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ABSTRACT

The normal mode model is assumed to give a fair represen-

tation of sound propagation in shallow water. A simulated

experiment is conducted that involves a monochromatic

source and a vertical a linear array, with the objective

of estimating the parameters of this normal mode model.

For this purpose, we have the source transmitting at every

sensing depth. Collected measurements are stacked in a first

data matrix. The range between source and array is modified,

the experiment is repeated and a second data matrix is

collected. A special combination of the two data matrices

shows an interesting eigen structure, where (non-orthogonal)

eigenvectors and eigenvalues turn to be the sought-after

sampled model functions and wavenumbers. The so-defined

subspace algorithm is not based on (orthogonal) singular

vectors and, so, does not require full coverage of the

water column, unlike existing subspace algorithms. It also

compares advantageously to transform domain techniques

which, while not requiring full coverage of the water column,

involve impulsive sources, among other limitations.

Index Terms— Shallow water, normal modes, subspace

algorithms

I. INTRODUCTION

The normal mode model is commonly used in order to

describe propagation of acoustic signals in shallow water.

Reliable and fast estimation of the model parameters is of the

utmost importance to many underwater observation systems

[1], [2], [3], [4]. Existing techniques [5], [6] collect pressure

data using vertical linear arrays (VLA) partially covering the

water column, and so in order to estimate model functions

at the sensor depths, as well as the attached wavenumbers.

Subspace algorithms are popular parameter estimation

techniques, especially in antenna array signal processing.

They are appreciated mainly for their high resolution, i.e.

the ability to provide accurate estimates regardless of the

(limited) array size, and so contrarily to transform-domain

techniques [2], [3], [5]. Application of subspace algorithms

to the shallow water environment has been, so far, less suc-

cessful because underwater propagation of acoustic signals is

far more sophisticated than free-space wireless propagation.

For instance, the array output data matrix does not have a

special structure unless the array covers the whole water

column. Only then, would modal functions appear in the

form of orthogonal columns amenable to estimation by

matrix singular decomposition [1], [4], [7], [8]. Full coverage

of the water column is not possible, not only for practical

reasons, but also for physical reasons, in scenarios where

waves penetrate the sea bed [3], [5], [9]. We are inspired

by non-trivial subspace algorithms (especially those dealing

with blind channel estimation) that process (decompose) a

matrix that is derived from the array output data matrix, and

that has a richer eigen structure.

The proposed algorithm will detect modal functions as

eigenvectors, contrarily to existing subspace algorithms [1],

[4], [7], [8] where they are detected as singular vectors. In

contrast with singular vectors, eigenvectors do not have to

be orthogonal. Consequently, the proposed algorithm is free

from the constraint of fully sensing the water column. The

only existing techniques that accommodate partial sampling

of the water column [3], [5] require impulsive sources,

large source-array separation (and hence low SNR), user

intervention, heavy computation and, more severely, their

resolution depend on the array size. Also, the developed

method does not require towing the source [1], [9] nor the

array [8], [10] which, otherwise, would subject the data to

Doppler frequency shift [1], [11], and, potentially, violate

the range-independent assumption.

The proposed algorithm will use the data collected during

the following steps: 1) the VLA is deployed to sense pressure

field at depths of interest, 2) a monochromatic source is

activated, successively, at each one of the sensing depths,

3) the collected data is stacked into one first data matrix, 4)

the experiment is repeated with a different horizontal spacing

between VLA and source, and the new collected data is

stacked into a second data matrix. We show how a non-

trivial combination of the two matrices exhibits an interesting

structure where the sampled model functions appear as

eigenvectors, and wavenumbers appear as eigenvalues.

Not only does the resulting algorithm operate under re-

alistic conditions, it also computes the model parameters in

a closed-form, search-free and fully-automatic manner, that

contrasts with many of the existing heuristic techniques. It,

also, does not make any assumption about the statistical



distribution of observation noise. The computation burden

is that of one eigenvector decomposition and one singular

vector decomposition, where the matrix size is determined

by the number of array sensing elements.

II. SIGNAL MODEL AND DATA MATRIX

A point in the waveguide is characterized by its coor-

dinates (x(1), x(2), z), where (x(1), x(2)) designate the sea

surface, z refers to the point’s depth [12], [13]. The point

position is alternatively determined by (r, ψ, z), where ψ
is the angle counter-clockwise from [O, x(1)) and r is the

horizontal spacing between this point and the reference water

column x(1) = x(2) = 0, where a mono-chromatic acoustic

source is activated at some depth z = zS.

