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Abstract

Low probability of detection (LPD) underwater acoustic communications are an essen-
tial requirement for command and control of autonomous underwater vehicles (AUV) or
submarines performing covert missions, avoiding their detection while communicating.
Based on low power signals, these covert communications may also extend the autonomy
of battery-operated AUVs, and contribute to reducing the impacts of the environmen-
tal noise level on marine life. The present thesis aims to develop LPD communications
based on modeled and real data from three shallow water experiments. Thus, a super-
imposed training method has been proposed. A bitstream is created superimposing a
long probe to the message before transmission. Computationally simple, the algorithm
explores temporal diversity to increase the processing gain and uses a Wiener filter for
equalization. Experimental results presented bit-error rates (BER) < 10−2 for signal-to-
noise ratios (SNR) < −8 dB. To understand the effects of coastal upwelling phenomena
over low SNR communications, a study compares the acoustic propagation for different
sound speed profiles using a propagation model and analyzes data from the BioCom’19
experiment, performed off Cabo Frio Island (Brazil). Temporal and spatial coherence of
low power signals propagating in this harsh environment are estimated, and both a cri-
terion for multichannel combining and a double Wiener filter to improve equalization are
presented. Passive time-reversal (pTR) techniques have been widely employed for com-
munications. To address the pTR channel mismatch due to the environmental variability
between the probe and the data transmissions, this work proposes a superimposed train-
ing pTR (STpTR) approach for single and multichannel systems. Despite the high noise
levels, varying from -5 to +6 dB, the STpTR combined with a Wiener filter achieved
BER < 10−2, for bit rates up to 220 bps. To improve covert communications for AUVs,
this work also presents a study about vector sensor multichannel combining. Using the
STpTR approach, results from an experiment on the coast of Algarve/Portugal indicate
that combining the pressure and particle velocity channels of a vector sensor may pro-
vide an average SNR and mean squared-error gain of up to 9.4 and 3.1 dB, respectively,
compared to the pressure channel. Therefore, a better understanding of the environment
combined with the superimposed training pTR using a vector sensor may improve the
LPD communication system’s performance and robustness while keeping covertness.

Keywords: Low probability of detection, underwater acoustic communications, superim-
posed training, coastal upwelling, passive time-reversal, vector sensor.
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Resumo

No últimos anos, os trabalhos de investigação sobre comunicações acústicas submarinas
com baixa probabilidade de detecção (BPD) tem sido incentivados pela indústria, pelos
governos, e pela própria academia em razão de suas múltiplas aplicações. Na área militar, as
comunicações BPD permitem que submarinos e véıculos autônomos possam se comunicar sem
serem detectados. Na área civil, permitem a economia de energia de sensores alimentados
por baterias, aumentando o tempo de funcionamento, bem como contribui para reduzir os
impactos sobre a vida marinha causados pelos altos ńıveis de rúıdo submarino, entre outras
aplicações. Neste contexto, esta tese pretende desenvolver comunicações BPD utilizando um
modelo de propagação acústica e dados obtidos a partir de três experimentos em águas rasas.

Este trabalho apresenta um método de treinamento superposto para comunicações sub-
marinas em um ambiente com baixa relação sinal/rúıdo, e demonstra sua aplicação para
comunicações BPD. Computacionalmente simples, o método foi desenvolvido para funcionar
com um único projetor acústico, transmitindo com baixa potência, e um hidrofone, sem o
ganho de um arranjo de sensores distribúıdos no espaço. Antes da transmissão, uma longa
sequência de comprimento máximo é somada à mensagem para efeitos de equalização e sin-
cronismo. Os dois sinais são binários, modulados em fase e possuem 2047 bits. Porém,
possuem amplitudes diferentes. Na realidade, a amplitude do sinal de treinamento é ligeira-
mente superior à da mensagem. Em um ambiente com baixa relação sinal rúıdo, um sinal de
treinamento mais forte permite ocultar a mensagem a ser transmitida, bem como melhorar
o ganho para a estimação da resposta impulsiva e para a sincronização do sistema. A men-
sagem é composta por 3 bits nulos e 4 sequências de 511 bits. Delimitados por uma curta
sequência de comprimento máximo de 31 bits, para dupla sincronização, os pacotes de dados
possuem 480 bits e transportam o seguinte pangrama: (The Quick Brown Fox Jumps Over
the Lazy Dog 0123456789!@#$). O método explora a diversidade temporal do canal, trans-
mitindo a mesma sequência diversas vezes para aumentar o ganho de processamento do sinal
e implementar a correção de erros através da soma coerente dos sinais. A resposta impulsiva
do canal é estimada pela transformada rápida de Hadamard, e a equalização do sinal é feita
por um filtro de Wiener. A remoção da interferência causada pelo sinal de treinamento é
realizada pelo método “hyperslice cancellation by coordinate zeroing (HCC0)”, e a seguir a
mensagem é decodificada. Resultados obtidos a partir de um experimento em águas rasas,
utilizando uma fonte e um único hidrofone, apresentaram taxas de erro de bit menores que
10−2, para relações sinal/rúıdo inferiores a −8 dB.

A ressurgência costeira é um fenômeno oceanográfico dinâmico que modifica, profunda-
mente, a estratificação de temperatura do oceano, influenciando diretamente na propagação
acústica. Por outro lado, os crescentes ńıveis de rúıdo antropogênico não apenas reduzem
o desempenho dos sistema de comunicação, corrompendo a informação transmitida, mas
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também afetam a vida marinha. Para compreender os efeitos da ressurgência costeira sobre
as comunicações com baixa relação sinal/rúıdo, um estudo analisa os dados do experimento
BioCom’19, realizado nas proximidades da Ilha do Cabo Frio, Rio de Janeiro (Brasil). As
respostas impulsivas do canal e a propagação acústica, para diferentes perfis de velocidade do
som, foram estimadas usando o modelo de propagação acústica “Monterey-Miami Parabolic
Equation model (MMPE)”. Além disso, o desempenho do sistema de comunicações foi cor-
relacionado com os perfis de temperatura durante o experimento. Os resultados obtidos
indicam uma significativa redução da energia acústica nos receptores durante a ressurgência,
degradando o desempenho do sistema.

A coerência temporal e espacial dos sinais de baixa potência transmitidos no experimento
BioCom’19 foi estimada, e um critério para combinação dos sinais, provenientes dos múltiplos
hidrofones, foi proposto. Utilizando dados de um arranjo piramidal e um arranjo vertical
linear, de 4 hidrofones cada, a coerência foi estimada antes e depois do filtro de Wiener
para mostrar o impacto do multicaminhamento sobre a taxa de erro de bit. Os resultados
mostram que a coêrencia temporal pode ser utilizada como critério para combinar sinais
consecutivos em um mesmo canal, enquanto a diversidade espacial permite a combinação de
múltiplos canais do arranjo de sensores. Sequências cuja coerência temporal esteja acima
de um limite pré-definido são somadas. A coerência espacial entre canais foi estimada e
comparada em termos da taxa de erro de bit. Para diferentes taxas de transmissão, as taxas
de erro de bit estão em concordância com a evolucão da coerência espacial. Quanto mais
elevada a coerência, melhor o desempenho e menor a taxa de erro de bit.

Um duplo filtro de Wiener para melhorar a equalização dos sinais de baixa potência,
durante a ressurgência, tambem foi proposto. Utilizando dados dos 4 hidrofones de um
arranjo piramidal, as respostas impulsivas foram estimadas para observar a variabilidade
das condições de propagação. Em uma condição de perfil de temperatura isotérmico, as
respostas impulsivas apresentaram multicaminhamento curto, com chegadas mais fortes nos
receptores. À medida que a ressurgência ocorria, foram observadas quedas abruptas de
temperatura superiores a 10◦C, na posição dos hidrofones, acarretando uma forte refração da
onda sonora para o fundo marinho. Em consequência, sinais mais fracos foram observados
nos hidrofones. Os resultados obtidos com dados do BioCom’19 mostram que, para uma
relação sinal/rúıdo variando entre −3.9 e 7.3 dB, o duplo filtro de Wiener forneceu um
ganho do erro médio quadrático de até 2.8 dB, comparado com o filtro de Wiener simples.

As técnicas de tempo reverso passivo (TRP) tem sido amplamente empregadas nas
comunicações submarinas. Porém, as rápidas alterações das condições de propagação em
canais submarinos variantes no tempo, durante as transmissões da sequência de treinamento
e da mensagem, degradam o desempenho das técnicas TRP de equalização. Assim, esse
trabalho propõe um método de TRP utilizando treinamento superposto, para sistemas com
um ou múltiplos sensores. O método proposto utiliza uma sequência de treinamento, com
o efeito Doppler corrigido, para estimar o canal e realizar o TRP. O método compara 3
differentes estratégias para melhorar a performance do sistema de comunicação: a diversidade
temporal devido aos sinais idênticos transmitidos continuamente, a diversidade espacial
devido aos 2 arranjos de hidrofones, piramidal e linear, com 4 hidrofones cada um, além da
combinação dos 2 arranjos (8 hidrofones). Neste método, a técnica de TRP com treinamento
superposto minimiza o multicaminhamento e realiza a correção de erros através da soma
coerente dos diferentes canais. A interferência intersimbólica residual é removida pelo filtro
de Wiener. Resultados obtidos com dados do experimento BioCom’19 mostram que o método
proposto pode fornecer um ganho do erro médio quadrático de até 1.62 dB para canais
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independentes, e 3.13 dB, para canais combinados, comparativamente ao método sem o TRP,
usando apenas o filtro de Wiener. Neste contexto, o método de TRP utilizando treinamento
superposto alcançou taxas de erro de bit < 10−2 para uma relação sinal rúıdo, na banda de
transmissão, variando entre −5 a +6 dB.

Focado em comunicações com baixa probabilidade de detecção para pequenos véıculos
submarinos, este trabalho também apresenta um estudo sobre a combinação dos canais
de pressão e velocidade de part́ıcula dos sensores vetoriais. Os sensores vetoriais possuem
pequenas dimensões, adequadas à utilizacão em véıculos autônomos, e permitem obter um
ganho de diversidade para as comunicações BPD. Para testar o método de treinamento
superposto com o tempo reverso passivo utilizando sensores vetoriais, um experimento foi
realizado, em águas rasas, na costa do Algarve/Portugal. Para reduzir a relação sinal/rúıdo
para uma faixa de 0 a −10 dB, foi adicionado rúıdo gravado no experimento. Os resultados
experimentais indicam que a combinação dos canais podem fornecer um ganho da relação
sinal/rúıdo e do erro médio quadrático de até 9.4 e 3.1 dB, respectivamente, comparados
com os resultados do sensor de pressão.

Portanto, as principais contribuições dessa tese são (i) a proposta do método de treina-
mento superposto para comunicações com baixa probabilidade de detecção, (ii) a com-
preensão dos efeitos da ressurgência costeira sobre as comunicações, e seus impactos sobre a
coerência temporal e espacial, (iii) o método de treinamento superposto em conjunto com o
tempo reverso passivo para lidar com a variação do canal entre o tempo de recepção do sinal
de treinamento e da mensagem, e (iv) a combinação dos múltiplos canais dos sensores veto-
riais para comunicações BPD. Dessa forma, uma melhor compreensão do canal submarino
e a utilização dos métodos propostos combinados com sensores do estado da arte, como os
sensores vetoriais, se configura como um avanço neste campo do conhecimento, permitindo
aumentar a robustez do sistema BPD, bem como reduzir a probabilidade de detecção, man-
tendo a ocultação das comunicações.

Palavras-chave: Comunicações submarinas, baixa probabilidade de detecção, filtro de
Wiener, coerência, tempo reverso passivo, sensores vetoriais.
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Chapter 1

Introduction

Abstract This chapter presents an overview of underwater acoustic communications, and

introduces the concept of low probability of detection communications, describing the state-of-

the-art in the field. Furthermore, it shows the motivation of this work and states the objectives

that have guided the research. Section 1.1 introduces underwater acoustic communications,

the main challenges, restrictions, and the state-of-the-art in the field. Section 1.2 introduces

the concept of low probability of detection communications, and the most common approaches

for covert communications. The motivations of this thesis are detailed in Section 1.3. The

main objectives and goals of this work are stated in Section 1.4. Section 1.5 presents the

thesis outline.

1.1 Underwater acoustic communications

“If you cause your ship to stop and place the head of a long tube in the water and place the

outer extremity to your ear, you will hear ships at a great distance from you.”

Leonardo da Vinci, 1490

Wireless underwater acoustic communications may be traced back to the time of Leonardo

Da Vinci. Listening on a long tube submerged in the water, Da Vinci observed that ships

could be heard at great distances. Since then, the idea of using sound to transmit information

underwater, eliminating the physical connection of tethers, has been explored for multiple

1
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purposes such as acoustic telemetry from environmental monitoring sensors, ocean mapping,

remote control of valves in the oil industry, communications between divers, command and

control of submarines or autonomous underwater vehicles, and underwater networks [1].

The main reason for using acoustic waves is that both radio and optical communication

systems have severe restrictions to operate in the sea. Radio communication systems have

been exhaustively researched using extremely (3 Hz - 3 KHz) and very low frequency (3

kHz - 30 kHz), named ELF and VLF, to communicate with submerged receivers. However,

electromagnetic waves are strongly attenuated as they propagate through the ocean [2].

Research from the US Navy has shown that despite ELF and VLF waves can propagate with

low attenuation, a communications system requires a high-power land station to transmit the

signal, and a large receiving antenna at the receiver end, limiting the system’s applicability.

The use of full electromagnetic bandwidth to achieve long ranges at high data rates is

impractical. An overview of radio communications in the ocean and current research projects

may be found in [3].

On the other hand, underwater optical communications, using laser, can provide high

data rates, in the order of Megabits, but the range is limited up to a few hundred meters.

Optical waves are less affected by attenuation but scattering is a serious issue. Optical

communications require line-of-sight between transmitter and receiver, high precision in

pointing the laser beams, and depends on the turbidity of the water. The most recent

advances in underwater optical wireless communications may be found in [4].

The sound travels through the water much more effectively than radio and optical waves.

However, the ocean is considered one of the most complex environments for communica-

tions [5]. The time-space varying ocean waveguide poses numerous problems for signal



1.1. Underwater acoustic communications 3

transmission. Regarded as the most significant environmental issue, multipath propagation

causes intersymbol interference (ISI), degrading communication performance. Multipath is

mainly due to the multiple reflections of the sound wave from the sea surface and the bot-

tom, but can also be caused by the refraction of the sound wave [5, 6]. The time-varying

multipath structure depends on several factors such as the channel geometry, sound speed

profile, source/receiver depths, range, and frequency of the signals amongst others. Atten-

uation increases with frequency, limiting bandwidth and data rate. The ambient noise due

to both natural and man-made sources also corrupts information being transmitted. Fur-

thermore, Doppler shift generated by movements between transmitters and receivers, and

Doppler spread due to currents and channel reverberation modify the transmitted signals’

frequency and bandwidth [6, 7].

Since World War II, underwater acoustic communications have been studied for military

applications. One of the first underwater communication systems was an underwater tele-

phone developed in the United States for communicating with submarines, which still exists

nowadays in most military vessels. Using a single-sideband suppressed carrier amplitude

modulation, in the frequency range from 8-11 kHz, the telephone was capable of commu-

nicating over several kilometers. In the 60’s, most systems were based on non-coherent

detection methods [7]. Due to the predominantly linear nature of propagation, most of the

frequency content of transmitted signals remains within its original band whereas the am-

plitude and phase of the coherent signals can vary in time and space due to reverberation

effects and ocean properties fluctuations, leading to the use of incoherent modulations. To

deal with ISI, a guard time between consecutive signals is inserted to ensure that rever-

beration and multipath vanish before the next pulse. Thus, these non-coherent systems
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even presenting poor spectral efficiency and low bit rates are still used when robustness is

the main requirement of the system [7]. In recent years, several bandwidth-efficient phase-

coherent communication systems have been proposed and tested at sea [8, 9]. In contrast

to incoherent receivers that avoid the ISI effects of reverberation, coherent receivers must

actively mitigate it to preserve a reliable phase reference [7]. Exploring temporal and spatial

diversity, multichannel equalizers improve signal demodulation [8]. Non-adaptive equalizers

attempt to undo distortions to the signal caused by the multipath propagation, designing an

inverse filter. Meanwhile, multiple receiver elements in an array minimize the likelihood of a

simultaneous signal fading in all channels [9], improving signal demodulation. Equalization

techniques for underwater acoustic communications have been discussed in [8, 10, 11], but

the architecture is based on a phase-locked loop (PLL) to track signal phase shifts, followed

by a decision feedback equalizer (DFE). However, the DFE+PLL equalizer presents reduced

performance when dealing with fast time-varying channel impulse responses (CIR) [8].

Significant advancements have been made in the development of underwater acoustic

communication systems in terms of their operational range, data throughput, and reliability.

Several applications, both commercial and military, are calling for real-time communication

with submarines and autonomous underwater vehicles. However, most systems require high

signal-to-noise ratios (SNR) to work properly. In recent years, concerns about the impacts of

man-made underwater noise on marine life, and the need to communicate with submarines

and underwater vehicles covertly have led to a relatively new field of studying, and the core

of this thesis: the low probability of detection underwater acoustic communications.
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1.2 Low probability of detection communications

Covert or LPD communications have been conceived in the radio-frequency (RF) domain,

for military purposes, and extended to the underwater channel. The main goal is to al-

low communication in a maximal range while minimizing the probability of detection by

an illegitimate receiver [12, 13]. In military applications, LPD communications have the

potential to keep submarines and autonomous underwater vehicles (AUV) undetected while

communicating to other submarines, surface vessels, or underwater network nodes [12, 13].

Covert communications also have civilian applications including environmental monitoring

telemetry, underwater sensor networking, and command and control of AUVs [12]. Several

assumptions must be made to perform an LPD experiment and analyze data. The LPD

properties from the legitimate receiver and interceptor perspectives differ depending on the

range to the source or to the interceptor capabilities. Assuming that the eavesdropper does

not have previous knowledge about the signal, detection of the low SNR signals relies on

an energy detector. However, literature about covert communications shows that it is un-

feasible to guarantee a covertness of 100% [13]. Thus, estimating the LPD capability of

a communication system has been proposed in several papers [14, 15]. Performed at very

low SNR (SNR< −8 dB) [16], in the transmission frequency band, most of the solutions,

brought from the RF channel [17], are not adequate. The LPD concept for underwater

acoustic communications presents several challenges. The rapid signal fluctuation in time

and space, the long multipath delay spread, the Doppler shift induced by the motion of the

sensors and the sea surface, and the high noise levels due to human and biological activities

are factors that severely degrade low power signal demodulation, motivating new signal pro-
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cessing approaches [7,12,18,19]. Thus, in an attempt to improve the performance, a mix of

concepts for digital communications such as Direct Sequence Spread Spectrum (DSSS), Or-

thogonal Frequency Division Multiplexing (OFDM), and time-reversal have been employed

and tested at sea [13, 16, 20–22]. Furthermore, mimicking marine mammals has also been

tried to disguise the signals, reducing the probability of detection.

1.2.1 Direct Sequence Spread Spectrum

Most common state-of-the-art low SNR coherent-modulated communication systems are

based on direct-sequence spread-spectrum (DSSS) [12,21–23]. The symbols are spread by a

code sequence, typically an M-sequence, resulting in a wideband signal [24]. Assuming that

the receiver shares the same code, the matched filter can compress the signal, and bring it

above the noise level. The matched filter pulse compression provides a SNR gain equal, in

theory, to the time-bandwidth product of the spreading code, permitting message retrieval

for low SNR [23]. Considering that the spreading code is unknown to any unauthorized

receiver accessing the communication network, a low probability of interception (LPI) is

said to be achieved with DSSS modulation, transmitting at low power levels [21, 23]. DSSS

permits multi-access communications due to several possibilities of orthogonal spreading

codes that avoid mutual interference between users. However, there is an inevitable tradeoff

between the data rate and the SNR. Operating at low data rates, DSSS exploits frequency

diversity and benefits from the spreading gain in a low SNR environment to improve the

communication system performance [21,25]. Some drawbacks are the reduced data rate due

to the length of the spreading code, high Doppler sensitivity, and difficult synchronization.

