
IMPROVED DIRECTION FINDING USING A MANEUVERABLE ARRAY OF DIRECTIONAL

SENSORS

Houcem Gazzah1, Jean Pierre Delmas2 and Sérgio M. Jesus3

1 Dept. of Electrical and Computer Engineering, University of Sharjah, UAE, hgazzah@sharjah.ac.ae
2 Telecom SudParis, Dept. CITI, CNRS UMR 5157, Evry, France, jean-pierre.delmas@it-sudparis.eu

3 SiPLAB-FCT, Universidade do Algarve, Faro, Portugal, sjesus@ualg.pt.

ABSTRACT

An antenna array of directional sensors offers more degrees-

of-freedom to improve the source localization accuracy. The

originally sophisticated expression of the CRB turns into a

factorized one at high SNR, perfectly suitable to derive an

objective function that depends on the array geometry and

the source direction PDF. Analytically untractable, optimiza-

tion is conducted by systematic search for a two-sensor ar-

ray. The so-optimized array has a finite accuracy in all di-

rections, contrarily to fixed-geometry linear arrays, and a per-

formance comparable to larger-sized fixed-geometry circular

arrays, and so at all SNR levels.

Index Terms— Cramer Rao bounds, direction-of-arrival

estimation, Cardioid sensors

1. INTRODUCTION

Accuracy of Direction-of-arrival (DOA) estimation depends

on the estimation algorithm, but also on the array geometry.

The potential of array geometry adaptation has been recently

demonstrated for deterministic [2], random [8, 3], far and near

[4] field sources. So far, only arrays of omni-directional sen-

sors have been considered. Arrays of directional sensors pose

a number of additional challenges. First, it involves sensor

orientations in addition to sensor positions. Second, in the an-

alytical expressions, geometric parameters (sensors positions

and orientations) are mixed up with received signal character-

istics (notably, signal and noise power). The latter are not to

be taken into consideration because they both i) may not be

(accurately) known and ii) make the optimization procedure

less attractive since less general.

This difficulty is circumvented by considering high obser-

vation Signal-to-Noise Ratio (SNR). Surprisingly enough, the

subsequently optimized antenna array geometries maintain

good performance at arbitrary SNR levels. In order to pre-

serve optimality, and given the analytical complexity of the

derived objective function, we proceed by systematic search.

At the same time, and in order to reduce the computation bur-

den, only a very limited number of sensors can be accommo-

dated. Interestingly, such short aperture arrays are practical

enough to be easily embarked on surveillance platforms such

as the increasingly popular and now off-the-shelf autonomous

underwater vehicles (AUV) used, e.g., in adaptive sampling

networks [5, 6].

The widely-accepted Cramer-Rao Bound (CRB) is used

as our performance measure to evaluate and optimize the ac-

curacy of the DOA estimate using an array of two directional

sensors, with focus on the worst case scenario of no (uniform)

source DOA prior. Because we consider the average array

performance (at every possible look direction), we use the Ex-

pected CRB (ECRB) [11] to build an objective function that

involves the array geometry and the Probability Density Func-

tion (PDF) of the source DOA [10, 3, 8]. The so-obtained

geometry-optimized two-sensor array is compared to the Uni-

form Circular Array (UCA) of three or more sensors. The

UCA is made of the same type of directional sensors, placed

regularly along the circle but oriented in such a way that the

array itself is isotropic, meaning that the CRB is the same

at all look directions. Simulation results show that in typi-

cal cases, the proposed two-sensor array exhibits an accuracy

comparable to that of UCA of 4 sensors, and so at any SNR

level, despite this information not fed to the optimization pro-

cedure.

The paper is organized as follows. In Sec. 2, we intro-

duce the observation model and develop expressions of the

(high-SNR) CRB. In Sec. 3, the CRB of the array of two

directional sensors is studied in details and a subsequent ar-

ray geometry procedure is defined. The so-optimized array is

tested and compared to larger-sized UCAs in Sec. 4. Finally,

a conclusion is given in Sec. 5.

2. SIGNAL MODEL AND GENERAL RESULTS

A far-field source is emitting a narrow-band signal s(t) at

wavelength λ towards an array of M sensors placed in the

[O, x, y) plane. Sensorm is placed at a distance ρmλ from the

origin O and has a radiation pattern gm(θ), non-necessarily

omni-directional. We let φm (resp. θ) be the angle (resp.

the DOA angle), measured counter-clockwise, that sensor m
(resp. the source) forms with the [O, x) axis.



The vector-valued array output x(t) collected at time

index t expresses it self as a (noise-corrupted) multipli-

cation of the transmitted signal by a steering vector a(θ),
x(t) = a(θ)s(t) + n(t). The m-th component of a(θ) is

given by am(θ) = gm(θ) exp [2jπρm cos (θ − φm)]. Under

some regularity assumptions, having denoted σ2
s=̂E

(

|s(t)|2
)

and σ2
n=̂E

(

|nm(t)|2
)

, for allm (E [·] denotes the expectation

operator); the CRB associated with N observations parame-

terized by θ is, by definition, the inverse of the scalar-valued

Fisher Information Matrix (FIM), CRB(θ) = FIM−1(θ).
Estimation is about the DOA angle θ for which the scalar-

valued FIM

FIM

c
= ‖a(θ)‖2‖∂a(θ)‖2 −

∣

∣∂aH(θ)a(θ)
∣

∣

2

comes in a non-factorized form because of

c=̂
2Nσ4

s

σ2
n(σ

2
n + ‖a(θ)‖2σ2

s)
.