The Q sensors of a VLA, nor densely nor uniformly

placed, are maintained at fixed positions (r, ψ, z) =
(r, θ, zq), q = 1, · · · , Q, where sensor q collects [12]

y(zS, zq, r) = p(zS , zq, r) + ǫ(zS, zq, r)

where the randomly distributed noise ǫ(zS, zq, r) affects the

noise free observation

p(zS, zq, r)=̂bse
j π

4

M
∑

m=1

φm(zq)φm(zS)
e−jκmr

√
κmr

(1)

where bs is an unknown complex amplitude and parameters

κm, φm(z) are relative to the m-th mode. Using matrix nota-

tions, A(r)=̂Diag
[

e−jκ1r/
√
κ1r, · · · , e−jκM r/

√
κMr

]

, so

that we have

p(zS, zq, r) = bse
j π

4 [φ1(zq), · · · , φM (zq)]A(r)







φ1(z
S)

...

φM (zS)







(2)

We stack measurements from the VLA into vector

=̂ bse
j π

4 ΦA(r)







φ1(z
S)

...

φM (zS)






+







ǫ(zS, z1, r)
...

ǫ(zS , zQ, r)







where columns of Φ=̂







φ1(z1) · · · φM (z1)
...

φ1(zQ) · · · φM (zQ)






are the

modal functions sampled at z1, · · · , zQ. Now, let’s imag-

ine that we set source depth as zS = z1, and collect

y(z1, z1, r), · · · , y(z1, zQ, r). Then, we move the source to

depth zS = z2 and collect y(z2, z1, r), · · · , y(z2, zQ, r),
hence collecting Q2 measurements arranged into data matrix

Y(r)=̂







y(z1, z1, r) · · · y(zQ, z1, r)
...

y(z1, zQ, r) · · · y(zQ, zQ, r)






(3)

= bse
j π

4 ΦA(r)ΦT +







ǫ(z1, z1, r) · · · ǫ(zQ, z1, r)
...

ǫ(z1, zQ, r) · · · ǫ(zQ, zQ, r)







=̂ P(r) + E(r) (4)

Non-Hermitian P(r) is symmetric [but not E(r)], a property

that we will use in the next section to reduce the impact of

noise.

Finally, we reasonably assume columns of Φ are linearly

independent, but not necessarily orthogonal (which, other-

wise, requires sensing the total water column). It follows

that P(r) is rank-deficient if Q ≥ M , which is achievable

at least for low frequency sources [8]. At last, we denote

Φ♮ as the real-valued M × Q Moore pseudo-inverse of Φ
verifying Φ♮Φ = I. Advantageously, we do not make any

statistical (normality and/or uniformity) assumption about

noise, which is safe enough since noise sources are more

frequently impulsive [14].

III. ALGORITHM DERIVATION

The proposed method is based on the execution of the

above measurement procedure at two different locations

with different horizontal spacing betwen source and VLA.

The source is activated at consecutive depths z1, · · · , zQ.

VLA-to-source horizontal spacing is R1 in the 1st exper-

iment and R2 in the 2nd experiment. We obtain two data

matrices, as in (3), noted Yk=̂Y(Rk), k = 1, 2. Each

verifies Yk = bse
j π

4 ΦA(Rk)ΦT and has the pseudo-inverse

Y
♮
k = b−1

s e−j π

4 Φ♮,T
A
−1(Rk)Φ♮. We realize that

YkY
♮
l =

√

Rl

Rk

ΦDiag
(

ejκ1(Rl−Rk), · · · , ejκM (Rl−Rk)
)

Φ♮

is similar to
√

Rl/RkDiag
(

ejκ1(Rl−Rk), · · · , ejκM (Rl−Rk), 0, 0, · · ·
)

. Its

non-zero eigen values
√

Rl/Rke
jκm(Rl−Rk),m = 1, · · · ,M

are associated to eigenvectors that are nothing else but the

columns of Φ. Notice that because YkY
♮
l is not Hermitian,

its eigen vectors should not be orthogonal.

The above rationale guarantees exact calculation of nor-

mal mode parameters from noise-free measurements. The

presence of noise calls for the following adaptations. First,

if R1 < R2, than Y1 is expected to be less affected by noise

and so, will be the one we invert, to finally process

Y2Y
♮
1 =

√

R1

R2
ΦDiag

(

ejκ1(R1−R2), · · · , ejκM (R1−R2)
)

Φ♮

Second, symmetric P1=̂P(R1) and P2=̂P(R2) allow us to

rewrite Yk as (Yk +Y
T
k )/2, equal to Yk = Pk +[E(Rk)+

E
T (Rk)]/2, where the noise power is halved. Finally, the

estimation algorithm is executed as follows:

1) Collect Q×Q matrices Y1 and Y2.