Furthermore, multipath degrades codes orthogonality causing inter-chip and inter-symbol
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interference. In [23], two methods using DSSS combined with pTR are presented for single

receivers. Signals were recorded at sea with high SNR and added ambient noise to simulate

low power signals. Using time-updated CIR as a matched filter, the methods achieved

similar performance, yielding BER < 10−2 at −12 dB input SNR. DSSS and a coherent

RAKE receiver were also investigated to design spreading waveforms that can cope with the

frequency selective nature of the underwater channel, and also have properties for LPD

communications [21]. Adding additive white Gaussian noise (AWGN) to the data, the

scheme achieved BER < 10−2 for a SNR varying between −7 and −9 dB. The data rate

was 156.25 bps. A study on adaptive modulation for low SNR/covert communications based

on a set of DSSS signals is presented in [22]. The authors proposed a channel estimate-

based DFE and boosted trees for adaptive modulation. The data rate varied from 13 to 116

bps. Using AWGN to reduce the SNR at the receiver, BER lower than 10−2 using binary

phase-shift keying (BPSK) at -5 dB were achieved. In another work, focused on bio-friendly

communications, the authors presented a spread spectrum M-ary orthogonal code keying

(M-OCK) modulation [25]. Based on recordings from a sea trial, with SNR adjusted by

adding AWGN, the scheme achieved BER < 10−3 for a SNR = −14 dB, and a data rate of

35.63 bps.

1.2.2 Orthogonal Frequency Division Multiplexing (OFDM)

The orthogonal frequency division multiplexing (OFDM) is another technique explored for

covert underwater communications [13, 20, 26]. A relatively simple implementation of the

OFDM system and its capability to transmit efficiently over long time spread channels has

motivated the research. The need for a long symbol duration at each sub-band permits a
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reduction of the source level. In the form of multicarrier modulation, OFDM finds application

in highly dispersive channels, achieving high data rates in frequency selective environments.

OFDM allows overlapping between subcarriers, improving bandwidth efficiency. The data

is sent using several subcarriers, after multiplexing. Therefore, the system may achieve high

data rates. Furthermore, modulation/demodulation techniques using Fourier transforms are

computationally efficient. However, channel variability within the symbol period may cause

a loss of orthogonality among subcarriers. Doppler is an issue and must be compensated to

improve acquisition and synchronization, before equalization. In [20], the authors proposed

an OFDM system for covert communications, achieving 4.2 and 78 bps for SNR lower than

-16 and -8 dB, respectively, for ranges up to 52 km.

1.2.3 Time-reversal processing

Time-reversal (TR) techniques are commonly used for low SNR communications, and there-

fore, may be extended to covert communications. Based on wave backpropagation, time-

reversal exploits the reciprocity of linear wave propagation to achieve spatial and temporal

focusing of the sound energy, at desired points in the waveguide, with little knowledge about

the channel [10]. Generally divided into active (aTR) and passive time-reversal (pTR), the

TR approach is quite simple and has attracted attention after some experiments have shown

its feasibility in the ocean waveguide [9].

Active time reversal focusing may be achieved by transmitting a probe from a point source

to an array of receivers, which sample the acoustic pressure field. The distorted signals,

recorded by each receiver element, are then time-reversed, convolved to the data waveform,

and retransmitted back to the source. Therefore, a replica of the acoustic field converges
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at the source position, and approximately regenerates the original waveform, mitigating

multipath [10]. Due to the focusing of the acoustic energy, active time-reversal achieves a

high signal-to-noise ratio (SNR) at the intended receiver with a low probability of interception

elsewhere [18,27]. The array is typically composed of several acoustic receivers and collocated

sound sources. Due to its retroreflective ability to receive and retransmit the time-reversed

signals, the array is commonly known as a time-reversal mirror (TRM) [9,28]. Assuming that

the ocean environment is reasonably stable, not changing much during the signal round-trip

travel time, the focus results from recombination of the multipath structure impinged to the

signal in both ways [9]. The focalization is a consequence of the capability of the channel to

deconvolve itself. Thus, no previous knowledge about the environment is necessary.

Passive time-reversal (pTR) techniques have been widely used for high multipath under-

water communications in shallow water [9, 10, 18, 27, 29]. PTR usually relies on a spatio-

temporal matched filter estimated by a probe sent before the data and requires a receiver

array. In the absence of noise and considering that neither the channel oceanographic struc-

ture nor the geometry between source and receiver has changed in the time interval between

the probe and the message, the received probes can be time-reversed and used to filter

the message. To eliminate residual intersymbol interference (ISI), pTR is usually followed

by an adaptive filter, typically a decision feedback equalizer (DFE) with a phase-locked

loop [8, 29, 30]. However, DFE may be computationally intensive depending on the adapta-

tion algorithm, and may also present a poor performance in a low SNR environment, due

to significant uncertainties in channel estimation and imprecise synchronization [23]. In the

case of moving platforms and variable source-receiver geometries, especially in a fast time-

varying ocean waveguide where coherence time may be short, the classic approach of pTR
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sending the probe ahead of data may not be able to cope with the environmental mismatch

between the probe and the message transmissions, even at high SNR [10, 27, 29]. There-

fore, an environmental model-based time-reversal is proposed in [31]. The estimated noisy

channel impulse responses (CIR) were replaced by time-updated and noiseless CIR replicas

computed by a ray-tracing model. An extension of the pTR technique to adaptively weight

receiver contributions to compensate for degraded focusing due to the geometrical mismatch

between the probe and data is presented in [10]. The interested reader is referred to [29] for

an overview of time-reversal communications.

1.2.4 Marine mammals mimicking

Most LPD communication systems using DSSS and OFDM must operate at low SNR, below

the environmental noise, to avoid detection by an eavesdropper. However, to take advantage

of the ambient noise and to trick the eavesdropper, biologically inspired communications

mimick marine mammals’ sounds, being not restricted to low-power signals. The mimicked

clicks and whistles can be detected but as they are recognized as marine mammals, they

are not classified as an enemy. In [32], a scheme is proposed to mimic dolphin whistles

by continuously varying the carrier frequency and by using antipodal symbol modulation.

In [33], dolphin clicks were used to disguise the intended message. Employing a RAKE

receiver, the system achieved BER < 10−4 at 37 bps, in a lake experiment. Therefore, this

technique presents LPI characteristics and has been studied for military applications.
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1.3 Motivation

Research on low probability of detection underwater acoustic communications has been en-

couraged, in recent years, by governments, industry, and academia due to its multiple ap-

plications. Mostly based on low signal-to-noise ratio (SNR) signals, LPD communications

may be used to keep submarines, autonomous underwater vehicles, and network nodes un-

detected while communicating. The increasing use of battery-operated AUVs to perform

long-term missions requires low power demanding telemetry for coordination between mul-

tiple platforms, with reduced mutual interference, and for command and control between

the AUVs and the operational center. Thus, both the autonomy and the operating range of

the moving platforms may be extended. Furthermore, raising concerns about the increasing

anthropogenic noise levels and their impact on marine life has led to strict legislation in sev-

eral countries to limit the transmitted acoustic power in the ocean. Therefore, bio-friendly

LPD communications may also contribute to the field, minimizing possible interference with

marine mammals vocalizations and mitigating issues to marine life caused by the exposure

to excessive acoustic power signals. However, establishing reliable LPD coherent communi-

cations in shallow water is a challenging task. The rapid signal fluctuation in time and space,

the long multipath delay spread, the Doppler shift induced by the motion of the sensors and

the sea surface, and the high noise levels due to human and biological activities are fac-

tors that severely degrade low power signal demodulation, motivating new signal processing

approaches.

Most common systems for covert communications rely on a single or on an array of

hydrophones for multichannel combining to increase the SNR at the receiver. However, these
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large-size arrays are not suitable for autonomous platforms, such as AUVs. Compact in size,

the acoustic vector sensors measure both the scalar acoustic pressure and the orthogonal

particle velocities in a co-located device. Despite providing diversity gain, acoustic vector

sensors just recently started being explored for underwater communications. Studies about

the use of vector sensors for LPD communications are still limited. Therefore, this thesis

may contribute to the field, proposing new methods for LPD communications, and exploring

the VS multichannel combining to improve the system robustness, while keeping covertness.

1.4 Objectives

The primary objective of this thesis is to develop low probability of detection underwater

acoustic communications in shallow water. To reach this main goal, specific objectives were

stated to guide the research:

i) to improve research about superimposed training, fast Hadamard transforms (FHT)

and hyperslice cancellation by coordinate zeroing (HCC0), in order to develop a method for

covert communications using a fixed single source/receiver network node;

ii) to study passive time-reversal techniques to reduce the equalization complexity, and to

understand how the superimposed training method may reduce the pTR channel mismatch

in the time interval between the probe and the message transmissions for multiple receivers;

iii) to study the acoustic propagation and signal coherence in fast time-varying shallow

water channels;

iv) to study the impacts of upwelling oceanographic phenomena over low SNR acoustic

communications;
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v) to study the acoustic vector sensors, to understand the relationship between the

pressure and particle velocity channels, and to implement multichannel combining, increasing

the SNR at the moving receiver;

vi) to study communication covertness from both a legitimate receiver, and an interceptor

perspective.

1.5 Thesis Outline

The thesis is organized into 8 chapters.

Chapter 2 presents the simulation scenario used for LPD communications, and describes

the methodology adopted in this thesis. Chapter 3 presents a superimposed training method,

suitable for LPD communications using a single source/receiver in shallow water. Chapter 4

presents a study about the effects of coastal upwelling over acoustic propagation in shallow

water and their impacts on communications. Chapter 5 presents a study about temporal

and spatial coherence over communications in a fast time-varying channel and proposes

a double Wiener filter to mitigate intersymbol interference in such channels. Chapter 6

presents a superimposed training passive time-reversal (STpTR) approach to deal with the

passive time-reversal (pTR) environmental mismatch between the probe and the message

transmissions in a low SNR environment, using single and multiple receivers. Chapter 7

presents a study on the vector sensor multichannel combining for LPD communications and

demonstrates the feasibility of employing STpTR and VS using data from a shallow water

experiment. Chapter 8 summarizes the main results, presents the scientific contributions of

this thesis, and discusses some directions for future research.
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Chapter 2

Methodology

Abstract This chapter presents the simulation scenario used for LPD communications and

describes the methodology adopted in this thesis. Section 2.1 presents the simulation scenario

in this thesis. The Monterey-Miami Parabolic Equation model used to simulate the acoustic

propagation is described in Section 2.2. Section 2.3 presents the communication system

model and the proposed superimposed training method. The fast Hadamard transform and

the efficient crosscorrelation are detailed in Section 2.4. Section 2.5 describes the passive

time-reversal technique. The Wiener filter equalizer is commented in Section 2.6. Section

2.7 explains the Hyperslice Cancellation by Coordinate Zeroing (HCC0) method to remove

the probe interference.

2.1 Scenario for communication system simulation

This section presents the scenario used for the simulations using the Monterey-Miami

Parabolic Equation (MMPE) model aiming to develop the signal processing techniques

for LPD communications presented in this thesis. Fig.2.1 shows the transmission loss

estimated using MMPE model for the communication scenario derived from the test site

of the Brazilian Navy “Institute of Sea Studies Admiral Paulo Moreira”, located in Rio

de Janeiro/Brazil. Most applications for LPD and low SNR communications rely on

shallow water acoustic propagation. Shallow water is arbitrarily defined as the part over

15



16 Chapter 2. Methodology

Figure 2.1: Transmission loss estimated using MMPE model for a simulation scenario defined by
the channel physical parameters and the communication system setup parameters.

the continental shelf where depths are lower than 200m [2, 34]. In this work, “shallow

water” means a water depth in which sound is propagated to the far-field a distance by

repeated reflections from surface and bottom [2, 34]. However, the time-space varying

shallow water waveguide is a complex medium to establish communications. The multipath

propagation, induced by these surface/bottom reflections, causes intersymbol interference,

degrading the system performance. The time-varying multipath structure depends on

several factors such as the channel geometry, sound speed profile, source/receiver depths,

range, frequency/bandwidth of the signals, and bottom composition amongst others.

To simulate the acoustic propagation in Fig.2.1, a source transmits broadband signals

with a central frequency of 7.5 kHz, and bandwidth of 3 kHz, to a vertical linear array

composed of 4 hydrophones positioned at a 1.5 km range. The source depth is 10m, and the

hydrophones from the VLA are positioned at 4, 9, 14, and 19 m. The sound speed profile is

isovelocity (1500 m/s).

In the model, the bottom layer is defined as a simple, homogeneous half-space with a

smooth interface varying from 15 to 20 m. The bottom is classified as fine sand and the
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estimated compressional speed (cp) is 1684 m/s, according to [35]. The bottom density

ρ=1.996 g/cm3, and the compressional attenuation is α = 0.8 dB/λ.

2.2 The Monterey-Miami Parabolic Equation model

(MMPE)

In this work, the chosen acoustic propagation model is the Monterey-Miami Parabolic Equa-

tion model (MMPE) [36]. Despite several models that may compute solutions of the wave

equation, just a few are both depth and range-dependent [37]. It is well-accepted that prop-

agation models in shallow water need to have range dependent capabilities [38]. Shallow

water is not only susceptible to water column temperature disturbances, but also to the

sea surface variability during the acoustic propagation, and bottom properties in terms of

bathymetry and sediment layers composition. The parabolic-equation methods, introduced

into underwater acoustics by Hardin and Tappert in the 70s, provide numerical solutions

to the Helmholtz equation based on Fast Fourier Transform. The MMPE is a broadband,

full-wave acoustic propagation model and has been widely used by researchers in this field,

to model the acoustic channel, especially in shallow waters due to its fast implementation

and computational efficiency [39].

The standard parabolic wave equation is given by (2.1)

∂2ψ

∂r2
+ 2ik0

∂ψ

∂r
+k20(n

2 − 1)ψ = 0 (2.1)

where ψ(r, z) is the envelop function, and n(r, z, θ) is a function of depth (z), range (r), and

grazing angle (θ). The MMPE model utilizes a split-step Fourier range-marching algorithm

to solve the parabolic equation. A Gaussian field is used to generate the initial solution.

Then, the marching algorithm maps the entire range-depth propagating field [38]. The
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PE algorithm treats the sea surface as an ideal pressure release boundary, while the bottom

boundary is treated as a fluid, with density smoothing functions to represent the discontinuity

in sound speed and density. Based on the input parameters for the propagation scenario

such as the source frequency and depth, frequency bandwidth, sound speed profiles, channel

depth, and bathymetry, the MMPE computes the ocean impulse responses used to simulate

the communication system.

2.3 Communication system model

Considering the ocean as a linear system, the transmission of a signal from a single source

to a single or multiple M receivers may be modeled as an input signal s(t) being convolved

with the channel impulse response hm(t), added to the ambient noise component nm(t)

(Fig. 2.2). The transmitted bitstream is composed of a probe code x(k) superimposed

to a signal of interest d(k) transmitted at the same time, through the same channel and

recorded at each m receiver, where k=1, 2, ..., L is a discrete time-index, L = kTs is the

period of the probe sequence, and Ts is the period of each symbol. The probe x(k) is

a signal that must have good autocorrelation properties to estimate the channel impulse

responses, used in both passive time-reversal and Wiener filter for signal equalization. The

bitstream symbol sequence A(k) = Px(k) + Qd(k), where P and Q are the probe and the

data amplitudes, x(k)=±1 is the probe code, and d(k)=±1 is the data message. Due to the

P and Q amplitudes, the resulting baseband bitstream s(t) is amplitude and binary phase

modulated given by s(t) =
∑L

k=1A(k)q(t− kTs), where q(t− kTs) is the pulse shaping filter

(rectangular, raised cosine...) centered at 0 with width Ts, to avoid intersymbol interference.

The transmitted bandpass binary signal is given by s̃(t) = Re[|s(t)|e(2πfct+x(t)θ)] where fc is
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Figure 2.2: Communication system model with M channels, in baseband equivalent representation
where s(t) is the transmitted signal, hm(k) is the discrete CIR, nm(k) is the ambient noise, and
ym(k) is the received signal in each m receiver.

the carrier frequency, x(t) is the probe code in continuous time, and θ = π/2 (BPSK).

The continuous time baseband received signal is given by (2.2)

ym(t) =
L∑

k=1

hm(τ)s(t− τ) + nm(t) = s(t) ∗ hm(t) + nm(t) (2.2)

where hm(t) is the channel impulse response, and nm(t) is the ambient noise at them receiver,

and τ represents the channel multipath delay for a fixed value of t. Here and throughout

this work, ∗ denotes convolution.

In this thesis, the discrete-time sampled probe x(k) is equal to the value of the continuous-

time probe x(t) at times kTs. Both M-sequence x(k), in discrete time-domain, and x(t) in

continuous time-domain, may represent the probe signals transmitted through the acoustic

channel for signal detection, and channel impulse response estimation. The conventional

approach to cross correlate the received baseband bitstream ym(t) with the M-sequence

probe x(t), known to the receiver, is shown in (2.3)

hm(t) = ym(t) ∗ x†(−t) (2.3)

where † denotes complex conjugate. However, a direct M-sequence correlation can entail on
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the order of L2 operations, where L = 2N−1 is the period of the sequence and N is the degree

of the feedback equation. Simplicity and efficiency of fast Walsh-Hadamard transform (FHT)

to perform cyclic correlations of M-sequences have found several applications in underwater

digital communications [15, 40] and sonar signal processing [41]. The correlation output

can be well-approximated by a cyclic cross-correlation since the M-sequence has a good

autocorrelation property. Therefore, the next section presents the similarities between the

M-sequence and the Hadamard matrices and details the FHT to reduce the computational

time.

2.4 Fast Hadamard Transform

The fast Walsh−Hadamard transform, also called Fast M-Sequence Transform [24], exploits

the permutational equivalence between the M-sequence ML and the Sylvester−Hadamard

matrices HL+1 to perform cyclic cross-correlations. Thus, the matrix multiplication by the

Walsh−Hadamard matrix (2.6) may proceed via a butterfly algorithm similar to the fast

Fourier transform (FFT) [42]. Replacing multiplications of direct correlation by addition

and subtraction operations only, the correlation number of operations is drastically reduced

from L2 to Llog2L saving computational time.

2.4.1 The M-sequence matrix

Maximal length sequence, known as M-sequence, is a binary sequence generated by a linear

feedback shift register whose characteristic polynomial is primitive given by (2.4)

f(x) = xN +
N−1∑
i=0

cixi (2.4)

The resulting M-sequence [xk] = [c1, ...c2N−1] can be shown to have an impulse-like
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autocorrelation function, and for this reason, are often called pseudorandom sequence. The

cyclic permutations of the code may generate an orthogonal square M-sequence matrix ML

of order L = 2N − 1. The first row of ML is [xk] and the successive rows are cyclic shifts of

[xk]. For a given value of N , there exist several M-sequences but those created from a large

N present better correlation properties. Let us consider, for example, the M-sequence code

[xk] = [1, 1, 1, 0, 0, 1, 0] , created from the recursive equation f(x) = x3 + x + 1. Replacing

the 1’s for -1’s, and 0’s for 1’s in the M-sequence code [xk] = [−1,−1,−1, 1, 1,−1, 1], the

corresponding M-sequence matrix or order 2N − 1, where N=3, is given by (2.5)

M2N−1 =



c1 c2 c3 c4 c5 c6 c7
c2 c3 c4 c5 c6 c7 c1
c3 c4 c5 c6 c7 c1 c2
c4 c5 c6 c7 c1 c2 c3
c5 c6 c7 c1 c2 c3 c4
c6 c7 c1 c2 c3 c4 c5
c7 c1 c2 c3 c4 c5 c6


=



−1 −1 −1 +1 +1 −1 +1
−1 −1 +1 +1 −1 +1 −1
−1 +1 +1 −1 +1 −1 −1
+1 +1 −1 +1 −1 −1 −1
+1 −1 +1 −1 −1 −1 +1
−1 +1 −1 −1 −1 +1 +1
+1 −1 −1 −1 +1 +1 −1


(2.5)

2.4.2 The Hadamard matrix

A Sylvester-Hadamard matrix H2N (2.6) is defined as a square matrix of order N where

all entries are ±1 and its row vectors define a complete set of orthogonal functions so that

HNH
T
N = NIN , where HT is the transpose of HN , and IN is the identity matrix. The

Hadamard matrix exists only for a power of 2 and may be computed recursively as

H2N =

[
H2N−1 H2N−1

H2N−1 −H2N−1

]
, for N=1,2,3... where H1 = [1]. (2.6)
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Thus, for N=3

H8 =



+1 +1 +1 +1 +1 +1 +1 +1
+1 −1 +1 −1 +1 −1 +1 −1
+1 +1 −1 −1 +1 +1 −1 −1
+1 −1 −1 +1 +1 −1 −1 +1
+1 +1 +1 +1 −1 −1 −1 −1
+1 −1 +1 −1 −1 +1 −1 +1
+1 +1 −1 −1 −1 −1 +1 +1
+1 −1 −1 +1 −1 +1 +1 −1


(2.7)

2.4.3 Efficient cyclic correlation using FHT

The computation algorithm of the FHT to perform the cyclic correlation of M-sequences is

briefly described in this section. There is a permutational equivalence between M-sequence

and Hadamard matrices. The M-sequence matrix (2.5) may be decomposed as a linear

modulo-2 combinations of the first N rows/columns of M as (2.8):

ML = GL×NVN×L =



−1 +1 +1
+1 −1 +1
+1 +1 −1
−1 −1 +1
+1 −1 −1
−1 −1 −1
−1 +1 −1


.