However, if we assume that high SNR is encountered at all

possible DOAs, i.e.

‖a(θ)‖2σ2
s ≫ σ2

n

then, we obtain c ≃ 2Nσ2
s/
[

σ2
n‖a(θ)‖

2
]

and

FIM ≃
2Nσ2

s

σ2
n

(

‖∂a(θ)‖2 −

∣

∣∂aH(θ)a(θ)
∣

∣

2

‖a(θ)‖2

)

=̂
2Nσ2

s

σ2
n

F̃ ,

where F̃ is a convenient design criterion because independent

from the noise/signal power.

3. THEORETICAL DEVELOPMENT

We propose to optimize the geometry of an array of two di-

rectional sensors. One sensor is fixed at the origin. The other

one is at distance ρ=̂ρ2 and an angle φ = φ2 which are

to be determined by the optimization procedure, along with

the sensor orientations. The steering vector being a(θ) =
[g1(θ), g2(θ) exp [2jπρ cos (θ − φ)]]T , one can prove that

1

g41(θ)

FIM

c
= [h′(θ)]

2
+ 4π2ρ2h2(θ) sin2 (θ − φ) ,

where h(θ)=̂g2(θ)/g1(θ). It is worth noticing that the source

can be at the array end-fire direction, and yet, the Fisher infor-

mation can be large if h′(θ) is large. In other words, sources

that are in the array end-fire direction can be identified only if

we use different and/or differently oriented sensors.

Following similar steps, the high-SNR FIM can be ex-

pressed in a similar fashion.

F̃ = g21(θ)
[h′(θ)]

2
+ 4π2ρ2h2(θ) sin2 (θ − φ)

1 + h2(θ)
.

In practice, we are likely to use identical sensors pointing in

different directions, i.e. gm(θ)=̂g(θ − ψm). Then,

F̃ =

[

g′(θ−ψ1)
g(θ−ψ1)

− g′(θ−ψ2)
g(θ−ψ2)

]2

+ 4π2ρ2 sin2 (θ − φ)

1
g2(θ−ψ1)

+ 1
g2(θ−ψ2)

.

We consider cardioid-type sensors, of common use in

acoustic systems [9], characterized by a directive response

of the form g(θ) = g0 + g1 cos (θ). We update the above

expressions in terms of the sensor directivity β=̂g1/g0, as

follows

[

1

[1 + β cos(θ − ψ1)]
2 +

1

[1 + β cos(θ − ψ2)]
2

]

F̃

g20

= β2

[

sin(θ − ψ1)

1 + β cos(θ − ψ1)
−

sin(θ − ψ2)

1 + β cos(θ − ψ2)

]2

+4π2ρ2 sin2 (θ − φ) (1)

The above tells about the performance of the array at a

given source direction. For a source that is randomly located

in the array far-field, a suitable measure of the average ar-

ray performance is the so-called expected CRB defined as

ECRB=̂E (CRB) [10, 8, 3]. If the PDF f(θ) associated

with the source DOA is known, then ECRB =
∫ 2π

0
f(θ)
FIM

dθ

is approximately equal to
σ2

n

2Nσ2
s

∫ 2π

0
f(θ)

F̃
dθ. We define

C̄=̂

∫ 2π

0

f(θ)

F̃
dθ,

and adopt it as our cost function of the array geometric pa-

rameters ψ1, ψ2, φ, ρ. More conveniently, we minimize

g20C̄ =

∫ 2π

0

g20
F̃
f(θ)dθ, (2)

which, thanks to (1), is function of β. Inter-sensors spac-

ing is assumed to be fixed based on considerations other than

estimation accuracy (e.g. coupling and ambiguity considera-

tions). The above cost function is minimized by a 3D system-

atic search to determine argminφ,ψ1,ψ2
g20C̄ characterizing the

optimum array.

4. NUMERICAL OPTIMIZATION

The proposed array (optimized based on the high-SNR

ECRB) and the reference arrays (UCA of different sizes)

are compared in terms of the exact ECRB. Sensors of the

UCA, placed at φm = 2π(m− 1)/M,m = 1, · · · ,M , are to

be oriented such that the UCA is isotropic despite being made

of directional (cardioid type) sensors. We prove that this is

the case if the UCA is made of 5 or more sensors, pointed

such that φm = ψm, i.e in the direction opposite to the origin.



The proposed array will be mentioned as CAM21. In all ex-

amples, half-a-wavelength inter-sensors spacing is assumed,

in order to avoid (first-order) array ambiguities [1, 7]. Unless

otherwise stated, cardioid sensors are considered with g0 = 1
and g1 = 0.6. The optimization problem depends on the

particular distribution of the source azimuth angle. We, suc-

cessively, assume uniform and (mix of) normal distributions

to address worst case and realistic scenarios, respectively.