2) Update Yk as (Yk + Y
T
k )/2 for k = 1, 2.

3) Form = 1, · · · ,M , let σm be the largest singular value

of Y1. Let um and vm be, respectively, the associated

left and right unit-norm singular vectors.

4) Calculate Y
♮
1 as

∑M
m=1 σ

−1
m vmu

H
m.

5) For m = 1, · · · ,M , let λm be the eigen value of

Y2Y
♮
1, with the m-th largest magnitude, and associ-

ated to the unit-norm eigen vector wm.



6) Estimate (R1−R2)κm as arg (λm), selected in [0, 2π].
7) Estimate [φm(z1), · · · , φm(zP )]

T
by wm.

It is clear that the obtained estimates of the modal func-

tions and the wavenumbers do suffer from some indetermi-

nacy, which is, by the way, common to both subspace [8] and

transform-domain [3] techniques. While countermeasures

exist [8], [9], we do not use any here. We will evaluate

estimation performance independently from the ambiguity

removal technique which will greatly depend on the appli-

cation.

IV. NUMERICAL SIMULATIONS

The KRAKEN normal mode propagation model is used

in a 100 [m] depth waveguide, excited by a mono-chromatic

source emitting a tone at various frequencies: 50, 100 and

150 [Hz]. The acoustic pressure field was generated for a

depth-range grid of [10, 90] − [0, 1000] [m] with 51×101

equally spaced receivers. Given that the source is activated

at consecutive depths z1, · · · , zQ, we have a total of Q2

measurements p(zq, zq′ , r), for zq, zq′ = z1, · · · , zQ, grouped

into a Q × Q matrix P(r). The average signal power is

defined as (1/Q2)
∑Q

q,q′=1 |p(zq, zq′ , r)|2.

We corrupt the received data field with zero-mean

complex-valued circular Additive White Gaussian Noise

(AWGN), following (4). We assume noise components

to be independent at every sensor, with uniform power

E
[

|ǫ(zR
p , z

S, r)|2
]

= σ2
n. Subsequently, for a VLA de-

ployed at range r, the reported SNR is defined as

[1/(Q2σ2
n)]
∑Q

q,q′=1 |p(zq, zq′ , r)|2 [12], [13, Sec. VI]. We

decided to place the two VLAs at 200 [m] and 400 [m]

from the source.

The presence of noise will result in an estimate wm

that is roughly co-linear to the exact m-th modal function

[φm(z1), · · · , φm(zP )]
T

. It is custom, when a vector x is

estimated by x̂ up to an unknown multiplicative constant,

to use the following normalized Mean Square Error (MSE)

defined as
(

1/‖x‖2
)

minβ ‖x − βx̂‖2, proved in [15] to be

equal to 1−
[∣

∣x
H

x̂
∣

∣ / (‖x‖‖x̂‖)
]2

. It is normal in the sense

that it ranges between 0 (x and x̂ are co-linear) and 1 (x

and x̂ are orthogonal). Applied to our estimates of the M
modal functions, a global normalized performance measure

is calculated as

1 − 1

M

M
∑

m=1

(

∣

∣[φm(z1), · · · , φm(zQ)]wR
m

∣

∣

‖ [φm(z1), · · · , φm(zQ)] ‖‖wR
m‖

)2

This normalized MSE on modal functions is averaged over

1000 Monte Carlo runs, and reported as the Averaged

Normalized MSE (ANMSE).

As described earlier, the algorithm delivers arg(λm) as

estimates of (R1 − R2)κm,m = 1, · · · ,M , modulo 2π,

which does not uniquely characterize the wavenumbers. In

order to assess performance in a way that does not depend on

how we solve this ambiguity problem, we decided to report
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Fig. 1. Average normalized mean square error vs. SNR in dB
for the Pekeris waveguide at f = 50 [Hz] for 17, 25 and 49
hydrophones for modal functions (a) and modal wavenumbers (b).

in the different figures [(R1 −R2)κm − arg(λm)]
2
/(4π2)

as a performance indicator that we, abusively, term as

ANMSE on wavenumbers.