−1 −1 −1 +1 +1 −1 +1
−1 −1 +1 +1 −1 +1 −1
−1 +1 +1 −1 +1 −1 −1

 (2.8)

where G consists of the first N rows of M, and Q consists of columns in M which first N rows

form an identity matrix, remembering that 0’s are replaced by 1’s and 1’s by -1’s.

On the other hand, the Hadamard matrix (2.6) may be factored as (2.9):

HL+1 = BL+1×NB
T
N×L+1 =



+1 +1 +1
+1 +1 −1
+1 −1 +1
+1 −1 −1
−1 +1 +1
−1 +1 −1
−1 −1 +1
−1 −1 −1


.

+1 +1 +1 +1 −1 −1 −1 −1
+1 +1 −1 −1 +1 +1 −1 −1
+1 −1 +1 −1 +1 −1 +1 −1



(2.9)
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.

The permutational equivalence between the M-sequence and the Hadamard matrices,

may be observed bordering the matrix G on top with a row of all 1’s, and the matrix V on

the left with a column of all 1’s. The resulting Ĝ and B differ by a a row permutation, while

V̂ and BT differ by a column permutation. The Ĝ = PGB and V̂ = BTPV , where PG and

PV are L+ 1× L+ 1 permutation matrices.

Therefore, instead of performing the direct crosscorrelation between the M-sequence

matrix and the received signal vector yL (2.3), the channel impulse response may be estimated

much faster taking advantage of the permutational equivalence between the M-sequence and

the Hadamard matrices (2.10), reducing the number of operations from L2 to Llog2L.

ML = ZRPGBB
TPVZI = ZRPGHL+1PVZI (2.10)

where [ZI ](L+1×L) =

[
1
IL

]
is used to increase the size of the received signal yL from L to

L+1, IL is the identity matrix of dimension L, PV and PG are (L+ 1× L+ 1) permutation

matrices, and [ZR](L×L+1) =
[
1 IL

]
is a matrix to reduce the size of the channel impulse

response vector from L+1 to L.

The correlation steps using the fast Hadamard transform (2.10) are described as follows:

i) increasing the size of the received bitstream yL to L+1 using [ZI ](L+1×L) and reordering

the data according to PV ; ii) multiplication by the Walsh-Hadamard matrix via a butterfly

algorithm similar to the FFT [42]; iii) reordering the transformed data according to PG and

reducing the size from L+1 to L. The interested reader is referred to [24, 42, 43] for further

details.
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2.5 Passive time-reversal

The passive time-reversal (pTR) is a low complexity channel equalizer that applies matched

filtering at each receiver element (Fig. 2.3). The usual approach for pTR communications

sends the probe before the data, to estimate the channel. However, in this thesis, a new

approach for pTR is presented in chapter 6: the superimposed training pTR.

Figure 2.3: Diagram of the passive time-reversal receiver with M channels. The signals ym(t), from
each m channel, are passed through the pTR where the estimated CIR ĥm(t) are time reversed,
time-gated, and convolved to ym(t). The summation of the pTR outputs om(t) yield the final pTR
output signal R(k).

The pTR convolves the received ym(t) with their own time-reversed CIR ĥ†m(−t), where

† denotes complex conjugate (2.11).

om(t) = ym(t) ∗ ĥ†m(−t) = s(t) ∗
[
hm(t) ∗ ĥ†m(−t)

]
(2.11)

.

The outputs om(t) of all M channels are combined coherently as given by (2.12)

R(k) =
M∑

m=1

om(t) = s(t) ∗

[
M∑

m=1

hm(t) ∗ ĥ†m(−t)

]
(2.12)

where the term in brackets represents the Q-function [27,44].
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The Q-function represents the cross-correlation between the estimated and the actual

CIR summed over the channels, and determines the equalizer performance as a function of

the number of receivers [29]. Fig. 2.4 (left) shows the channel impulse responses for the 4

channels of the canonical scenario shown in Sec. 2.1 at depths of 4, 9, 14, and 19m. One can

observe in fig. 2.4 (middle) that the performance of time-reversal focusing depends on the

complexity of the channel impulse responses hm(t), the number of multipath, the number of

array elements M, and their spatial distribution.

An impulse-like shape of the Q-function means a successful compensation of the multi-

path distortions with the focusing of the pulse energy. Fig. 2.4 (right) shows that as the

number of receivers increase, the main lobes add up in phase while the out-of-phase sidelobes

are canceled out. The spatial diversity serves to reduce the intersymbol interference, mini-

mizing the sidelobe levels of the Q-function, and to reduce the variance of the symbol phase

fluctuation. One can also observe in fig. 2.4 (right) that the Q-function has many sidelobes.

The highest sidelobe reach a level of 0.2 of the main lobe level, and are separated from the

main lobe by several symbols (in time). The peak to the sidelobe (PSL) ratio indicates the

Figure 2.4: Channel impulse responses, passive time-reversal (pTR), and the Q-function for simu-
lated received signals from the 4 channels of the canonical scenario at depths 4, 9, 14 and 19m.
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pTR performance [44]. The higher the PSL, the lower the ISI. However, there is always a

residual ISI, which requires equalization to be eliminated [18,29].

2.6 Wiener filter theory

The Wiener filter [45–48] is an optimal linear equalizer based on the mean squared error

(MSE), the most frequently used optimization criterion in filtering applications. Suitable for

linear time-invariant (LTI) systems, the Wiener filter (Fig. 2.5) plays a role in a wide range

of applications such as noise reduction, channel equalization and signal estimation [47,48].

Figure 2.5: Diagram of the Wiener filter for linear MMSE estimation.

In discrete-time domain, the filter coefficients w(γ) are calculated to provide the minimum

MSE (MMSE) between the filter output g(k) and the probe x(k), where k=1, 2, ..., L is a

discrete time-index, L = kTs is the period of the probe sequence, and Ts is the period of

each symbol.

Thus, the estimated error signal e(k) is given by (2.13)

e(k) = x(k)− g(k)

= x(k)−
Γ−1∑
γ=0

w(γ)y(k − γ)
(2.13)

where Γ is the order of the filter, and y(k) is the received bitstream.
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Assuming that the input signal y(k) and the training sequence x(k) are both zero-mean

stationary random processes, the MSE ξ(k) can be written as (2.14)

ξ(k) = E[e2(k)]

= E[(x(k)−wTy)2]

= σ2
x − 2wTrxy +wTRyyw

(2.14)

where E[.] is the expectation operator, wT is a transpose of the Γ× 1 vector of the Wiener

filter coefficients, y is the Γ× 1 vector of the received signal, σ2
x is the variance of x(k), Ryy

is an Γ× Γ Hermitian Toeplitz matrix of autocorrelation of the input signal, and rxy is the

cross-correlation vector of the input and training signals.

In (2.14), if the matrix Ryy is invertible, the solution for the optimum Wiener filter tap

weights, known as the Wiener-Hopf equation, is given by (2.15)

w = R−1
yy rxy (2.15)

In this thesis, as Wiener is used for channel equalization, the number of filter taps Γ

is selected to span the duration of the expected multipath to mitigate the ISI. The value

of Γ determines the relative location of the reference peak, typically about Γ/2. However,

depending on the chosen Γ, the matrix inversion may be computationally intensive. Thus, as

the duration of the pre and post-symbol ISI is not equal, Γ must be selected proportionately

to encompass only the most significant ISI samples.

2.7 Interference removal using HCC0

To remove the intentional probe interference to the data, a method called “hyperslice cancel-

lation by coordinate zeroing (HCC0)” [43] is employed. Basically, HCC0 states that zeroing
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the strong arrivals after pulse compression, in a “arrival space”, and inverse Hadamard

transforming, the interference can be removed and the weak data retrieved.

Starting from the crosscorrelation in (2.3), in matrix form, and expanding the terms

defined in Sec. 2.3:

h′L =MLyL

=ML[Px(k) +Qd(k)] ∗ hL + n(k)

=ML[Px(k) ∗ hL] +ML[Qd(k) ∗ hL] + n(k)

= [Pρxx ∗ hL +Qρdx ∗ hL] + n(k)

(2.16)

where ρxx = [MLx(k)] is the M-sequence probe code auto-correlation function and ρdx =

[MLd(k)] is the crosscorrelation between the message and the probe.

The ρxx estimates the CIR, while ρdx, despite an intentional interference, is treated as

additive noise. After channel equalization, the multipath expressed by both ρxx and ρdx is

reduced. Thus, the HCC0 is performed. The equalized ρxx is removed by zeroing out the

samples having amplitude higher than a threshold η (2.17), defined by trial and error.

h′′L =

{
0, if |h′L| > η

h′L, elsewhere
forL = 0, .., kTs. (2.17)

After HCC0, an inverse FHT is applied over the remaining sequence h′′L to decompress

the message.

ŷL =M−1
L h′′L =M−1

L [Qρdx ∗ h′′L] + n(k) = Qd(k) ∗ h′′L + n(k) (2.18)

The IFHT (2.18) is efficiently performed, in a similar manner to the FHT in (2.10). As
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the inverses of PG and PV are their transpose, IFHT may use the same mapping matrices as

follows

M−1
L = ZT

I P
T
G (HL+1)

−1P T
V Z

T
R (2.19)

Using the butterfly algorithm, similar to the IFFT, the IFHT avoids the calculation of

the inverse of a large matrix of size L. The resulting signal, ŷL contains the message, the

residual intersymbol interference and the ambient noise.

2.8 Signal-to-Noise ratio (SNR) estimation

The present section details the signal-to-noise ratio (SNR) estimation method, used through-

out this thesis. Data from three different shallow water experiments, in the frequency band

from 6 to 9 kHz, were contaminated with ambient noise which arise from a variety of different

mechanisms [49, 50]. The power spectrum density of broadband ambient noise is frequency

dependent. Man-made noise is mainly due to distant shipping, oil-drilling operations and

other industrial activities in the vicinities of the city’s harbor, close to the experimental sites,

extending from 1 Hz to 200 kHz . Nearby shipping and seismic air-guns may also contribute

into the 1 kHz to 10 kHz band [49].

Natural sources of noise include wind, rain, and wave-breaking in the band 1 Hz to

100 kHz [50]. Biological organisms are also an important source of noise. The temporal

character of noise is as varied as its frequency content. Clicks and impulsive noise in the

experimental sites over the continental shelves generally comes from marine animals such as

whales, porpoises, and snapping shrimp. Snapping shrimp noise is significant from a few kHz

to above 100 kHz, close to reefs and in rocky bottom regions in warm shallow waters [50].

Furthermore, mammals vocalizations may share the same frequency band from a few Hz to
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several kHz. Thus, depending on the communication system frequency band, the ambient

noise may severely degrade its performance.

2.8.1 Experiments off the Cabo Frio Island (Brazil)

In the two experiments performed off the Cabo Frio Island (Brazil), described in Chapters 3

and 4, low power signals were transmitted. The received signals were severely contaminated

with impulsive background noise [51]. Both experiments were performed close to the rocky

shores, in a region of heavy recreational vessels traffic and wave breaking on the nearby

beach.

Fig. 2.6 shows a sample of the background noise in the frequency band from 1 to 15

kHz, recorded during the first communication experiment. To minimize the noise impact

over communications, the input bitstreams were band-pass filtered (6-9 kHz), baseband

converted and Doppler corrected. Then, the filtered bitstreams were used to provide an

in-band input SNR estimation. In these experiments, there was no extra addition of noise

to the data.

Figure 2.6: A sample of the impulsive background noise in the frequency band from 1 to 15 kHz,
recorded during the first communication experiment performed off the Cabo Frio Island.
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Proposed methods in this work explore temporal diversity of Z consecutive signals, for

single-channel systems. Thus, the average in-band input SNR (dB) for each channel m was

estimated according to (2.20)

SNRm = 10log10 [(Sm −Nm)/Nm] , (2.20)

where S is the mean of the signal plus noise power of Z sequences, and N is the mean of

the noise power of a sequence of the same length as S, estimated from a noise-only period.

The noise-only period may be measured before or after transmissions, depending on the

experiment.

The methods also explore spatial diversity for multichannel combining. Thus, the average

in-band input SNR of the array was estimated as (2.21)

SNRarray = 10log10

[
1

M

M∑
m=1

[(Sm −Nm)/Nm]

]
, (2.21)

where M is the number of channels.

2.8.2 Experiment EMSO’21 (Portugal)

In the experiment performed off the coast of Algarve/Portugal, described in Chapter 7,

high power signals were transmitted. The received signals were recorded at high SNR.

The ambient noise may be approximated by a Gaussian distribution if one considers the

linear superposition of many independent noise sources [49]. Several papers related to LPD

communications add additive white Gaussian noise (AWGN) to reduce the SNR at the

receiver [16, 20, 22]. However, in this experiment, ambient impulsive noise recorded by each

channel, at the beginning of the experiment before transmissions, was added to the data files
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to reduce the in-band input SNR. After the noise addition, the resulting bitstreams yz(t+zτ)

were band-pass filtered (6-9 kHz), baseband converted and Doppler corrected. Then, the in-

band input SNR (dB) for each channelm was estimated, in time-domain, according to (2.20),

where S is the mean power of Z received bitstreams plus added noise, N is the mean power

of the combined noise of a period of the same length of S, estimated after each transmission.

Similarly, for multichannel combining, the in-band input SNR of the array was estimated

using (2.21), where M is the number of channels of the vector sensor.



Chapter 3

Superimposed training low
probability of detection underwater
communications

Abstract This chapter presents a superimposed training method for low probability of de-

tection underwater acoustic communications. The approach has been developed using the

Monterey-Miami Parabolic equation model to simulate the acoustic channel and tested in a

shallow water experiment on the coast of Rio de Janeiro/Brazil. Section 3.1 presents the su-

perimposed training LPD communications. Section 3.2 introduces the superimposed training

bitstream. The communication system is detailed in Section 3.3. In Section 3.4 the shallow

water experiment is described. Results are shown in Section 3.5. A brief discussion concludes

the chapter in Section 3.6

3.1 Superimposed training LPD communications

This chapter presents a superimposed training method for underwater acoustic communica-

tions in a low SNR environment and demonstrates its feasibility for LPD communications

based on both modeling and a shallow water experiment. Superimposed training techniques

present several benefits. First, no additional time slot is needed for the pilot or extra band-

width consumption to estimate the channel impulse response (CIR). Second, there is no

loss in the data rate and no data frequency spreading [52]. Computationally simple, the

33
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proposed algorithm was developed to work with a fixed single low power source and a re-

ceiver, without an array gain. Before transmission, a bitstream is created superimposing a

long training sequence to the message. Using a low power source, the bitstream is trans-

mitted and repeated several times to permit the receiver to increase the processing gain and

to implement error correction through coherent averaging. A Wiener filter [53] performs

equalization. A fast Hadamard transform (FHT) [15, 24, 43] estimates the CIR and com-

presses the pilot energy. After synchronization and average of the filtered bitstreams, the

intentional probe interference is removed using the Hyperslice Cancellation by Coordinate

Zeroing (HCC0) process [15, 41, 43]. An inverse FHT over the remaining sequence decom-

presses the data energy, and the message is retrieved. The superimposed training approach

has been proposed and tested using the Monterey-Miami Parabolic Equation (MMPE) model

for communications in the canonical scenario shown in Chapter 2. To prove the concept,

a shallow water experiment was performed in the bay of Arraial do Cabo on the coast of

Rio de Janeiro/Brazil. Achieved bit error rates (BER) show that the approach is consis-

tent. Compared to LPD benchmark [23] (SNR< −8 dB), the results indicated the method’s

suitability for covert communications.

3.2 Superimposed training bitstream

The superimposed training (ST) concept involves summing a long probe to the mes-

sage, both sequences of length L = 2047, before transmission. Fig. 3.1(left) shows the

summation, in baseband, of bit-signals using the same symbol rate. The probe is a

binary phase-coded maximum length sequence, known as M-sequence (Mseq2047) [24].

M-sequences are a family of signals commonly used to estimate the impulse response
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of the ocean waveguide. Pseudorandom and deterministic, M-sequences have useful

properties for covert communications such as a noise-like spectrum and an impulse-like

autocorrelation [15, 24]. Furthermore, as codes are orthogonal, multiple users may access

the channel with a low degree of interference [15]. The message is composed of three

zero-padded bits followed by four consecutive streams of 511 bits. Delimited by a short

M-sequence of 31 bits (Mseq31), each 480-bit data packet is composed of the following

pangram: (The Quick Brown Fox Jumps Over the Lazy Dog 0123456789!@#$).

The probe and the message have different amplitudes and phases. In contrast to other

superimposed training algorithms [52], the power of the pilot is slightly higher than the

power of the message. In a low SNR environment, a stronger pilot can disguise the message

in the background noise and yield a high pulse compression gain for channel estimation,

synchronization, and equalization [16]. As explained in Sec. 2.3, the amplitude ratio between

the message (Q) and the probe (P) is 4/5. Next, the baseband bitstream modulates the

Figure 3.1: Left) Superimposed training bitstream is created by summing the probe (Mseq2047)
and the message. The message has three zero-padded bits (ZP) and four data packets of the same
content (480 bits), preceded by a short Mseq31 for hard synchronization. Right) The probe, the
data packets and the resulting amplitude and phase modulated bitstream in BPSK waveform.
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carrier wave as shown in Fig. 3.1(right). The resulting bitstream is given by

s̃(t) = Re[|s(t)|e(2πfct+x(t)θ)] (3.1)

where s(t) =
∑L

k=1A(k)q(t − kTs), q(t) is the rectangular pulse shape, fc is the carrier

frequency, x(t) is the Mseq2047 probe code values (±1), and θ = π/2 (BPSK). Each bit

modulates 4 cycles of the carrier wave. The central frequency fc is 7.5 kHz and the bandwidth

is 3 kHz. Dealing with low power signals, the chosen sampling frequency fs was four times

fc, higher than the Nyquist sampling rate. Despite the additional computational effort, the

oversampling may not only avoid aliasing but also reduce the signal distortion, improve the

signal resolution, and increase the signal to noise ratio.

Fig. 3.2 shows the power spectrum densities of the resulting bitstream (blue), the probe

(red), and the message (black). According to the chosen amplitude relation (4/5), the

message to probe ratio is −1.94 dB. As one can observe in Fig. 3.2, the message is embedded

in the training sequence. Therefore, the bitstream presents LPI/LPD properties.

Figure 3.2: Power spectrum densities of the bitstream (blue), the probe (red), and the message
(black), for a message to probe amplitude ratio of 4/5.
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3.3 The LPD communication system

The LPD communication system is divided according to the block diagram in Fig. 3.3.

