameters
based on the last generation of the GA. Only inversions validated by means
of source localization during the A2 period are considered. The gray asterisk
indicates the baseline value of the parameter.
9 km.
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The EOF coefficients, used to parametrize the water col-
umn, were estimated with some uncertainty, although well
restricted to subintervals over some periods. A single esti-
mate of the seafloor properties was obtained by means of the
maximization of the a posteriori distributions based on the
last populations of the genetic algorithm. This result is es-
sentially in line with the baseline model values for compres-
sional speeds in the sediment and subbottom, and density in
the sediment. The estimate of the sediment thickness is also
well determined. Finally, a strong relation between uncer-
tainty and source localization rate was observed �Fig. 12�.

The dimension of the search space appears to be a major
impairment for consistently obtaining valid model estimates
�by means of correct source localization� over time since, in
principle, this cannot be attributed to model mismatch or
additive noise.
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