In order to test the algorithm capabilities, we first used

a Pekeris waveguide with a water column sound speed of

1500 [m/s] and a bottom half-space with a compressional

speed of 1800 [m/s] and a density ρ = 1.8 [Kg/m3]. The

ANMSE results are shown in figures 1 to 3 as a function of

SNR ranging from 20 to 40 [dB] for variable 17, 25 and 49



SNR [dB] at first VLA

20 22 24 26 28 30 32 34 36 38 40

A
N

M
S

E
 o

n
 m

o
d
a
l 
fu

n
c
ti
o
n
s

10-4

10-3

10-2

10-1

49 sensors at depth 11.6,13.2,...,88.4 [m]

25 sensors at depth 11.6,14.8,...,88.4 [m]

17 sensors at depth 11.6,16.4,...,88.4 [m]

(a)

SNR [dB] at first VLA

20 22 24 26 28 30 32 34 36 38 40

A
N

M
S

E
 o

n
 w

a
v
e
n
u
m

b
e
rs

10-7

10-6

10-5

10-4

10-3

10-2

49 sensors at depth 11.6,13.2,...,88.4 [m]

25 sensors at depth 11.6,14.8,...,88.4 [m]

17 sensors at depth 11.6,16.4,...,88.4 [m]

(b)

Fig. 2. Average normalized mean square error vs. SNR in dB
for the Pekeris waveguide at f = 100 [Hz] for 17, 25 and 49
hydrophones for modal functions (a) and modal wavenumbers (b).

hydrophone VLA’s. There, the estimation performance, for

modal functions (a) and modal wavenumbers (b), is perfect

at 50 and 100 Hz, with the waveguide supporting 4 and 9

modes, respectively, and degrades slightly at 150 Hz, when

the number of modes reaches 13.

One of the pending questions is that of leaking waveguides

where a significant part of the energy is lost into the sediment

and does not reach the receiver, leading to non-orthogonal

normal mode functions over the span of the VLA’s. In
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Fig. 3. Average normalized mean square error vs. SNR in dB
for the Pekeris waveguide at f = 150 [Hz] for 17, 25 and 49
hydrophones for modal functions (a) and modal wavenumbers (b).

order to test the performance of the algorithm, we simulated

a downward refracting profile with a soft 20 [m] thick

sediment and a non-homogeneous sound speed profile with

a 30 [m] depth mixed layer, as shown in the diagram of

figure 4. This scenario supports 5, 11 and 16 modes at

50, 100 and 150 [Hz], respectively. ANMSE performance

results are shown in figure 6 for the modal functions (a)

and the modal wavenumbers (b). It can be noticed that the

performance is degraded when compared with that of the



Fig. 4. Scenario for the soft bottom case with a low compressional
velocity 20 [m] thick sediment.

Pekeris case and is only reasonable for SNR > 30 [dB], or

so. Bottom absorption and signal has therefore a clear effect

on performance.

In figures 1, 2, 3 and 4, we illustrated the effect of array

sparsity on the estimation accuracy. In figure 7, we study the

estimation accuracy when data is collected using a dense

VLA, and so for all possible positions and lengths of the

dense VLA. There, a performance measure in [dB] is cal-

culated as −10 log10(ANMSE), for both modal functions

and wavenumbers, and shows, as expected, that the longer

the array, the better is the algorithm performance.

V. CONCLUSION

In a shallow water, where acoustic propagation is modeled

using normal modes, we deploy a vertical linear array and

activate a distant mono-chromatic source. The collected

data is fed to a subspace algorithm to infer about the

parameters of the normal mode model, for instance, the

modal functions (evaluated at the sensing depths) and the

associated wavenumbers. While existing techniques tow the

array over a certain distance and process the raw array output

matrix, we conduct an original experiment: We activate

the source at each of the sensing depth, we repeat the

manipulation at another location. A non-trivial combination

of the two so-collected data matrices exhibits an interesting

eigenstructure that wouldn’t appear for the raw data matrix

unless the full water column is sensed. It follows that the

proposed algorithm accumulates many attractive features:

it is computationally efficient (no iterations, nor systematic

search), robust (with no assumption other than using more

sensors than modes), and high-resolution (i.e., its accuracy

is limited only by noise, not by the array size). Finally, this

proposal proves that algebraic methods can be as powerful

for acoustic systems, as they are for radio-frequency systems.

(a)

(b)

Fig. 5. Transmission loss of the leaking waveguide (b) compared
to the Pekeris waveguide at 150 [Hz].
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