(a) (b)

Figure 3.3: a) Diagram of channel equalization, soft synchronization and coherent averaging of Z low
SNR signals; b) Diagram of FHT rave(k), interference removal (HCC0), inverse FHT, summation,
hard synchronization and message retrieval.

3.3.1 Channel equalization and soft synchronization

The same bitstream s(t+ ZT ) of period T is transmitted and repeated Z times to increase

the processing gain and to perform error correction through coherent averaging. A Wiener

filter [53] is applied over each received sequence yZ(t + ZT ) to mitigate multipath and

reduce intersymbol interference. Using a replica of the known pilot code x(k), where k is

the discrete time index, the filter performs the channel equalization, estimating gZ(k). The

soft synchronization of the filtered bitstreams gZ(k) involves several CIR hZ(k) estimations.

Thus, an efficient FHT, also called Fast M-Sequence Transform [24], is used to estimate hZ(k)

from gZ(k). The reference for synchronization is the dominant peak of the first h1ref (k). Time

delays for later sequences are estimated using respective hZ(k) so that their strongest peaks
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are coincident with the reference. After alignment, coherent averaging of Z low power signals

gZ(k) plus noise provides a higher SNR bitstream rave(k) (Fig. 3.3a).

3.3.2 Interference cancellation using HCC0

To let the reader understand the HCC0, the averaged bitstream rave(k) is decomposed to

form B(16X2047) (Fig. 3.3b). Fig. 3.4 shows that synchronous sampling rave(k), the first row of

B is filled by the first sample (s1) of each bit. The second row starts with the second sample

(s2), and so on. The rearrangement in matrix B shows that odd rows have samples close to

zero and even rows express the M-sequence probe amplitude fluctuation, phase reversed in

180◦, where B(2, l) ≃ −B(4, l) ≃ B(6, l) ≃ ... ≃ −B(16, l) for l = 1...L. This decomposition

allows an easy implementation of the forward and inverse fast Hadamard transform of each

row, used for channel estimation, and HCC0.

Figure 3.4: Left) One bit modulates 4 cycles of the carrier wave, sampled four times fc. Right)
Matrix B(16X2047) is formed by synchronous sampling the bitstream.

3.3.2.1 HCC0 using simulations and analysis about covertness

To understand the HCC0 method and verify its suitability to remove the probe interference,

a transmission through the noiseless channel, described in Chapter 2, has been simulated

using the Monterey-Miami Parabolic Equation (MMPE) model.
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Fig. 3.5 shows the convolution of the ST bitstream with the CIR h′(t) from MMPE

estimated for the hydrophone at the depth of 19 m (Sec. 2.1), to simulate a received signal

y(t).

Figure 3.5: Simulation using the CIR h′(t) estimated using the Monterey-Miami Parabolic Equa-
tion model. The simulated received bitstream y(t) is created convolving the transmitted bitstream
s(t) in waveform with the CIR h′(t).

The y(t) was Wiener filtered using a number of taps adjusted to minimize the mean

square error between y(t) and the probe code x(t). The length of the Wiener filter can not

be too long to reduce the computational complexity of the filter and avoid the inclusion of

excessive noise in the filtering process. In practice, the filter length must be long enough to

compensate for most strong multipath arrivals.

The typical assumption in the literature about LPD communications is that an eaves-

dropper does not have the transmitted probe code used for matched fiter detection. However,

to analyze the HCC0 and to observe the superimposed training approach covertness, let us

assume that an eavesdropper has the two codes used for the hard (MSeq2047) and soft

(MSeq31) synchronizations. Fig. 3.6 (left, upper plot) shows that the probe is clearly visible

after the FHT of y(t). As the probe is interfering with the message, the MSeq31 correlation

peaks can not be detected. However, if a legitimate receiver performs the coordinate zeroing

(HCC0) of the FHT samples above an arbitrary threshold η, the MSeq2047 is removed and

the MS31 correlation peaks become visible, as shown by the red dots in Fig. 3.6 (right,
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Figure 3.6: Soft and hard synchronization using simulated data from MMPE model. Left) In the
upper plot, the MSeq2047 crosscorrelation peak is clearly visible. In the lower plot, the peaks from
the MSeq31 correlation are not visible due to the interference. Right) In the upper plot, after the
HCC0, the peak of the probe is not visible, confirming the probe removal. The lower plot shows
the soft synchronization peaks (red dots).

lower plot). Therefore, the receiver may proceed with the signal processing, as the probe

interference has been removed.

3.3.2.2 HCC0 using experimental results

In practice, the coordinate zeroing threshold η is adjusted by trial and error to eliminate most

strong arrivals. But a real-time system may define η based on the power of the time-varying

crosscorrelation peak above the average background noise. A FHT is used for rave(k) pulse

compression. Fig. 3.7 a) shows the CIR and the multipath spread. As detailed in Sec. 3.3.2,

rave(k) is rearranged to form matrix B(16XL), where one can observe that the pilot energy

of each baseband sequence pi(L) is restricted to just a few samples after pulse compression

(Fig. 3.7b), where i = 1...16. A simple cancellation of the pilot interference to the message is

performed by HCC0 [15,41,43] which zeroes out samples qi(l) having amplitudes higher than
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(a) (b)

Figure 3.7: a) Based on data from block #2 (Nov29,2018-08a.m), a FHT of averaged bitstream
rave(k) estimated the channel delay spread. The dashed line represents the threshold for removal
of the pilot interference using HCC0; b) Decomposition of a) in 16 baseband CIR pi(L).

a threshold (η). As shown in Fig. 3.7b, just a few samples are removed from each subset pi(L),

resulting in p
′
i(L). However, the tradeoff between the number of zeroed samples and BER is

not defined, depending on the channel multipath structure and noise level. To decompress

the original message free from most interference, the 16 baseband p
′
i(L) are rearranged and

an inverse FHT (IFHT) [15,24,43] is used.

3.3.3 Hard Synchronization and Message Retrieval

From all 16 rows in IFHT(16XL), only 8 are summed up to create a single 2047-bit sequence

containing the message (3.2):

r
′∑(L) = r

′

1 + r
′

2 (3.2)

where r
′
1 =

∑
r(i, L) for i: 2, 6,...,14 and r

′
2 =

∑
r(j, L), for j: 4, 8,...16. As shown in Sec.

3.3.2, odd rows do not contribute to the summation and a change in sign of r2 means that

these sequences are 180◦ phase reversed compared to r1. Using r
′∑(L), hard synchronization

is done using cross-correlation peaks from FHT of Mseq31 which precedes the data packets.

After synchronization, the receiver retrieves each of the four 480-bit data packets. However,

as the thesis is focused on LPD communications, the four 480-bit data packets were also

averaged, forming a single 480-bit data sequence.
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3.4 Shallow water LPD experiment

As proof of concept, a shallow water experiment was performed in the bay of Arraial do

Cabo/Brazil, on Nov 28-29, 2018. Fig. 3.8 shows the Brazilian Navy Institute of Sea Studies

Admiral Paulo Moreira acoustic test site, on the coast of Rio de Janeiro/Brazil. A single

directional acoustic source and a hydrophone were both assembled in pyramidal frames,

posed on the bottom, in a 4 m and 10 m deep water column. The bathymetry changed

along with the 600 m range. The source was wired to shore where the transmission system

modulated data on a carrier central frequency (fc) of 7.5 kHz (BW: 3 kHz). The data

acquisition system has a sampling rate of 100 kHz and a resolution of 16 bits, but signals were

downsampled to 30 kHz, 4 times fc, before processing. The quantization noise level of 96 dB

is reached at approximately 40 kHz, from which the noise power becomes constant (white).

Since our system operates in the band 6-9 kHz, the received signals were predominantly

perturbed by ocean noise. Mainly caused by the proximity to the city’s harbor, the high

Figure 3.8: The Brazilian Navy Institute of Sea Studies Admiral Paulo Moreira acoustic test site,
on the coast of Rio de Janeiro/Brazil. The 2 sides of the communication link had a directional
acoustic source and a hydrophone, both mounted on a pyramidal frame posed on the bottom.
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broadband noise levels created undesired interference. Thus, to evaluate the performance in

different scenarios, the experiment lasted 21 hours with data transmissions occurring once

every 30 minutes. Each transmission consisted of two distinct low-power level blocks. In each

block, to explore channel temporal diversity, the same bitstream was repeated continuously

for 87 seconds (79 sequences), with no guard time between them. Furthermore, the four

data packets in each bitstream had the same content.

The received signals were contaminated with impulsive background noise. Thus, the in-

band SNR (dB) was estimated according to (2.20), where N was estimated from the period

preceding the block #1. Fig. 3.9 presents an in-band spectrogram (6-9 kHz) and the CIR

estimated from data recorded on Nov 28, 2018, at 11:30 P.M. and Nov 29, 2018, at 08:00

A.M. Covert communications assume that the transmitted signals are much weaker than

the background noise (SNR< −8 dB) within the signal band at the receiver)and that the

unknown listener does not have prior knowledge of the transmitted signal [23] . Therefore,

LPD signals are not expected to appear in spectrograms, commonly used energy detectors

(a) (b)

Figure 3.9: a/b) Left: In band spectrograms from transmissions recorded in Nov 28, 2018 at 11:30
P.M / Nov 29, 2018 at 08:00 A.M. The block # 1 (SNR: -1.4 and -5.9 dB) from 72 to 159 s is
minimally visible on the plot (a) but invisible on the plot (b). As SNR decreased, blocks #2 (SNR:
-8.1 and -13.2 dB) from 174 to 261 s are invisible in a) and b) as expected. Right: CIR estimated
using FHT of bitstreams from block #2 (180 to 230 s).

Fabio Louza
Realce



44
Chapter 3. Superimposed training low probability of detection underwater

communications

based on an increase of SNR as a function of time and frequency [15]. At the beginning of

the experiment, the source power was set to make block #1 minimally visible (SNR: -1.4

dB) from 72 to 159 s and block #2 undetectable (SNR: -8.1 dB) from 174 to 261 s (Fig. 3.9a,

left). But as the channel noise levels varied during the experiment, there were time periods

where both blocks were not observed. In Fig. 3.9b (left), the SNR of block #1 and #2 are

-5.9 and -13.2 dB.

Figs. 3.9 also expresses the CIR variability in time, estimated using bitstreams from block

#2 received between 180 and 230 seconds. Fig. 3.9a (right) shows a low noise level and light

multipath environment where the direct arrivals are dominant. This fact may be related to

the sea surface state, to a downward refracting SSP, and also to the source directionality,

minimizing the interactions of the acoustic waves with the sea surface and bottom. On the

other hand, Fig. 3.9b (right) presents higher noise and stronger fading but still short and

stable multipath of approximately 2 ms. As each chip/symbol has a duration of 0.58 ms,

shorter than the multipath spread, intersymbol interference degraded performance.

3.5 Experimental results

In this work, synchronization was a major concern. Thus, 40 CIR hz(k) estimated from

data recorded on Nov 29, 2018, at 08:00 A.M (Fig. 3.9) were superimposed. After time

gating around the dominant arrivals (200 samples or 6.7ms), Fig. 3.10 a, left) shows that

the strongest arrivals of each sequence are not coincident. Thus, soft synchronization of

CIR hz(k), using the CIR h1ref (k) as the reference, must be performed before averaging

to mitigate interference (Fig. 3.10a, right). Using the averaged bitstream rave(k), the hard

synchronization was performed using a Mseq31 replica. Fig. 3.10b shows the first, second and
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(a) (b)

Figure 3.10: a) Left: The first 40 CIR hz(k) before alignment. Right) Soft synchronization of hz(k)
in the left, using the h1ref (k) as the reference. b) Hard synchronization of the averaged bitstream
composed of sequences in a) shows the first, second and fourth synchronization peaks crossing the
threshold (dashed line). Signals from block #2 recorded in Nov 29, 2018 at 08:00 A.M (SNR: -12.7
dB, BER: 3.3%).

fourth synchronization peaks (samples: 14, 525, and 1547), crossing the detection threshold

(dashed line). As the SNR was -12.7 dB, the third packet (sample: 1036) was not detected

degrading the result (BER: 3.3%).

The proposed system showed stability in this time-varying channel, dealing with both

variable noise levels, multipath, and fading. Doppler is generally a problem, in particular

with low SNR signals. However, as the source and receiver were maintained steady in the

water, both soft and hard synchronizations were performed using zero Doppler Mseq2047

and Mseq31 replicas. To increase the processing gain and to implement error correction,

the method performed long coherent averaging of received sequences which reduced the data

rate. Fig. 3.11 shows BER and SNR fluctuating in time, for three data rates. The bitstreams

of block #1 were averaged during 21.8, 43.6, and 65.4 seconds (20, 40, and 60 sequences).

Therefore, the data rate was 22.1, 11, and 7.3 bps, respectively (Fig. 3.11a). Also, the need

for averaging is related to the received power level. Thus, just the longer averaging times

were considered for the noisier block #2: 43.6 and 65.4 seconds for a data rate of 11 and 7.3
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bps (Fig. 3.11b).

During most of the experiment, the in-band SNR of block #1 varied between 0 and -8

dB while the SNR of low power block #2 remained below -8 dB, the arbitrary threshold for

covert communications [23]. In both conditions, for chosen data rates, the method was able

to provide BER lower than 10−2 in most transmissions, including several error-free messages.

But Fig. 3.11a presents better BER compared to Fig. 3.11b because of the higher SNR and

longer averaging times. Both Fig. 3.11a/b) do not show a significant increase of the BER as

SNR decreases, as one could expect. This is probably related to the time-varying channel

along the 21h of the experiment where other factors such as the sound speed profile, the

sea surface conditions and the multipath structure also played a role, in addition to the

noise, during the demodulation of the message. The gaps in Fig. 3.11b were caused by

synchronization problems due to an increase in the channel noise levels and degradation in

the propagation conditions. No analysis of optimality was performed.

(a) (b)

Figure 3.11: a) Block #1 - BER and SNR fluctuate during the experiment. LPD benchmark:
SNR< −8dB. Bit rates: 7.3, 11, and 22 bps; b) Same graph as a), for block #2. Bit rates: 7.3 and
11 bps.

Fabio Louza
Realce
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3.6 Discussion

The development of LPD underwater acoustic communication methods has been encouraged

in recent years. This chapter presented a new approach and verified its suitability for LPD

purposes using simulations and real data. The superimposed training algorithm uses long

orthogonal training codes, and therefore, may be extended for multiple users, just modifying

the probe code to reduce the mutual interference. Computationally simple, the method

explores the channel temporal diversity to increase the SNR at the receiver. A shallow water

experiment presented encouraging results. Despite the low bit rate for long averaging times,

the proposed approach achieved BER< 10−2 for SNR< −8 dB for several received signals.



48
Chapter 3. Superimposed training low probability of detection underwater

communications



Chapter 4

The effects of coastal upwelling over
low SNR communications in shallow
water

Abstract The influence of oceanographic processes on communications are not well un-

derstood. This chapter presents a study on the effects of coastal upwelling over low SNR

communications in shallow water using the modeled and real data. Moreover, a correlation

between the temperature evolution over time and the communication system performance is

presented. Section 4.1 presents the coastal upwelling off the Cabo Frio island and its physi-

cal oceanographic mechanism. In Section 4.2, the BioCom’19 experiment is described. The

communication system receiver is shown in Section 4.3. Section 4.4 studies the acoustic

propagation in an upwelling scenario using the modeling and real data. Section 4.5 studies

the CIR variability during upwelling. The temperature evolution vs. communication perfor-

mance is studied in Section. 4.6. A discussion is presented in Section 4.7.

4.1 Coastal upwelling off the Cabo Frio island

Coastal upwelling is a dynamical oceanographic process that severely modifies ocean tem-

perature stratification, inducing the movement of cold water towards the sea surface [54].

Previous works reported in the literature have studied and described the functioning of wind-

driven coastal upwelling mechanism in several specific locations across the ocean, due to its

ecological consequences, carrying nutrient-rich sub-surface water into the euphotic zone, in-

49
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creasing substantially the biological productivity, and therefore, fishing activities [54, 55].

However, the influence of oceanographic parameters over acoustic propagation and commu-

nication performance, if any, is not well understood. Therefore, a study based on ocean

modeling to understand the role of upwelling in creating shadow coastal zones, reducing

the probability of detection of an acoustic source, is presented in [56]. Another work using

noncoherent acoustic communication signals showed that the thermocline variability may

explain the differences in the modem performance, in terms of bit-error rate (BER) [57].

In this chapter, the main objective is to understand the effects of coastal upwelling over

low SNR communications in shallow water. To support the analysis, a small subset of

data from the shallow water BioCom’19 experiment [51] was used. The range-dependent

bathymetry includes a depression at mid-distance between the source and receivers through

which the cold water sips into the region. During the experiment, several sound speed profiles

(SSP) were acquired along the propagation track. The temperature profiles were also contin-

uously monitored along the water column at the receiver location. Furthermore, broadband

low power coherent bitstreams were continuously transmitted and recorded on a pyrami-

dal array of four hydrophones. Simulations using the range-dependent Monterey-Miami

Parabolic Equation model (MMPE) [36] were used to compare the acoustic propagation for

upwelling regime SSP. The resulting transmission loss (TL) plots and predicted CIR indi-

cated a complex channel to establish communications, depending on the ocean temperature

stratification. Moreover, an analysis was performed to correlate the SNR to the tempera-

ture profiles during the experiment. The resulting bit error rates show that the temporal

averaging of recorded signals was able to cope with this challenging environment.
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4.1.1 The upwelling oceanographic mechanism

The wind-driven coastal upwelling off the Cabo Frio Island, shown in Fig. 4.1, is a complex

oceanographic mechanism triggered by the action of the predominant NE/E wind blowing

regime, inducing offshore movement of surface water and, therefore, the ascending motion

of cold and deep water towards the ocean surface [55,56]. In the Southern hemisphere, as a

consequence of the Ekman transport, the integrated flow of the near-surface ocean points 90o

angle to the left of the wind. Furthermore, there is an inflection of the Brazilian coast from

NE/SW to E/W direction at the vicinities of the Cabo Frio region, extending hundreds of km

in a straight coastline, and a continental shelf break topography that favors the phenomena.

Fig. 4.1 shows that the coast-parallel component of the wind stress induces the offshore

transport of water in the surface Ekmann layers, rising the South Atlantic Central Water

(SACW) towards the sea surface until a dynamical equilibrium is reached. The upwelling is

more intense in summer/spring due to the shallowness of the thermocline and the prevalence

Figure 4.1: Coastal upwelling off the Cabo Frio Island (Brazil). The blue arrow indicates the
predominant NE/E winds and the yellow arrow shows the offshore transport of warm and surface
water. (Adapted from NOAA, 2001)
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of NE/E winds in these seasons [55].

The upwelling phenomena have several implications, changing the marine biota and im-

pacting the ocean temperature stratification. Despite covering just 1% of the ocean, the

regions of occurrence are the most productive, contributing around 20% of fishing activ-

ities [55]. Furthermore, the sound speed in the ocean is a function of pressure (depth),

temperature and salinity, c = f(p, t, s) [58]. Therefore, the mixing of the water masses of

different compositions strongly affects the sound speed profiles, influencing the propagation

of acoustic signals used for communications.

4.2 The BioCom’19 experiment

The BioCom’19 experiment took place in a semi-enclosed shallow water bay, off Cabo Frio

Island (Brazil) from Jan14-18, 2019 (Fig. 4.2a). Described in detail in [51], the experiment

focused on biological soundscape monitoring and underwater communications. The exper-

(a) (b)

Figure 4.2: a) The nautical chart shows that the propagation track crosses a bottom depression
through which cold water sips into the bay. b) Experimental setup of the BioCom’19 experiment.
The source-receiver range is 1600m. The sketch indicates the relative position of the VLA and the
pyramidal array, and the approximate location of the bottom depression.
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iment took place close to the city harbor and rocky shores with substantial coverage of

soniferous invertebrates [59], adding natural broadband impulsive noise to received signals.

The nautical chart in Fig. 4.2 (a) shows the experimental site influenced by the upwelling

phenomena in the region of Cabo Frio Island, where one can observe that the bathymetry

changes drastically along the propagation path. The strong currents flowing in and out of

the bay through the Boqueirão strait created a bottom depression at mid-distance between

the source and receivers, also shown as the darker area in Fig. 4.3 (left). The rapid changes

in the ocean temperature stratification affect the sound wave propagation [56], making this

Figure 4.3: Left) An aerial view of the BioCom’19 experiment shallow water site, off the Cabo
Frio island (Brazil), indicates the approximate positions of the source and receivers and shows the
bottom depression through which cold water sips into the bay. Right) The source (black sphere),
the vertical linear array, and the pyramidal array.
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a challenging site for underwater communication experiments.

Fig. 4.2 (b) shows the experimental setup. The omnidirectional acoustic source was

located at mid-water in a 4 m deep water column, approximately 1.6 km away from the

receiver location. To monitor the upwelling, several SSPs were acquired by a CTD at three

locations (source, bottom depression, and receiver), reaching depths varying from 4-20m.

Furthermore, a time series of temperature profiles were continuously recorded along the

water column at the receiver location. Fig. 4.4 shows the temperature profiles from Jan16,

10:45 a.m. to Jan 18,10:30 a.m. where one can observe two upwelling events, with the cold

water entering the bay and moving towards the sea surface.

The experiment explored both temporal and spatial diversities to allow error correction

through coherent averaging. Thus, a bitstream was repeated 55 times per minute, every five

minutes. All four data packets in each bitstream have the same content. Data was recorded

on two different geometry arrays of 4 hydrophones each. The vertical line array (VLA) with a

4.5 m aperture was deployed in an 8 m height water column. The triangular pyramidal array

Figure 4.4: Time-series of temperature profiles along the water column at the receiver location,
recorded from Jan16, 10:45 a.m. to Jan18, 10:30 a.m. Short-term drastic temperature changes of
more than 10 degrees Celsius in a few hours indicate the upwelling occurrences.
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was composed of 3 hydrophones in the base,and one at the top, separated by approximately

1 m. The frame was posed at the bottom, approximately 2.8 m from the VLA location. The

communication signals were set up with a central frequency of 7.5 kHz, and a bandwidth of

3 kHz. The data acquisition system has a sampling frequency of 52734Hz, but signals were

downsampled to 30KHz, 4 times fc, before processing. The hydrophones have a sensitivity

of -174.9 dB re 1V/1µPa and a flat frequency response between 0.1 and 40 kHz.

4.3 The communication system receiver

Despite the multiple hydrophones of the VLA and the pyramidal array (PA), the analysis

of the impacts of upwelling over communications is based only on the hydrophone #1 from

the PA, placed on the bottom. In the Biocom’19 experiment, the low power superimposed

training bitstreams had the same composition as those detailed in Sec. 3.2. The probe

and the data have 2047 bits, where data was composed of 4 packets of 480 bit-message.

The amplitude ratio between the probe and the data is 5/4. Several packets of 55 low-

power superimposed training bitstreams were transmitted, once every 5 minutes, to explore

temporal diversity and to perform error correction through coherent averaging. To evaluate

the proposed communication system performance in a low SNR environment, the signal

power was kept constant during the first 30 minutes, and reduced by 1 dB after each

transmission, in the remaining 30 minutes. The signal power variation in addition to the high

impulsive noise levels in the site, related to both man-made and biological factors, provided

a wide SNR variation for data analysis.

In shallow water, the acoustic energy interacts several times with ocean boundaries, sea

surface, and bottom, inducing multiple replicas at the receiver. Fig. 4.5 shows the receiver
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Figure 4.5: Diagram of the single channel communication receiver composed of a Wiener filter for
equalization, soft synchronization in time, coherent averaging of Z low power bitstreams, HCC0,
hard synchronization and data retrieval.

structure. The CIR were estimated by a FHT of each received sequence yz(t + zτ). Each

yz(t+ zτ) was equalized using a Wiener filter to mitigate multipath, where z is the sequence

number and τ is the period of the transmitted bitstream. Then, the filtered gz(t + zτ)

were matched filtered with the M-sequence probe x(k). Based on the strongest peak of

the cross-correlation results hz(t + zτ), the bitstreams rz(t + zτ) were synchronized (time-

aligned). To achieve a high processing gain at the receiver the bitstreams were coherently

averaged. The error-corrected bitstream rm(k)ave, of each m channel from the pyramidal

array, was processed using the HCC0 method to remove the probe interference. After a hard

synchronization and averaging of the four 480-bit data packets, the message is retrieved [60].

4.4 The acoustic propagation in an upwelling scenario

In order to better understand the acoustic propagation in this complex environment, the com-

munication channel was modeled using geological parameters and approximate bathymetry
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for the experimental site. Based on the Cabo Frio region substratum composition , the

bottom was assumed as fine sand with a compressional speed of 1684 m/s [35]. Two repre-

sentatives SSP, upwelling (Fig. 4.6 (top plot, right)) and slightly downward refractive SSP

(Fig. 4.6 (bottom plot, right)), collected from CTD at the depression on Jan16, 3:32 p.m.,

and Jan17, 1:38 p.m. were inserted in the MMPE model to simulate the propagation for

the same center frequency and bandwidth of the signals transmitted in the experiment. For

both SSP, the transmission loss (TL) plots show multiple interactions of the acoustic energy

with the bottom and sea surface, between the source location and the valley (Fig. 4.6, left).

However, along this deeper region, for the upwelling condition, the propagation is much

different. As one can observe in Fig. 4.6 (top plot, right)), at the depth of 9m, there is an

Figure 4.6: Numerical estimations of transmission loss (TL) using the MMPE acoustic model
(fc = 7.5kHz,BW = 3kHz). The source (black dot) is placed mid-water in a 4 m deep water
column. The pyramidal array (red dots) is located 1.6 km far from the source, posed at the bottom
in an 8 m water column. Calculations were performed for an upwelling SSP recorded on Jan16,
3:32 p.m (top plot), and a slightly downward refracting SSP from Jan17, 1:38 p.m (bottom plot).
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abrupt reduction of temperature of approximately 10◦C in just 3m, creating two layers of

distinct propagation. Therefore, the TL plot shows that most of the energy refracts towards

the bottom and becomes trapped in this depression, reducing significantly the energy avail-

able at the hydrophones (Fig. 4.6 (top plot, left)). Conversely, for the slightly downward

refracting SSP, the energy propagates following the bottom geometry, and therefore more

energy reaches the hydrophones (Fig. 4.6 (bottom plot, left)).

Fig. 4.7 and 4.8 show both the CIR estimated from data recorded by hydrophone #1

(three plots on the left) and the noiseless CIR predicted by the MMPE acoustic model (plot

on the right), for the upwelling and no upwelling SSP, respectively. For the upwelling SSP

condition (Jan17, 7 p.m), Fig. 4.7 (left) shows the 55 estimated CIR. The noisy CIR exhibit

low amplitudes and a time-varying fading. Several bitstreams cannot be even detected, as

one can observe between seconds 10 to 20. On the other hand, in a no upwelling condition,

for a slightly downward refracting SSP (Jan17, 2 p.m), the estimated CIR show higher

amplitudes. In an almost isothermal condition, all bitstreams were detected, pointing to a

more stable propagation channel with hydrophones receiving more energy (Fig. 4.8 (left)).

To observe the multipath structure, the two plots in the middle of Fig. 4.7 and 4.8 focus

on two specific CIR, indicated by the red dots. For the upwelling SSP, the low SNR CIR

#33 and #50 present a long delay spread of approximately 10 ms, including a strong arrival

much before the most significant peak that complicates the synchronization and equalization

processes. However, for the slightly downward refracting SSP, the CIR #12 and #42 present

a higher SNR, showing more energetic arrivals and a shorter multipath compared to the

upwelling CIR. In Fig. 4.7 and 4.8 (right), the CIR predicted by MMPE show the fading

and multipath structure in agreement with the estimated CIR. The communication system
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uses several consecutive M-sequences to estimate the channel. Performing a comparison,

one can observe a high degree of similarity between the CIR from MMPE and the CIR #50

and #42 from real data. This is an interesting result and may validate the accuracy of the

numerical simulation, based on real data.

Figure 4.7: For an upwelling SSP, the first three plots, from left to right, show the CIR estimated
from the 55 bitstreams recorded by hydrophone #1, and the multipath structure for the sequences
#33 and #50 (red dots), respectively. On the right, a CIR shows the multipath arrivals predicted
by the MMPE model, for a receiver depth of 7m, approximately the same of hydrophone #1 of the
pyramidal array.

Figure 4.8: For a no upwelling SSP, or a slightly downward refracting SSP, the first three plots
on the left show the CIR estimated from the 55 bitstreams recorded by hydrophone #1, and the
multipath structure for the sequences #12 and #42 (red dots). On the right, a CIR shows the
multipath arrivals predicted by the MMPE model, for a depth of 7m, approximately the same of
hydrophone #1 of the pyramidal array.
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4.5 CIR variability during upwelling

In this section, the analysis of CIR variability during upwelling is performed based only on

the T profiles. The sea surface conditions, important factors that impact channel variability

and the multipath structure due to the sea surface reflections, are not considered here as

there was no monitoring of the sea surface state during the experiment.

Figure 4.9 (bottom plot) shows the temperature evolution in time measured by a ther-

mistor placed at the same depth of the hydrophone #1, approximately 1.5 m above the

bottom. The temperature vs. time plot shows several upwelling events. However, to observe

the channel degradation as upwelling occurs, Fig. 4.9 (top plots) presents three different CIR

structures estimated from signals recorded by hydrophone #1 (top of the pyramidal array)

in a restricted time frame from Jan. 17, 4 p.m. to 8:30 p.m (top, left to right).

On Jan. 17, from 4 p.m. to 7 p.m., the temperature at the receiver remained approxi-

mately stable. However, the structures of the two CIR shown in Fig. 4.9 (top plot, left and

middle) indicate the occurrence of the upwelling. As cold water seeps into the bay through

the depression located at mid-range between the source and the receiver, the sound speed

profiles (SSP) changed from a warm isothermal to a downward refracting condition. At 4

p.m., the CIR presents stronger arrivals and a short multipath spread of approximately 5

ms. However, at 7 p.m., the CIR presents weaker arrivals, spreading over more than 10 ms.

As the temperature at the receiver is still around 24◦C, one can infer that the upwelling

process has already started, mixing cold water with warm layers along the propagation track

and therefore, degrading the CIR. Comparing both CIR plots (4 p.m. and 7 p.m.), one

can expect a severe degradation of the communication system due to the longer multipath
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spread and the reduction of the available acoustic energy at the receivers. As the cold water

spread throughout the channel and moved towards the sea surface, a drastic short-term drop

in temperature of about 10◦C was observed at the receiver location from 7 p.m. to 8:30 p.m.

Observing the respective CIR shown in Fig. 4.9 (top plot, middle and right), one can con-

clude that the channel evolved from a downward refracting SSP, when less energy reaches

the receivers and severe multipath arrives from bottom interactions inside the valley, to a

cold isothermal SSP which allows an even ensonification of the channel. Thus, at 8:30 p.m.,

the arrivals are strong and the CIR presents a short multipath spread of approximately 2

ms, indicating an improvement in the system performance.

Figure 4.9: Top plot: CIR variability in a restricted upwelling time frame from Jan. 17, 4 p.m. to
Jan. 17, 8:30 p.m. Bottom plot: temperature evolution in time, measured by a thermistor located
close to hydrophone #1 at the top of the pyramidal array, approximately 1.5m above the bottom.

Fabio Louza
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4.6 Temperature evolution vs. Communication perfor-

mance

Coherent communications are generally affected by Doppler effects. However, in this experi-

ment, as the source and receiver were maintained steady in the water, signal processing was

performed using zero Doppler probe replicas. The in-band SNR (dB) for channel #1 was

estimated according to (2.20), using 20 sequences (Z = 20), where N was estimated from a

period after transmissions.

For the time window from Jan17, 1 p.m. to Jan18, 7 a.m., the SNR or temperature

vs. time plot (Fig. 4.10 (top plot)) shows the correlation between the upwelling indicated

by the sensor temperature close to the top of the array, and the signal power measured

by the hydrophone #1. Observing the SNR and temperature evolution in time, the SNR

starts to decline several hours before the climax of the upwelling at 8 p.m., when the cold

water reaches the array location. This may be an indicator of the upwelling occurrence.

Despite the T around 24◦C at the receiver location, from 2 p.m. to 7 p.m., as cold water sips

into the bay, temperature stratification along the propagation track changes so that more

energy refracts to the bottom and becomes trapped in the depression. When the cold water

reaches the T sensor location, between 7 p.m. and 8 p.m., the channel presents an almost

isothermal condition (slightly downward refracting SSP). Thus, the SNR increases as more

energy reaches the sensors.

In addition to the ocean temperature stratification, the high noise levels in the region,

related to both man-made and biological factors, and the severe multipath structure that

changes for each received signal also contributed to hampering the demodulation of the

Fabio Louza
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received low power signals.

Fig. 4.10 (bottom plot) shows the BER vs.Time estimated from hydrophone #1. To

evaluate the single channel system robustness and to perform error correction in this chal-

lenging environment, the BER were estimated using 20 bitstreams (22 bps). Fig. 4.10 (top

plot) shows that a large range of SNR (-5.2 to 9.1 dB). During the upwelling, as propagation

conditions changed, the single hydrophone system achieved BER > 10−2. As the channel

Figure 4.10: Top plot: SNR vs. Temperature vs. Time measured at the array location from Jan17,
1 p.m. to Jan18, 7 a.m. The dashed line (blue) indicates SNR estimated by the hydrophone #1
using 20 bitstreams. Superimposed on the SNR plot, the temperature profile (black) estimated by
the sensor close to the top of the array. Bottom plot: BER vs. Time for an effective bit rate of
22 bps, equivalent to averaging for 22 seconds (20 bitstreams). The red line represents a smooth
fitting curve of data.
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returned to a more stable condition, SNR increased and the communication system retrieved

BER < 10−2, including error-free messages, for consecutive hours. However, the BER curve

does not follow the SNR trend, as one could expect, because the signal demodulation de-

pends on some other factors than the noise levels such as the multipath structure, and the

efficiency of the error correction through coherent averaging.

4.7 Discussion

In this chapter, we studied the effects of the upwelling oceanographic phenomena over low

SNR communications in shallow water, based on modeling and on a small subset of data from

the BioCom’19 experiment. Improving knowledge about the oceanographic processes over

communication signals may help to develop systems suitable for sensors operating in these

harsh environments, saving power and reducing acoustic pollution. The acoustic propagation

for the upwelling and slightly downward refracting SSP were simulated using the Monterey-

Miami parabolic equation model. The CIR predicted by the MMPE model were in agreement

with data from the experiment. The TL plot indicated a severe multipath in both situations,

but a reduction of available energy at the receiver for the upwelling SSP, as the sound became

trapped inside the depression through which the cold water sips into the bay. The author

analyzed the SNR vs. temperature vs. time and the BER plots for the hydrophone at

the top of the array. A reduction of the SNR indicates the occurrence of the upwelling

where water masses of different temperatures mix, affecting the propagation. Thus, the

communication system may be used, indirectly, to monitor the upwelling phenomena using

low-power acoustic signals, instead of conventional temperature sensors.
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Coherence as a criterion for
multichannel combining and the
double Wiener filter

Abstract This chapter presents a study on both temporal (TCOH) and spatial (SCOH) co-

herence of low power signals transmitted during the BioCom19, including a criterion for

multichannel combining. Dealing with coherent communications, in which the phase carries

the information, understanding the temporal and spatial coherence in a challenging environ-

ment may also contribute to improving the communication system. Another topic considered

in this chapter is a double Wiener filter for single-channel systems which is proposed to

mitigate the residual intersymbol interference that affects the signal coherence. Section 5.1

defines both temporal and spatial coherence and presents a criterion for multichannel combin-

ing. Section 5.2 presents the double Wiener filter for low SNR communications. In Section

5.3 a brief discussion about the topics presented in the chapter.

5.1 Coherence and multichannel combining

Much effort has been dedicated to measuring and understanding coherence in shallow water.

Coherence (COH) describes the rate of signal fluctuation, in time or space. Defined as

a statistical measure of the change of a waveform, coherence depends on both amplitude

and phase of the signal [61, 62]. Previous work reported in the literature measured both

temporal and spatial coherence in shallow water for different reasons. In [61], DeFerrari
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studied the propagating modes decorrelation of low-frequency broadband transmissions in

shallow water, at a range of 10 km, and compared results to those of a numerical model.

In [62], Yang measured temporal coherence in three shallow-water sites with low to high

internal wave activity using signals with frequencies from 1.5 to 20kHz, in a range up to

42 km. Therefore, an analysis was conducted on the relationship between coherence, source

frequency, range, and sound speed profile.

In this section, the main goal is to understand the impact of both temporal (TCOH) and

spatial coherence (SCOH) on low SNR communications in an upwelling channel and how to

use coherence as a criterion to perform multichannel combining. Data presented here are a

small subset from those recorded during BioCom’19 on JAN17, 2019 - 11 a.m by the vertical

linear and pyramidal arrays. Thus, coherence covering short periods (seconds) will be used

to express the rate of signal fluctuation in time and space, influencing the time of integration

and therefore the effective bit rate of the communication system. All four channels of both

pyramidal and vertical linear arrays are analyzed independently. Based on estimated TCOH

and SCOH, channels are combined to improve the gain of the array. Assuming that noise is

uncorrelated between channels, coherent averaging of several sequences increases the SNR

and thus, reduces the bit error rate (BER). All coherence estimates are matched to the BER

to understand implications over receiver performance. Both arrays are also compared to

determine the advantages of their geometry.

5.1.1 Coherence definition

Coherence measures, in a statistical sense, the difference in waveform and depends on the

amplitude and phase of the signals. Coherence is estimated by the autocorrelation of the
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signals separated by a delay-time (temporal coherence) or distance intervals along an array

of sensors (spatial coherence), normalized by the power of the signals as given by

COH(t, τ) =

〈
|h†(t)h(t+ τ)|2

〉
⟨h†(t)h(t)⟩ ⟨h†(t+ τ)h(t+ τ)⟩

(5.1)

where h(t) is a channel impulse response (CIR) obtained after matched filter pulse compres-

sion of the received signals, τ is the lag time, ⟨⟩ denotes ensemble average over time t and †

denotes complex conjugate.

5.1.2 Temporal Coherence

Fig. 5.1 (a) shows the single channel receiver diagram. The TCOH was estimated before

and after the channel equalization. Before equalization, each received bitstream yZ(t+ Zτ)

was used to estimate the channel impulse responses hz(t + Zτ) through M-sequence x(k)

(a) (b)

Figure 5.1: a) Diagram of the communication system, in time, shows the following steps: channel
equalization (single Wiener filter), soft synchronization, and temporal coherent averaging of Z
received bitstreams. b) Diagram of the communication system, in space, shows the multichannel
combining, probe interference removal (HCC0), hard synchronization, and data retrieval.
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crosscorrelation. In a low SNR environment, time-gating the CIR can avoid the inclusion

of excessive noise in the calculations of TCOH, improving results. Thus, an arbitrarily

defined section of 100 ms of each CIR including all the dominant multipath arrivals was

selected. Based on these time-gated h(t) and choosing the first CIR h1Ref (t) as the reference,

the TCOH of bitstreams arriving at later times can be calculated using (5.1). Fig. 5.2

(a/b) (upper plot) shows that multipath severely degrades TCOH of signals recorded by the

hydrophone #3 from the VLA and hydrophone #4 from the pyramidal array.

(a) (b)

Figure 5.2: a) Temporal coherence before (top plot) and after Wiener filter (bottom plot) of
bitstreams recorded by hydrophone #3 of the vertical linear array. Dashed line in red, at 0.6,
marks the threshold for TCOH; b) Temporal coherence before (top plot) and after Wiener filter
(bottom plot) of bitstreams recorded by hydrophone #4 from pyramidal array. Dashed line in red,
at 0.6, marks the threshold for TCOH
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To estimate TCOH after the Wiener filter equalization, the received signals yZ(t +

Zτ) were processed with a Wiener filter. Using filtered gZ(t + Zτ), the multiple channel

impulse responses pz(t+Zτ) were estimated. After time-gating the filtered CIR, TCOH was

recalculated improving results. Fig. 5.2 (a/b) (bottom plot) shows a significant improvement

of TCOH using filtered signals. When the resulting TCOH, estimated over the filtered

sequences, was above a given threshold ζ, the respective bitstreams were coherently averaged.

The averaged bitstream rave(t) represents the channel in the SCOH calculations.

5.1.3 Spatial Coherence

Fig. 5.1 (b) shows the multichannel receiver diagram. SCOH between different channels

of the same array can also be determined using (5.1), replacing time (t + τ) for the hy-

drophone spacing (η). SCOH was calculated using the averaged bitstream rave(t), formed

by Z sequences rZ(t + Zτ) whose TCOH were above a certain threshold ζ. For each chan-

nel, the CIR pave(η) was estimated by matched filtering the averaged signal rave(t) with the

transmitted bitstream replica x(k). After time-gating pave(η) from all four channels, these

sequences were aligned in time to correct the misalignment of the wavefront and the array.

As the phase shifts related to the position in the array were corrected, SCOH was estimated

between two channels choosing any CIR pave(η) as the reference.

The SCOH above a threshold ζ is the criteria to perform multichannel combining. Previ-

ous work [62] showed that coherence of approximately 0.8 was required to process communi-

cation signals. However, improvement was achieved by combining sequences in which TCOH

and SCOH were above a lower threshold, placed at 0.6. Therefore, the averaged bitstreams

of all channels were combined to improve the gain of the array. But if SCOH was below ζ,
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the channel was discarded as it degraded the combined result.

5.1.4 Communication performance results

In this section, the in-band SNR (dB) for each independent channel was estimated accord-

ing to (2.20), using 50 bitstreams (Z = 50), where N was estimated from a period after

transmissions. For multichannel combining, the in-band SNR (dB) was estimated using

(2.21). Fig. 5.3 (a) shows the evolution of CIR for the vertical linear array, from bitstreams

recorded by hydrophone #1 and hydrophone #3, installed 1.5 m and 4.5 m above the bottom

in approximately 8 m water depth, respectively. One can observe that signals recorded on

hydrophone #3 show severe multipath and an in-band higher noise level compared to hy-

drophone #1. The average SNR were SNRaveCh#1= −0.77 dB and SNRaveCh#3= −2.41

dB, but SNR fluctuates according to the number of sequences used in the calculations.

Therefore, signals decorrelate in time much faster in channel #3 than in channel #1.

TCOH for channel #3 is shown in Fig. 5.2 (a), before and after the Wiener filter. Using

the threshold (dashed line) as a reference, one can observe that the instantaneous TCOH

exhibits a high degree of fluctuation. The large variance may be related to the upwelling

oceanographic processes in the region of the experiment that affects the propagation condi-

tions. These results of TCOH impact directly SCOH and data retrieval. Table 5.1 shows

SCOH, BER, and SNR for several combinations of channels based on TCOH estimated

previously. All SCOH estimations including channel #3 were below the 0.6 threshold and

the corresponding BER were deeply degraded due to the high noise levels in the channel.

Therefore, channel #3 was discarded and the combination of channels #1,2 and 4 retrieved

the transmitted data with a lower BER.
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Fig 5.3 (b) shows the evolution of CIR for the pyramidal array. Hydrophone #1 was

placed at the top of the pyramid and #4 was posed in the bottom over the base of the

array. As this array had all four hydrophones just a few wavelengths from each other, one

could expect that the signals in the channels were similar and noise correlated. However,

comparing channels in Fig. 5.3 (b), one can observe that both noise levels and multipath

were different in time and space. Averaging 50 sequences, the SNRaveCh#1= −1.27 dB and

SNRaveCh#4= −1.64 dB. Also, both channels present several arrivals of high amplitude, but

(a) (b)

Figure 5.3: a) CIR variability in time, estimated using 50 bitstreams (Fc:7.5 kHz, BW: 3 kHz).
Data were recorded by hydrophone #1 (top plot) and #3 (bottom plot) of the vertical linear
array, installed at 1.5 m and 4.5 m above the bottom in approximately 8 m water depth. b) CIR
variability in time, estimated using 50 bitstreams (Fc:7.5 kHz, BW: 3 kHz). Data were recorded
by hydrophone #1 (top plot) and #4 (bottom plot), installed at the top (1m above the bottom)
and at the base of the pyramidal array.
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Table 5.1: Vertical array: SCOH1, BER and SNR from multichannel combining, averaging 10 and
20 bitstreams (44 and 22 bps)2

10 bitstreams (44 bps) 20 bitstreams (22 bps)

Channels SCOH BER % SNR SCOH BER % SNR
1+2 0.61 1.2 -3.7 0.91 1.8 -3.4
1+3 0.30 34.2 -9.9 0.54 9.6 -10.2
1+4 0.70 0.8 -0.4 0.75 1.2 -0.3
2+3 0.29 34.5 -5.3 0.39 15.2 -11.5
2+4 0.82 1.8 +0.5 0.95 4.3 +0.5
3+4 0.42 19.5 -1.2 0.21 18.5 -1.1

1+2+3+4 5.8 -2.2 3.5 -1.8
1+2+4 2.4 -1.8 1.5 -0.6

1 SCOH: Spatial coherence
2 The effective bit rate is related to the number of the averaged bitstreams

channel #4 presents strong and much-delayed multipath at 7.5 ms which complicated data

retrieval. The combination of severe multipath and high impulsive noise in the band deeply

degraded TCOH, especially for channel #4 (Fig. 5.2 (b) (top plot)). Even after filtering the

bitstreams, most of the recalculated TCOH continued lower than the 0.6 threshold (Fig. 5.2

(b) (bottom plot)).

Table 5.2 shows SCOH, BER, and SNR for combinations of the channels of the pyramidal

array. Based on SCOH estimations, the channel to be discarded was the #4. In a low SNR

environment, repetition of the same signal is used as an error correction tool. In general,

longer averaging times provide lower BER but reduce the effective bit rate. Averaging over

10 bitstreams, approximately 10 seconds, the effective bit rate was 44 bps against 22 bps for

20 sequences. Defining an optimum averaging time was a hard task due to signal fluctuations

in time and channel noise levels. But the use of the array increased the processing gain, even

if the sensors were just a few wavelengths from each other. Even not taking advantage of

spatial diversity along the water column as the vertical linear array, the pyramidal array still
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Table 5.2: Pyramidal array: SCOH1,BER and SNR from multichannel combining, averaging 10
and 20 bitstreams (44 and 22 bps)2

10 bitstreams (44 bps) 20 bitstreams (22 bps)

Channels SCOH BER % SNR SCOH BER % SNR
1+2 0.62 6.2 -5.1 0.73 0.2 -3.4
1+3 0.69 4.3 -4.2 0.64 2.7 -2.8
1+4 0.44 10.7 -3.9 0.49 0.3 -2.5
2+3 0.71 5.1 -6.1 0.67 4.3 -4.2
2+4 0.56 12.2 -5.8 0.54 1.2 3.9
3+4 0.51 9.2 -4.8 0.59 6.8 -3.2

1+2+3+4 7.3 -5.1 4.4 -3.7
1+2+3 3.3 -4.2 0.5 -2.8

1 SCOH: Spatial coherence
2 The effective bit rate is related to the number of the averaged bitstreams

provided low BER.

5.2 Double Wiener filter

This section proposes a double Wiener filter scheme, for low SNR communications. To

mitigate residual intersymbol interference over the temporal averaged bitstream rm(k)ave, a

second Wiener filter is applied before the probe removal (HCC0). The objective is to improve

the communication system’s robustness during the upwelling occurrence. To demonstrate the

double Wiener filter approach, a small subset of data from the BioCom’19 experiment (Sec.

4.2) recorded by the four hydrophones of the pyramidal array is employed. In the previous

section, the estimated CIR were compared for different temperatures at the receiver depth

to observe the degradation of the communication system over time. Thus, to evaluate the

performance in terms of bit error rate (BER) and MSE, the four channels were processed

independently. Moreover, the BER vs. SNR and the MSE vs. time were plotted to compare

the single and double Wiener approaches.

Fabio Louza
Realce

Fabio Louza
Realce

Fabio Louza
Realce

Fabio Louza
Realce

Fabio Louza
Realce

Fabio Louza
Realce

Fabio Louza
Realce

Fabio Louza
Realce



74
Chapter 5. Coherence as a criterion for multichannel combining and the double Wiener

filter

5.2.1 Communication system receiver diagram

Figure 5.4 presents the single channel receiver diagram of the proposed double Wiener filter

communication system [46–48].

Figure 5.4: Diagram of the double Wiener filter communication system, for a single channel, shows
the following steps: channel equalization (single Wiener filter), soft synchronization, temporal
coherent averaging of Z received bitstreams, double Wiener filter over the averaged bitstream,
probe interference removal (HCC0), hard synchronization, and data retrieval.

5.2.2 Double Wiener filter coefficients

Calculated in a similar way to the first Wiener filter , shown in Sec. 2.6, but over the

averaged sequence r(k)ave, the second Wiener filter coefficientsW (γ) compensate the residual

intersymbol interference (5.2)

W = R−1
rr rxr (5.2)

The output signal is given by save(k) = rave(k) ∗ WL or sL = WLrave in matrix form.

Then, the HCC0 removes the probe interference, and the hard synchronization is performed,
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as detailed in Sec. 2.7.

5.2.3 CIR evolution in time

Fig. 5.5 shows the evolution of the CIR, in 4 locations of the receiver, to illustrate the

filtering process described in Fig. 5.4, and to understand the role of coherent averaging of

several received bitstreams. The 4 snapshots are marked from 1 to 4, in red. Snapshot #1

shows the multiple CIR estimated from yz(t) and the severe multipath. In snapshot #2,

one can observe a reduction of multipath in gz(t) after the first Wiener filter. Snapshot #3

Figure 5.5: The 4 snapshots indicate the evolution of the CIR. Snapshots #1 and #2 show the CIR
before and after the Wiener filter. Snapshot #3 shows the CIR after temporal coherent averaging.
Snapshot #4 shows the CIR after the second Wiener filter, mitigating the residual ISI.
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shows a strong focalization of the pulse energy and a significant reduction of the ISI over the

CIR estimated using the temporal averaged bitstream rave(k). Finally, snapshot #4 shows

the CIR estimated from save(k), after the second Wiener filter to mitigate the residual ISI.

Similar to a Dirac delta function, the CIR points to a significant performance improvement.

Despite the low SNR, both the double Wiener and the temporal averaging were able to cope

with the severe multipath, reducing the ISI.

5.2.4 Communication performance results

To observe and compare the performance of the single and the double Wiener filter ap-

proaches in this challenging environment, a small subset of data from the shallow water

BioCom’19 experiment was used. From Jan. 17, 4 p.m. to Jan. 18, 1 a.m., once every hour,

the four channels of the pyramidal array were analyzed independently. Doppler is generally

an issue in coherent communication systems. However, in this chapter, as the source and

receiver were steady in the water, Doppler effects were not relevant. The average SNR was

estimated using (2.20), but using only 20 bitstreams (Z = 20), where N was estimated from

a period after transmissions. The BER were also estimated after averaging 20 bitstreams,

from the 55 in each file, equivalent to an effective bit rate of 22 bps. Increasing the number

of sequences in the averaging process improves the error correction and tends to provide a

better estimation of the transmitted signal, masking the efficiency of the proposed double

Wiener filter scheme.

Figure 5.6 (a) shows the SNR vs. BER estimated from all four channels, independently.

Despite the power of the transmitted signals being kept constant, SNR levels varied from -5

to 6 dB. This large SNR variation is related to both the channel degradation caused by the
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upwelling that reduced the acoustic energy at the receivers, and to the time-varying noise

levels in the region, related to man-made and biological factors. The BER is related to the

SNR for both filters: the higher the SNR, the lower the BER. However, the double Wiener

filter improved the single Wiener filter results, reducing the BER towards the 10−2 threshold

(a)

(b)

Figure 5.6: a) SNR vs. BER estimated for the four channels, independently, using both single and
double Wiener filter approaches. b) MSE vs. Time estimated for channel #1 and #3 during the
upwelling window, to compare the performance of the single and double Wiener filter.
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Table 5.3: Average MSE difference (MSEdouble−MSEsingle) for the 4 channels (dB).

Channel Average MSE difference (dB)
#1 -2.78
#2 -1.81
#3 -0.67
#4 -2.89

in most cases, in all four channels.

To compare the performance of both single and double Wiener filters in terms of BER,

during the upwelling window, Fig. 5.6 (b) shows the MSE vs. Time estimated from channels

#1 and #3. Furthermore, in Table 5.3, one can observe the average MSE difference between

the double and single Wiener filter, in dB, for all four channels. A factor that may have

contributed to the achieved BER and MSE results is the severe multipath observed by

each hydrophone. Even being separated from each other by just a few wavelengths, the

hydrophones presented different multipath structures and noise levels. The hydrophone

#3, positioned over the bottom presented a lower averaged MSE difference compared to

the hydrophone #1 at the top of the array. But in all channels, the double Wiener filter

outperformed the single Wiener filter providing an average mean square error gain of up to

2.8 dB.

5.3 Discussion

In the first section of this chapter, we performed an analysis of the impact of temporal and

spatial coherence over low SNR communications in an upwelling environment. Furthermore,

we defined a criteria to perform multichannel combining based on both temporal and spatial

coherence. Using low power data from both vertical linear and pyramidal arrays, temporal

coherence was estimated before and after equalization to show the impact of multipath over
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data retrieval. The results indicate that TCOH and SCOH can be used as criteria to combine

consecutive signals and multiple channels of the arrays. In the second section, we presented

a double Wiener filter approach. The proposed approach applies a Wiener filter over each

received bitstream. Then, a second Wiener filter is estimated over the averaged sequence to

remove any residual intersymbol interference, improving the signal coherence. To evaluate

the performance, the four channels of the pyramidal array were processed independently.

Despite BER fluctuation in time, the double Wiener filter approach proved robust in dealing

with these short time scale signal fluctuations, and high noise levels that hamper efforts to

recover the message.
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Chapter 6

Superimposed training passive time
reversal for low SNR communications

Abstract This chapter presents a superimposed training passive time-reversal (STpTR) ap-

proach to deal with the acoustic channel response mismatch between the probe and the message

transmissions. The proposed method uses a real-time Doppler corrected probe to estimate the

channel and perform pTR. The chapter compares 3 alternative strategies: the temporal di-

versity provided by consecutive signals of the same content, the spatial diversity provided

by two different geometry arrays of 4 hydrophones, and a combination of both with 8 hy-

drophones. Section 6.1 presents the passive Time-Reversal issue and the proposed solution

using superimposed training signals. The communication system is detailed in Section 6.2.

The communication system performance is presented in Section 6.3. Section 6.4 concludes

the chapter, discussing the results and the feasibility of the proposed method for LPD com-

munications.

6.1 The passive Time-Reversal issue and the proposed

solution

PTR usually relies on a spatio-temporal matched filter estimated by a probe sent before the

data and requires a receiver array. In the absence of noise and considering that neither the

channel oceanographic structure nor the geometry between source and receiver has changed,

the received probes can be time-reversed and used to filter the message. However, in the case

of moving platforms and variable source-receiver geometries, especially in a fast time-varying

81
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ocean waveguide where coherence time may be short, the classic approach of pTR sending the

probe ahead of data may not be able to cope with the environmental mismatch between the

probe and the message transmissions, even at high SNR [10,27,29]. Therefore, this chapter

presents an alternative for the pTR channel mismatch due to the environmental variability

between the probe and the data transmissions, for single and multichannel systems, based

on a low-power superimposed training method [60]. At the receiver, the superimposed

training pTR (STpTR) approach performs multipath recombination. AWiener filter removes

the residual ISI. The method explores both temporal diversity, provided by consecutive

signals of the same content, and spatial diversity provided by an array of hydrophones.

Coherent averaging of low power signals increases the SNR at the receiver and performs

error correction.

To prove the concept, this chapter relies on a subset of data from the Biocom’19 shallow

water experiment [51], detailed in Sec. 4.2. Low power signals were transmitted from a single

source and recorded by pyramidal and vertical linear arrays (VLA), with 4 hydrophones

each. The received signals were processed independently and combined. A more complex

and spatially spread system composed of all 8 hydrophones was also studied to understand

the tradeoff between the system robustness, effective bit rate, and the number of receivers.

Despite most LPD systems are based on direct sequence spread spectrum (DSSS) which

could be used as benchmark, the STpTR signal structure is different. Thus, a previous

method based on a Wiener filter, described in Sec. 2.6, is used as a reference. Performance

is compared using STpTR alone, and STpTR as a pre-Wiener equalizer.
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6.2 Superimposed training passive time-reversal

The STpTR concept relies on the same superimposed training bitstream, described in

Sec. 3.2. The same low power bitstream is also transmitted Z times, but recorded by several

receivers. The redundancy of signals in both time and space allows error correction and

multichannel gain through coherent averaging.

The following subsections discuss the receiver structure according to the block diagram

of Fig. 6.1. Fig. 6.1 (a) shows the STpTR, channel equalization, soft synchronization in

time, and coherent averaging of Z low power bitstreams. Fig. 6.1 (b) shows the multichannel

combining, hyperslice cancellation by coordinate zeroing (HCC0), hard synchronization, and

message retrieval.

(a) (b)

Figure 6.1: a) Diagram of STpTR, channel equalization, soft synchronization in time, and coherent
averaging of Z low power bitstreams; b) Diagram of multichannel combining, HCC0, hard synchro-
nization, and message retrieval.
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6.2.1 Detection and Doppler compensation

In a reverberating channel or in the presence of relative motion between source and receiver,

Doppler frequency spread/shift of transmitted binary probes must be compensated to im-

prove detection and synchronization [7, 18, 29]. In shallow water, the signal arrives through

multiple paths that may be subject to different time-scaling factors [63]. Assuming that

all paths have approximately the same Doppler-scaling factor, each z received bitstream

yz(t + zτ) is correlated with a bank of matched filters composed replicas x(t)f ′
c
, frequency-

shifted to f ′
c, for expected source-receiver velocities.

The resulting dynamic Doppler index (IDopf ′c
) is based on the maximum absolute value

of the correlation, in bandpass, given by (6.1)

IDopf ′c
= max[|ỹz(t+ zτ) ∗ x̃†(−t)f ′

c
|] (6.1)

where x̃†(−t)f ′
c
is a bandpass time-reversed frequency-shifted replica known to the receiver.

Then, the bitstream is resampled for the f ′
c corresponding to the highest IDopf ′c

.

During the BioCom’19 experiment, Doppler was studied based on signals recorded by a

hydrophone hanging from a drifting vessel, approximately 3m below the sea surface. Fig. 6.2

(left) shows the Doppler shift ∆ estimated for the moving vessel. The receiver velocity v′r can

be estimated assuming a fixed source, and a reference sound speed of c=1528 m/s observed

during the experiment (6.2).

v′r = c

[
fc −∆

fc
− 1

]
, (6.2)

where ∆ is the Doppler shift.

Therefore, the average Doppler shift of ∆ave=−5 Hz corresponds to a vessel drifting
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velocity of v=−1.01 m/s, approximately 2 knots, in agreement with the drifting vessel

velocity moving away from the fixed source.

Successful STpTR demodulation depends on the efficiency of Doppler compensation. To

observe the impact of Doppler correction over detection, Fig. 6.2 (middle) shows the matched

filter outputs for signals based on the original center frequency fc. The peaks are low and

several bitstreams were not even detected. However, using a dynamic Doppler frequency f ′
c

according to the output of (6.1), detection is improved significantly. Fig. 6.2 (right) shows

correlation peaks much stronger than those in Fig. 6.2 (middle). The matched filter outputs

are also more stable in time, indicating a correct Doppler estimation and resampling of the

received signals. After Doppler compensation, each sequence is converted from bandpass

to baseband as detailed in Sec. 3.3. Thus, a single 2047-bit baseband bitstream is created

containing most of the original bandpass sequence energy.

Figure 6.2: Left) Doppler shift estimated from a drifting hydrophone. Middle) Matched filter
output for Doppler correction using a constant sampling frequency. Right) Matched filter output
for Doppler correction using a dynamic sampling frequency.
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6.2.2 STpTR in time, Wiener equalization and temporal soft syn-
chronization

Block diagram in Fig. 6.1(a) describes the STpTR in time, the Wiener equalization, and the

temporal soft synchronization. In a noiseless and time-invariant channel, the received signal

may be represented by yz(t) = s(t) ∗ hz(t), where s(t) is the transmitted bitstream, and

hz(t) is the channel impulse response (CIR). However, ocean waveguides are typically noisy

and fast time-varying. Therefore, the superimposed training method approximates a time-

varying channel to a linear time-invariant (LTI) during the period of the signal. The probe

and the message are transmitted simultaneously. As the probe and the message are using

the same sound channel, there is no channel mismatch due to the environmental variability.

Thus, the FHT crosscorrelation estimates the noisy CIR ĥz(t) using yz(t) and the known

baseband probe for zero Doppler x(k), where k is a discrete time-index.

The STpTR works in time and space. In time, for each sensor, STpTR acts like a single

matched-filter convolving received bitstreams yz(t) with their own time-reversed CIR ĥz(−t)

(6.3).

oz(t
′) = yz(t

′) ∗ ĥ†z(−t′) = s(t′) ∗
[
hz(t

′) ∗ ĥ†z(−t′)
]

(6.3)

where t′ = t+zτ is the z bitstream time slot. To avoid the inclusion of excessive noise in the

matched filtered bitstream oz(t
′), the CIR ĥz(−t′) is time-gated, in a trial and error process,

to include only the main arrivals. The result is the focusing of the weak pulse energy, after

multipath recombination. However, there is always a residual ISI, which requires equalization

to be eliminated [18,29].

In this work, the STpTR will be followed by an adaptive Wiener filter equalizer [45, 47,

48, 64, 65]. Reducing the length of multipath, STpTR as a pre-equalizer also reduces the
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length n of the Wiener filter, avoiding ill-conditioning that could result in a unstable matrix

inversion [64,65]. For each channel m, gz(t
′) are time-aligned based on the strongest peak of

pz(t
′), where p1ref (t

′) is the reference. After soft synchronization, Z sequences are averaged

providing a high SNR bitstream rm(k)ave (6.4).

rm(t
′)ave =

1

Z

Z∑
z=1

gz(t
′) = s(t′) ∗

[
1

Z

Z∑
z=1

[
wz(t

′) ∗ hz(t′) ∗ ĥ†z(−t′)
]]

(6.4)

6.2.3 STpTR, and soft synchronization in space

The rm(t
′)ave is calculated for all M elements of the array (Fig. 6.1(b)). The synchronization

in space is similar to that performed in time. The output of the STpTR RM(t′) is obtained

after coherent averaging all M channels (6.5).

RM(t′) =
1

M

M∑
m=1

rm(k)ave = s(t′) ∗

[
1

MZ

M∑
m=1

Z∑
z=1

wz(t
′) ∗ hz(t′) ∗ ĥ†z(−t′)

]
(6.5)

where the term in brackets may be interpreted as the Q-function [27, 44], modified by the

Wiener coefficients. The Q-function is represented by the summation of the autocorrelation

of the channel impulse responses as a function of the number of receivers [29,44]. Main lobe

contributions of different sensors add up in phase. However, secondary lobes are not aligned

in delay and phase, not reinforcing each other. The temporal focusing is indicated by the

peak-to-sidelobe (PSL) ratio that depends on factors such as the multipath structure, the

number of receivers and their spatial distribution, and the SNR [29, 44]. As the Q-function

approaches a Dirac delta function, the performance of the STpTR increases.
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6.2.4 Probe interference cancellation

To remove the probe from the time/space averaged bitstream RM(k), the HCC0 process

is applied. Described in Section 2.7, HCC0 removes the probe interference and applies an

inverse FHT to decompress the message energy.

6.2.5 Hard synchronization and message retrieval

A hard synchronization is performed using cross-correlation peaks from FHT of Mseq31

which precedes data packets [60]. After synchronization, the receiver retrieves the four 480-

bit payloads.

6.3 STpTR communication performance

A small subset of data from BioCom’19 (Sec.4.2), recorded on Jan 17, 2019, between 1:10 p.m

and 2:30 p.m, at both linear and pyramidal arrays, was used to prove the STpTR concept.

The nautical chart (Fig. 6.3 (left)) shows the propagation path. Fig. 6.3 (right) shows the

SSP acquired at 1:38 p.m at the source and receiver locations and the bottom depression

located at the bay entrance. The slightly downward refracting sound speed profiles indicate

that sensors close to the bottom may receive more acoustic energy compared to those placed

along the water column.

To evaluate the proposed communication system performance in a low SNR environment,

the signal power was kept constant during the first 30 minutes, and reduced by 1 dB after

each transmission, in the remaining 30 minutes. The signal power variation in addition

to the high impulsive noise levels in the site, related to both man-made and biological

factors, provided a wide SNR variation for data analysis. The average in-band SNR (dB)
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Figure 6.3: Left) Nautical chart indicates the propagation track. Right) Sound speed profiles
acquired by a CTD on Jan 17, 2019 at 1:38 p.m at the source (green), receiver (yellow), and
bottom depression (red) locations .

for independent channels was estimated according to (2.20), where N was estimated from a

period after transmissions. For multichannel combining, the average input SNR of the array

was estimated using (2.21).

Fig. 6.4 shows the Doppler shift estimated from bitstreams recorded on Jan 17, 2019,

at 1:15 p.m., by all 8 sensors from both arrays. Fig. 6.4 (left) shows the Doppler shift

for the pyramidal array (PA), varying from -1.9 Hz to +1.6 Hz. The average standard

deviation (σPA) of the Doppler shift among the 4 channels is 0.9 Hz. As the hydrophones

were fixed, σPA may be related to the small random displacements of the anchored source,

the sea surface state, or local currents. Fig. 6.4 (right) shows the Doppler shift for the VLA,

varying from -2.2 Hz to +2.4 Hz. The hydrophones on the VLA moved randomly around the

vertical equilibrium position. Sensor #4 the most far from the array anchor point presented

longer displacements than sensor #1 closer to the bottom. The VLA sensors and the source

moving simultaneously contributed to generating an average standard deviation (σV LA) of

the Doppler shift equal to 1.4 Hz, larger than σPA.
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Figure 6.4: Left) Doppler shift estimated from 55 bitstreams recorded on Jan 17, 2019 at 1:15 p.m.
Doppler shift and the average standard deviation among the 4 channels of the pyramidal array
(σPA = 0.9Hz). Right) Doppler shift and the average standard deviation among the 4 channels of
the vertical linear array (σV LA = 1.4Hz)

Fig. 6.5 shows the matched-filter (MF) outputs for comparing the 55 consecutive Doppler

compensated bitstreams (Jan 27, 2019 - 1:15 p.m.). The correlation results from each channel

were normalized to the maximum peak of each array. Fig. 6.5 (upper row) shows that the

hydrophones from the pyramidal array, separated by approximately 5 wavelengths at fc =

7.5 kHz, recorded uncorrelated signals. The SSP points to a stable propagation region close

to the bottom, ensonifying the hydrophones evenly. Conversely, Fig. 6.5 (lower row) presents

the matched-filter outputs for the VLA hydrophones. Placed along the water column, VLA

element spacing is 7.5 wavelengths at fc, providing a broader spatial diversity compared

to the smaller pyramidal array. The VLA sensor #1 closer to the bottom received more

acoustic energy and presented stronger correlation peaks, compared to sensor #4, closer to

the sea surface. The VLA correlation peaks exhibit a more aggressive time-varying fading

compared to those of the pyramidal array. Between 55 and 60 seconds, most bitstreams were

barely detected by all hydrophones due to a source power level reduction. The amplitude
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Figure 6.5: Matched filter (MF) outputs from 55 Doppler compensated bitstreams, recorded on
Jan 17, 2019 at 1:15 p.m. Upper row: MF from each channel of the pyramidal array. Lower row:
MF from each channel of the VLA.

fluctuation (fading) of the dominant correlation peaks, in both time and space, above the

background noise points to a challenging environment for communications.

6.3.1 Single receiver

Fig. 6.6 presents the estimated CIR, STpTR pulse compression, and Q function using the first

5 Doppler compensated bitstreams (Jan 27, 2019 - 1:15 p.m.) recorded by two representative

sensors. Fig. 6.6 (upper row, left) details the multipath structure of the normalized and
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time-aligned CIR estimated from hydrophone #1 placed at the top of the pyramidal array.

Located approximately 1 m above the bottom, the CIR present multiple strong arrivals and

short multipath. Fig. 6.6 (lower row, left) shows the CIR estimated from hydrophone #4 of

the VLA, placed approximately 2.5 m below the sea surface. The CIR present a delay spread

longer than 15 ms, including energetic late arrivals that may complicate the synchronization

and equalization processes.

Figure 6.6: Channel impulse responses, STpTR multipath recombination, and the Q-function in
time for the first 5 received bitstreams recorded on Jan 17, 2019 at 1:15 p.m. Upper row: CIR,
STpTR , and Q-function for channel #1 of the pyramidal array. Lower row: CIR, STpTR, and
Q-function for channel #4 of the pyramidal array.

Before implementing the matched-filter, the estimated CIR ĥz(−t′) in (6.3) was time-

gated to 20 ms to include only the main arrivals and to mitigate noise interference. Fig. 6.6
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(middle) demonstrates the ability of the STpTR to overcome these harsh conditions and

perform the multipath recombination for each sequence, independently. The sharpness of

the resulting focus depends on the multipath structure as one can compare in Fig. 6.6 for

sensor #1 from the pyramidal array (upper row, middle) and sensor #4 from VLA (lower

row, middle). The remaining sidelobes are related to the residual ISI. Thus, STpTR is

followed by a Wiener filter equalizer. Considering the Wiener coefficients in (6.3) equal to

one, the STpTR is analyzed for one sensor (M=1) of each array to compare the Q function

for different propagation conditions.

The Q-function in time is obtained after summing the 5 previous matched filtered se-

quences. The main lobes of the autocorrelation functions add up coherently while the side-

lobes interfere destructively. Fig. 6.6 (upper row, right) shows that the Q-function, from

sensor #1 (pyramidal array), has a peak-to-sidelobe (PSL) ratio of 8.2 dB. Meanwhile, the

Q-function from sensor #4 (VLA), in Fig. 6.6 (lower row, right), presents higher sidelobes

with a PSL ratio of 6.1 dB. The sidelobes in channel #4 are not only 2.1 dB higher but also

separated from the main lobe by several symbols in time, compared to the previous case.

To reduce the sidelobes, and therefore mitigate residual ISI, one can use a higher number

of bitstreams taking advantage of the temporal diversity at the cost of a lower effective bit

rate.

This work adopts a minimum MSE Wiener filter method as reference [60]. The perfor-

mances of 2 filter combinations are studied: STpTR and STpTR followed by a Wiener filter

(STpTR+W). To observe the communication system performance using a single receiver at

different ranges and depths, received bitstreams from each hydrophone were processed and

plotted independently. To increase the processing gain and to perform error correction, the
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Figure 6.7: BER vs. SNR for STpTR+W (blue triangles), STpTR (black star), and Wiener filters
(red cross) from the four channels of the pyramidal array (upper row), and VLA (lower row). Left:
44 bps, averaging for 10.9 seconds. Right: 22 bps, averaging for 21.8 seconds.

bitstreams were averaged for 10.9, and 21.8 seconds (10, and 20 bitstreams), for an effective

bit rate of 44, and 22 bps. Fig. 6.7 shows the BER vs. SNR for all four sensors of the pyra-

midal (top) and the vertical linear array (bottom). The average input SNR varied between

-5 and +6 dB during the experiment. In most cases, the BER provided by the STpTR+W

(blue triangles) are lower than the BER from STpTR (black star) and Wiener filter (red

cross) equalization. However, for several transmissions at high SNR, the Wiener achieved

BER lower than STpTR+W probably due to a short multipath spread and to better con-

ditioning of the matrix to be inverted. Lower BER were achieved by averaging for longer
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times, increasing the peak-to-sidelobe ratio of the Q-function in time.

Table 6.1 provides the average MSE gain compared to theWiener filter. For the pyramidal

array (Fig. 6.7 (upper row)), the MSE gain from STpTR is -0.33 dB (44 bps) and -0.31 dB (22

bps) indicating a slightly better performance for the Wiener filter. However, when STpTR

and Wiener are combined, the MSE gain increases significantly to 1.16 dB and 1.62 dB, for

the same bit rates. For the VLA (Fig. 6.7 (lower row)), the MSE gain obtained from STpTR

is -0.22 dB (44 bps) and 0.47 dB (22 bps) while STpTR+W provided a gain of 1.49 dB and

1.52 dB. However, despite exploring spatial diversity in a wider sense, sensors from VLA did

not improve the performance, significantly, compared to those from the pyramidal array.

Table 6.1: Average MSE gain compared to the Wiener filter(Single channel)

Array Pyramidal VLA
Bit rate (bps) 44 22 44 22

STpTR+W (dB) 1.16 1.62 1.49 1.52
STpTR (dB) -0.33 -0.31 -0.22 0.47

6.3.2 Multiple receivers

To explore spatio-temporal multichannel combining, this work analyzes three communica-

tion arrays: the pyramidal and vertical linear arrays separately (4 hydrophones), and the

combination of both arrays (8 hydrophones).

In Fig.6.8 (left), the Q-fn for the spatial averaging of the 4 hydrophones of the pyramidal

array presents a peak-to-sidelobe (PSL) ratio of 10.2 dB compared to the 8.2 dB provided

by the channel #1 (Fig.6.6 (upper plot,right)). For the VLA, Fig.6.8 (middle) points to a

peak-to-sidelobe (PSL) ratio of 7.6 dB compared to 6.1 dB from channel #4 (Fig.6.6 (lower

plot,right)). For the combination of the 8 hydrophones (PA+VLA), Fig.6.8 (right) shows

a peak-to-sidelobe (PSL) ratio of 10.96 dB compared to 10.2 dB (PA) and 7.6 dB (VLA).
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Figure 6.8: Q-function from signals recorded on Jan 17, 2019 at 1:15 p.m. Left/Middle) Q-fn
provided by the 4 channels of the pyramidal and vertical linear arrays. Right) Q-fn provided by
the sum of all 8 hydrophones.

Therefore, comparing to a single channel Q-function shown in Fig.6.6 (right), Fig.6.8 shows

that coherent averaging of multiple sensors, in space, reduces the sidelobes of the Q-function,

and therefore, the ISI. This processing gain due to spatial diversity may increase the effective

bit rate, reducing the number of averaged sequences. To understand the tradeoff between

the temporal and spatial diversity, received bitstreams from both 4-hydrophone arrays were

averaged for approximately 4.4, 10.9, and 21.8 seconds (4, 10, and 20 bitstreams), for a bit

rate of 110, 44, and 22 bps. For the 8-hydrophone case, a faster communication system is

also tested reducing the averaging time to 2.2 seconds, for a bit rate of 220 bps.

Table 6.2 presents the average MSE gain from STpTR+W and STpTR compared to the

Wiener filter for channel combining. Different from STpTR which provided similar results

to Wiener, but at a lower computational cost, STpTR+W improved the performance of all

systems. The pyramidal array (Fig. 6.9 (upper row)) achieved BER similar to those from

the VLA (Fig. 6.9 (lower row)) for 110 bps, but much lower BER for the 44 and 22 bps

systems, using the same number of sensors. As shown for the single channels, the reason



6.3. STpTR communication performance 97

Figure 6.9: BER vs. SNR for STpTR+W (blue triangles), STpTR (black star), and Wiener filters
(red cross) for the multichannel combining (4 hydrophones) of the pyramidal array (upper row),
and VLA (lower row). Zero BER is represented by 2x10−4 on the logarithmic scale. Left: 110 bps,
averaging for 4.4 seconds. Middle: 44 bps, averaging for 10.9 seconds. Right: 22 bps, averaging for
21.8 seconds.

may be related to the SSP profile during the transmissions, reducing the acoustic energy at

receivers closer to the sea surface, causing synchronization issues. Thus, several bitstreams

from sensors #3 and #4 from VLA were discarded reducing the number of results in Fig. 6.9

(lower row). Both arrays, though, provided several BER < 10−2 for input SNR in the range

-5 to +6 dB, including error-free messages.

Fig. 6.10 presents the performance of the 8-hydrophone communication system, the most

complex and spatially distributed array. Separated by approximately 2.8 m, the combination

of the pyramidal and VLA provided a significant improvement in the performance and an
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Figure 6.10: BER vs. SNR for STpTR+W (blue triangles), STpTR (black star), and Wiener filters
(red cross) for the multichannel combining (8 hydrophones) from the pyramidal array and VLA.
Zero BER is represented by 2x10−4 on the logarithmic scale. Left: 220 bps, averaging for 2.2
seconds. Middle: 110 bps, averaging for 4.4 seconds. Right: 44 bps, averaging for 10.9 seconds.

increase in the bit rate, as a function of the number of the receivers. The system has shown

robust in time, achieving BER < 10−2 consistently for the 220 bps system (Fig. 6.10 (left)).

For 110 and 44 bps systems (Fig. 6.10 (middle and right)), several error-free messages were

also achieved. The reason is the reduction of the Q-function sidelobes due to a higher number

of independent sensors, mitigating the ISI. Moreover, temporal diversity also played a role

in the performance, reducing the BER for lower effective bit rates.

Table 6.2: Average MSE gain compared to the Wiener filter(Multichannel combining)

Array Pyramidal VLA Pyramidal+VLA
Bit rate (bps) 110 44 22 110 44 22 220 110 44

STpTR+W (dB) 1.51 1.86 3.13 1.27 1.88 2.34 1.71 1.79 1.92
STpTR (dB) 0.41 -0.02 -0.59 0.76 -0.39 -2.05 0.91 0.27 -0.67

6.4 Discussion

This chapter presented an alternative approach for dealing with the environmental mismatch

between the probe and the data transmissions, in passive time-reversal applications for

communications. Based on superimposed training low power signals, the method uses a
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Doppler corrected real-time probe to estimate the channel and mitigate multipath distortions

over data. After STpTR, the residual ISI is treated by the Wiener filter equalizer. Results

from the Biocom’19 shallow water experiment proved the concept for single and multichannel

receivers. Achieved results show that STpTR may help to reduce acoustic pollution using

low-power signals and can be further explored for covert communications. Due to the double

synchronization, based on coded sequences known only to legitimate receivers, the method

may be said to provide LPI, protecting the privacy of communications. The high noise levels,

varying between -5 and +6 dB, combined with the aggressive fading in time and space

have impacted the equalization performance. Thus, the method explored both temporal

and spatial diversity to increase the SNR and to perform error correction through coherent

averaging. Separated by just a few wavelengths, the hydrophones from the pyramidal array

observed the channel from almost the same depth. However, their combination provided a

higher processing gain than those from the VLA, positioned along the water column. This

fact may be related to the temperature stratification of the water column, and therefore, to

the downward refracting sound speed profile which directs the acoustic energy to the bottom.

To understand the tradeoff between the number of averaged sequences and the number

of receivers, BER vs. SNR was estimated for several bit rates and sensors configuration.

The 4-hydrophone arrays achieved BER < 10−2, including several error-free messages. A

more complex 8-hydrophone array also allowed increasing the bit rate to 220 bps, reducing

the integration time. STpTR when operating alone presented a similar performance to

the Wiener filter, but at a lower computational cost. The performance was improved using

STpTR as a pre-equalizer, providing an average MSE gain of up to 1.62 dB for single channels

and 3.13 dB for multichannel combining. Therefore, the use of the STpTR before Wiener



100 Chapter 6. Superimposed training passive time reversal for low SNR communications

improved the communications, i) reducing the BER, for a fixed bit rate, and ii) allowing an

increase of the bit rate, averaging a lower number of bitstreams.



Chapter 7

A study on the VS multichannel
combining for LPD communications

Abstract This chapter presents a study on the low probability of detection communications

using a single 2-D vector sensor (VS). A VS experiment took place off the coast of Algar-

ve/Portugal on Nov 24th, 2021. Broadband signals were transmitted from several positions,

varying both the source-receiver range and the direction of arrival. Recorded noise was added

to the signals to reduce the SNR from 0 to −10 dB. Results show that VS multichannel

combining may provide an average SNR and mean squared-error gain of up to 9.4 and 3.1

dB, respectively, compared to the pressure channel. Section 7.1 presents the objective and

methodology adopted in this study about vector sensors for LPD communications. The theo-

retical framework is presented in Section 7.2. In Section 7.3, the EMSO’21 VS experiment

is detailed. Section 7.4 explains the noise addition to reduce the SNR, the detection scheme,

and Doppler compensation. The LPD communication performance is addressed in Section

7.5. A discussion about the use of VS for LPD communications, based on experimental

results, concludes the chapter in Section 7.6.

7.1 Vector sensors for LPD communications

As shown in Chapter 6, most common systems for covert communications rely on arrays

of pressure sensors to deal with multipath and to increase the signal-to-noise ratio (SNR)

through multichannel combining. However, these large-size arrays are not suitable for au-

tonomous platforms, such as AUVs. Acoustic vector sensors (VS) are an alternative for con-

101
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ventional hydrophone arrays, being widely employed for sonar applications, such as passive

source localization [66], and tracking [67]. Compact in size, the VS measure both the scalar

acoustic pressure and the orthogonal particle velocities in a co-located device. However,

despite providing diversity gain, just recently the VS started being explored for underwater

communications [68–70].

This chapter presents a study on the VS multichannel combining for LPD communica-

tions in shallow water. Based on a superimposed training passive time-reversal (STpTR)

approach described in Sec. 6.2, this study explores both the temporal diversity provided by

repetition of the same signal and the spatial diversity given by the pressure and particle

velocity channels. To support this work, a VS communication experiment took place off

the coast of Algarve/Portugal on Nov 24th, 2021. A single 2D VS mounted on a tripod

was deployed on the bottom. An omnidirectional source hanged from a vessel transmitted

broadband bitstreams from several positions, varying both the source-receiver range and the

direction of arrival. The bitstream has a low probability of interception (LPI) properties,

as the message is embedded in the training sequence [60]. Furthermore, the method em-

ploys double synchronization using codes shared between the transmitter and receiver. The

bitstreams were acquired in a high SNR. Thus, recorded noise was added to the signals to

reduce the in-band SNR from 0 to −10 dB. An arbitrary threshold of SNR< −8dB at the

receiver location is considered for benchmark [23]. Experimental results show the suitabil-

ity of VS multichannel combining for covert communications, providing an average SNR

and mean squared-error gain (MSE) gain of 9.4 and 3.1 dB, respectively, compared to the

pressure channel.
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7.2 Theoretical framework

In this section, the theoretical VS system equations and the superimposed training pTR

receiver are briefly presented.

7.2.1 Vector sensor data model

Composed by a pressure sensor and particle velocity channels, the VS system equations can

be defined as (7.1).

yp = s ∗ hp + np,

yvx = s ∗ hvx + nvx ,

yvy = s ∗ hvy + nvy ,

yvz = s ∗ hvz + nvz ,

(7.1)

where yp,vx,y,z are the received pressure/pressure equivalent particle velocity signals, s is the

transmitted signal, hp,vx,y,z are the channel impulse responses of respective pressure/particle

velocity channels, and np,vx,y,z is the additive ambient noise, assumed spherically isotropic.

Despite all signals yp,vx,y,z are measured at a single point, previous studies have shown that the

pressure and particle velocity channels may provide spatial diversity [69,70]. Therefore, the

approach developed in Chapter 6 for low SNR communications based on both temporal and

spatial diversity, using an array of pressure sensors only, may be extended for VS receivers.

7.2.2 Superimposed training pTR receiver

For convenience, the superimposed training passive time-reversal (STpTR), detailed in

Sec. 6.2, is summarized in this section.

Fig. 7.1 shows the receiver diagram. The received bitstreams yz(t + zτ) are bandpass

filtered, Doppler compensated, and converted to baseband. The STpTR convolves each
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bitstream yz(t+ zτ) with its own time-reversed complex conjugate CIR ĥ†z(−t) (7.2).

oz(t
′) = yz(t

′) ∗ ĥ†z(−t′) = s(t′) ∗
[
hz(t

′) ∗ ĥ†z(−t′)
]

(7.2)

where s(t) is the transmitted ST bitstream, t′ = t + zτ is the z bitstream time slot, and τ

is the period. The Wiener filter remove residual intersymbol interference (ISI). The filtered

bitstreams gz(t + zτ) are matched filtered with the M-sequence probe x(k). Based on the

strongest peak of the cross-correlation results pz(t + zτ), the bitstreams rz(t + zτ) are

synchronized (time-aligned) and coherent averaged, providing a high SNR signal rm(k)ave

and performing error correction, in each m available channel of the vector sensor unit (7.3).

rm(t
′)ave = s(t′) ∗

[
1

Z

Z∑
z=1

[
wz(t

′) ∗ hz(t′) ∗ ĥz(−t′)
]]

(7.3)

where wz(t
′) are the Wiener coefficients, and k is the discrete-time index.

Spatial diversity is also explored through VS multichannel combining. The high SNR

averaged bitstream rm(k)ave from both pressure and particle velocity channels are combined

Figure 7.1: Diagram of STpTR, channel equalization, soft synchronization in time, coherent aver-
aging of Z bitstreams, VS multichannel combining, HCC0, hard synchronization and data retrieval.
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according to (6.5).

Therefore, a high processing gain may be achieved at the VS receiver taking advantage

of both temporal and spatial coherent averaging. After HCC0 and hard synchornization, the

message is retrieved.

7.3 The EMSO’21 VS experiment

The EMSO’21 VS experiment took place off the coast of Algarve/Portugal on Nov 24th, 2021

(Fig. 7.2). The experiment deployed a single 2D vector sensor (Geospectrum VS, model 35)

that measures both the pressure and the horizontal particle velocities (Vx, Vy), attached

at the top of a bottom-mounted tripod. The VS was placed in a 20 m deep water column,

approximately 2 m above the bottom. An omnidirectional source (Lubell-916C) hanged from

a vessel approximately 7 m below the sea surface, transmitted broadband bitstreams with

a central frequency of 7.5 kHz, and bandwidth of 3 kHz, from several locations, varying the

source-receiver range and the direction of arrival. The transmissions were performed inside

Figure 7.2: (Not to scale) Layout of the EMSO’21 VS experiment indicates four points of trans-
missions (PT1, PT2, PT3, PT4) placed in an approximately circular area of radius 2 km, centered
on the VS.
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a circular area of a maximum radius of 2.3 km, centered on the VS. Data recorded from

transmissions from 4 locations (PT1, PT2, PT3, and PT4) with the vessel just drifting,

and another transmission from PT4 with the vessel moving towards the VS are analyzed.

The source to VS range was 1900 m (PT1), 2200 m (PT2), 1250 m (PT3), and 1500 m

(PT4). Transmissions from PT1, and PT2 were approximately parallel to the coastline, over

the isobath of 20 m, in a predominant E-W direction. The VS Vy channel was pointing

to the East. Transmissions from PT3 and PT4 were approximately perpendicular to the

coastline, in a predominant N-S direction. The VS Vx channel was pointing to the North.

The bathymetry varied from 15 m (PT3) to 30 m (PT4).

7.4 Noise addition, detection and Doppler

The experimental data were received at a high SNR. To simulate a realistic scenario for LPD

communications, ambient noise recorded by each channel, at the beginning of the experiment

before transmissions, was added to the data files to reduce the in-band input SNR from 0 to

−10 dB. The in-band signal-to-noise ratio (SNR), in dB, was estimated for each channel (p,

Vx, Vy) and for the VS multichannel combining according to (2.20) and (2.21), respectively.

The noise addition and the SNR estimation are detailed in Section 2.8.2.

Assuming that an eavesdropper closer to the receiver location has limited knowledge

about the signal, such as the frequency band, conventional detection employs energy de-

tectors. Using the directional information from the Vx channel, Fig. 7.3 shows the power

spectrum density of both the background noise (red) and the transmitted signal (blue), fil-

tered in the communication frequency band 6-9 kHz. In Fig. 7.3 (left), the original signal

transmitted from PT4, with the vessel in movement, is clearly visible above the noise. How-
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Figure 7.3: Power spectral density (PSD) of background noise (red), and the transmitted signals
(blue) from PT4 measured by the Vx channel, and filtered in the band 6-9 kHz. Left) PSD before
noise addition. Right) PSD after noise addition.

ever, with an average SNR=−4.7 dB, the signal is barely visible hidden in the noise spectrum

(Fig. 7.3 (right)). The pressure and the Vy channel provide even lower SNR, −9.2 dB, and

−7.1 dB, respectively. Therefore, the LPD requirement, at the receiver location, may be

assumed, and the system performance evaluated.

Fig. 7.4 (left) shows the normalized matched filter outputs for comparing detection of the

55 bitstreams transmitted from PT4, with the vessel moving towards the VS, and recorded

by the Vx channel. One can also observe that several bitstreams were barely detected.

Doppler frequency shift must be estimated and compensated to improve detection in a low

SNR environment. Fig. 7.4 (right) shows that all VS channels tracked the vessel movement,

including a sudden acceleration to increase speed. During the first 25 s, the average Doppler

shift was 4 Hz, for a vessel speed of 1.5 knots. The Doppler shift rises to 6.2 Hz during the

acceleration. The last 20 s show a turbulent period faced by the hanging source until the

vessel stabilizes the course and speed around 2.4 knots.
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Figure 7.4: Left) Matched filter (MF) outputs, used for detection, from 55 Doppler compensated
bitstreams transmitted from PT 4 while the vessel was moving towards the VS, and measured by
the Vx channel. Right) Doppler shift estimated from the same bitstreams, for all 3 VS channels.

7.5 LPD communication performance

Fig. 7.5 (left) shows the CIR estimated from signals transmitted from PT4 while the vessel

was moving towards the VS, and measured by the Vx channel. The CIR present multiple

energetic arrivals and a multipath spread longer than 20 ms. To cope with this challenging

environment, the CIR used for pTR were time-gated to 25 ms, in a trial and error process, to

include only the most representative arrivals. Fig. 7.5 (right) shows the STpTR multipath

recombination for each one of the first 10 bitstreams, independently. The average peak-to-

sidelobe (PSL) ratio of the resulting STpTR is 4.2 dB.

Fig. 7.6 (left) shows the normalized Q-function, after summing 10 previously matched

filtered signals. The ISI is mitigated as the main lobes add up coherently, while the out-

of-phase sidelobes fade away. Thus, one can observe a sharp focus with a PSL ratio of 6.8

dB, 2.6 dB higher than the average STpTR PSL ratio. Fig. 7.6 (right) shows the Q-function

in space, after VS multichannel combining (p, Vx, and Vy). A significant reduction of the
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Figure 7.5: Left) 55 channel impulse responses from the bitstreams transmitted from PT4 while
the vessel was moving towards the VS, and measured by the Vx channel. Right) STpTR multipath
recombination for the first 10 received bitstreams.

Figure 7.6: Left) Q-function, in time, for the first 10 received bitstreams transmitted from PT4
while the vessel was moving towards the VS, and measured by the Vx channel. Right) Q-function
in space, after VS multichannel combining (p, Vx, and Vy)
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remaining ISI is observed. The Q-fn in space provided a PSL ratio of 9.6 dB, 2.8 dB higher

than the Q-fn in time, pointing to an efficient multichannel combining, even for sensors

located at the same point in space. Further reduction of multipath may be achieved using

a higher number of bitstreams, to take advantage of temporal diversity but at the cost of a

lower effective bit rate. Equalization to mitigate any residual ISI is performed by the Wiener

filter.

Fig. 7.7 (upper row) shows the BER performance from signals transmitted from PT1,

and PT2, parallel to the coastline, and predominantly aligned to the Vy channel. The

Figure 7.7: BER vs. SNR for 3 VS channel combining: hydrophone (black), hydrophone+Vx or
hydrophone+Vy (red), and hydrophone+Vx+Vy (blue). Upper row) Results for PT1, and PT2,
for 110 bps (left) and 20 bps (right). Lower row) Results for PT3, and PT4 for 110 bps (left) and
20 bps (right).
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BER were estimated for the hydrophone (pressure sensor), for the hydrophone combined

with the Vy, and for all 3 channels (hydrophone+Vx+Vy). Fig. 7.7 (lower row) shows

the BER from signals transmitted from PT3, and PT4 predominantly aligned to the Vx

channel, and perpendicular to the coastline. The same comparison is performed, except that

the hydrophone is combined with the Vx channel, instead of Vy. To evaluate the system

robustness, the BER were estimated using 4 and 22 bitstreams for an effective bit rate of

110 and 20 bps, shown in Fig. 7.7, left and right, respectively.

7.6 Discussion

In this chapter, the high noise levels needed to keep covertness, and the severe multipath

structure contributed to hampering the demodulation of the received signals. Fig. 7.7

shows that the STpTR required a longer coherent averaging, for error correction, to achieve

BER < 10−2, for SNR between 0 and −10 dB. The objective was to analyse the STpTR

performance in a possible covert condition at the receiver location, as shown in the power

spectrum density in Fig. 7.3 (right). One can observe in Fig. 7.7 that the combination of the

pressure channel to the particle velocity channel approximately aligned to the propagation

increased the average input SNR, providing lower BER compared to a single hydrophone.

Lower BER were also achieved by averaging a higher number of bitstreams, improving error

correction, and therefore, reducing the data rate. However, for any bit rate, the inclusion

of the channels perpendicular to the propagation degraded the performance. The LPD

benchmark of SNR< −8 dB at the receiver was not defined for directional receivers. Thus,

the pressure sensor may be in a LPD condition while the particle velocity channels may have

higher SNR, an interesting feature to be explored in LPD communications. To observe the
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VS multichannel combining performance compared to a single hydrophone, for the highest

bit rate of 110 bps, the average SNR and MSE gain are estimated. For PT1, and PT2

(Fig. 7.7(upper row)), the hydrophone combined with the Vy provided an average SNR and

MSE gain equal to 6.9 dB and 2.7 dB. However, for PT3, and PT4 (Fig. 7.7(lower row)),

the hydrophone combined with the Vx channel provided a SNR and MSE gain of 7.6 and

3.1 dB. Combining all 3 channels, the resulting SNR and MSE gain are 9.4 dB and 2.4 dB

(PT1, and PT2), and 7.6 and 2.8 dB (PT3, and PT4). In all communication scenarios, the

VS multichannel combining outperformed the pressure sensor results.



Chapter 8

Conclusions

Abstract This chapter presents an overview of the work done in this thesis, including the

main results, the contributions, and the open questions for future work. Section 8.1 presents

the research strategy and the main results. Section 8.2 indicates the published contributions.

Section 8.3 states the questions proposed to guide future work.

8.1 Concluding remarks

This thesis aimed at developing low probability of detection underwater acoustic communi-

cations in shallow water. Based on modeled and real data from three shallow water experi-

ments, this thesis studied the impacts of the environment on communications, proposed new

signal processing techniques, and integrated them into the state-of-the-art vector sensors.

The research strategy to develop LPD communications was to address the different topics

separately, to create an overview of possible contributions.

Guided by the objectives stated at the beginning of this work, and considering the LPD

threshold of −8 dB [16], a superimposed training method was proposed. The algorithm

explored temporal diversity to increase the processing gain and used a Wiener filter for

equalization. Experimental results presented bit-error rates (BER) < 10−2 for signal-to-
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noise ratios (SNR) < −8 dB. To understand the effects of coastal upwelling phenomena over

low SNR communications, a study compared the acoustic propagation for different sound

speed profiles using a propagation model and analyzed data from the BioCom’19 experiment.

Temporal and spatial coherence of low power signals were estimated, and both a criterion for

multichannel combining and a double Wiener filter to improve equalization were presented.

To address the passive time reversal channel mismatch due to the environmental variability

between the probe and the data transmissions, this work proposed a superimposed training

pTR approach for single and multichannel systems. Despite the high noise levels, with SNR

varying from -5 to +6 dB, the STpTR combined with a Wiener filter achieved BER < 10−2,

for bit rates up to 220 bps. This work also presented a study about vector sensor multichannel

combining. To improve covert communications for AUVs, an experiment using the proposed

STpTR approach and a single vector sensor was performed on the coast of Algarve/Portugal.

Results indicated that combining the pressure and particle velocity channels of a vector

sensor may provide an average SNR and mean squared-error gain of up to 9.4 and 3.1 dB,

respectively, compared to the pressure channel.

Therefore, the scientific contributions of this thesis are (i) the proposal of a superimposed

training method for LPD communications, (ii) the understanding of the effects of coastal

upwelling over communications, and how temporal and spatial coherence are impacted,

(iii) the proposal of superimposed training passive time-reversal to avoid the environmental

mismatch between the probe and the data channels, and (iv) the vector sensor multichannel

combining for LPD communications. A better understanding of the environment and the

use of the superimposed training pTR employing a vector sensor may improve the LPD

communication system’s performance and robustness while keeping covertness.
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8.2 Contributions

The contributions of this thesis have been presented in the following publications and con-

ferences:

1. F. B. Louza and H. DeFerrari, “Superimposed training low probability of detection

underwater communications”, J.Acoust. Soc.Am., vol. 148, no. 3, EL273-278, 2020.

https://doi.org/10.1121/10.0001934

2. F. B. Louza and S. M. Jesus, “Coherence as a criterion for multichannel combining low

SNR communications in an upwelling environment”, Global Oceans 2020: Singapore ,

U.S. Gulf Coast, 2020, doi: 10.1109/IEEECONF38699.2020.9389147.

3. F. B. Louza and S. M. Jesus, “Low SNR communications using a double Wiener

filter in an upwelling environment”, 6th Underwater Acoustics Conference Exhibition

(UACE2021), https://doi.org/10.1121/2.0001493

4. F. B. Louza and S. M. Jesus, “The effects of upwelling over low SNR commu-

nications in shallow water”, Oceans Porto/San Diego,2021 - doi: 10.23919/O-

CEANS44145.2021.9705746

5. F. B. Louza and S. M. Jesus, “Superimposed training passive time reversal for low

SNR communications”, Submitted to IEEE Journal of Oceanic Engineering, 2022.

6. F. B. Louza and S. M. Jesus, “Low probability of detection underwater communi-

cations using a vector sensor”, Underwater Communications and Networking Conf.

(UComms), 2022 (Accepted).
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8.3 Future work

In this work, most proposed objectives were achieved. The thesis of superimposed training

pTR low probability of detection underwater acoustic communications has shown feasible.

However, there are still open questions. The STpTR communication system characteristics

may be adaptive to improve the performance. Furthermore, the communication covertness

from an interceptor perspective has not been analyzed, requiring a larger experiment with

multiple sensors to estimate the probability of detection from different locations. Therefore,

the following questions has been proposed:

• Can the LPD communication system be adaptive, reducing the number of transmitted

signals, and therefore, increasing the bit rate?

• Can we reduce the number of Wiener filters for channel equalization, which involves

computationally intensive matrix inversion, to improve the system performance? What is

the gain using the Wiener over the averaged bitstream ravem(t) only, instead of over each

received bitstream yz(t) ?

• Can the length of the time-reversal window be adjusted, automatically, to improve the

multipath recombination?

• How adaptive weighting of the VS channels may improve LPD communications?

• How the STpTR performs from multiple interceptors perpective? Can the STpTR

system adaptively modify the probe to message amplitude ratio to improve robustness or

covertness, depending on the location of interceptors?

Future work points to long-term field experiments, in different scenarios, to verify the

communication covertness from an interceptor perspective, using the proposed methods de-
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scribed in this thesis. Therefore, new solutions composed of systems that are able to observe

the ocean, and modify parameters adaptively may be achieved. Moreover, integrated solu-

tions using vector sensors may improve significantly the AUVs and submarine communication

performance, reliability, and covertness.
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