The observation SNR is defined as the ratio σ2
s/σ

2
n. Since

the two-sensor UCA has an unpractical ECRB (infinite for a

uniformly distributed source DOA), our reference, instead, is

the three-sensor UCA.

4.1. Uniform PDF

In the case of a uniformly distributed source DOA, the prob-

lem can be shown to be invariant by rotation of the array, and

optimization can be conducted while imposing φ = 0. Sys-

tematically, the optimal array has its two sensors pointed in

opposite directions, orthogonally to the axis linking the two

sensors. We denote as CAMU the two-sensor array charac-

terized by φ = 0, ψ1 = π/2 and ψ2 = 3π/2, as one optimal

array for a source with uniformly distributed DOA.
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Fig. 1. Polar representation of N × CRB, for all possible source

DOAs and at an SNR of 10 dB.

Contrarily to the two-sensor UCA, the CAMU array does

not have an infinite CRB at any direction, as illustrated in

Fig. 1. Fig. 2 shows that, as the directivity of the constituent

sensors increases, the CRB is reduced in the end-fire direc-

tion and is increased at broadside. In fact, the CAMU array

best emulates an isotropic array when the sensors directivity

1We compare this two-sensor array to the chameleon whose eyes can ro-

tate and move independently from each other.

is close to 0.5, as confirmed in Fig. 3. Overall, in terms of the

ECRB, performance of the CAMU array is finite, comparable

to that of the larger three-sensor UCA, as illustrated by Fig. 3.

As can be concluded from Fig. 3, the use of directive sensors

is more beneficial to CAMU than to UCA3 array.
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Fig. 2. Impact of the sensors directivity on the CAMU array for

which N × CRB is shown in polar reprentation, for all possible

source DOAs and an SNR of 10 dB.
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Fig. 3. Impact of the sensors directivity on the ECRB for a uni-

formly distributed source DOA.

Clearly, optimally-configured two-sensor array is outper-

formed by the larger three-sensor UCA. This is true because,

disadvantageously, this PDF expresses no prior about the

source DOA. However, as shown in the next section, the situ-

ation is different if (more) information is available about the

source DOA.



4.2. Normal PDF

In realistic scenarios, PDF is modeled as a mixture of P Gaus-

sian distributions with different means (standing for the dif-

ferent look directions) and variances (expressing uncertain-

ties about the look directions). Let κp, Ωp and σp be the

weight, the mean and the standard deviation of the p-th distri-

bution, so that f(θ) =
∑P

p=1
κp

σp

√
2π

exp
[

−
(θ−Ωp)

2

2σ2
p

]

, where
∑P

p=1 κp = 1. We choose σp ≪ 2π and/or 0 ≪ Ωp ≪ 2π
in order to have f(θ) ≃ 0 for any θ not in [0, 2π]. In the

simulations, we have assumed equally likely look directions,

i.e. κ1 = · · · = κP = 1/P and the same uncertainty, i.e.

σ1 = · · · = σP = 5 [DEG].

First, for a particular source PDF defined by Ω1 = 281,

Ω2 = 310 and Ω3 = 61 [DEG], the best two-sensor array is

found to be the one characterized by φ = 3.6, ψ1 = 345.6 and

ψ2 = 349.2 [DEG], achieving a performance close to that of

the 4-sensor UCA, at any SNR level, as clear from Fig. 4. It

is worth noticing that the CAMU array performs well, despite

not being meant for this particular PDF.
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Fig. 4. Compared performance of the optimized CAM array and the

reference UCAs, for a particular distribution of the source DOA.

Second, in a set of simulations, and in order to explore

the performance of the proposed array for arbitrary PDFs, we

assume two possible look directions: Ω1 = π and Ω2 rang-

ing from 20 to 160 [DEG]. As illustrated in Fig. 5, we com-

pare the optimized arrays (in solid lines) to reference UCAs

(in doted lines). We realize that, overall, the optimized two-

sensors array performs closely to the 3-sensor UCA, regard-

less of the observation SNR. Performance of the CAMU array

continues to be comparable to those of its competitors, despite

that this array does not take benefit from the available infor-

mation (PDF) about the source DOA.
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Fig. 5. Compared performance of CAM, CAMU, and UCA arrays

for a source PDF given by Ω1 = 0 and Ω2 spanning 20, 40, . . . , 160

[DEG]. Cardioid sensors are used for which β = 0.4.

5. CONCLUSION

We use two directive sensors and set their positions and point-

ing directions according to the statistical information avail-

able about the target DOA. By doing so, we compensate for

a major drawback of linear arrays, that of being unable to de-

tect sources at the end-fire direction, rendering linear arrays

as useful as planar arrays. It is shown via simulations that the

proposed algorithm outperforms the generic uniform circular

array with a larger number of sensors. This minimally-sized

array could be, for instance, suitable for deployment as part

of autonomous underwater vehicles or to determine the opti-

mal geometry of a swarm of vehicles for use in tasks such as

environmental monitoring and geophysical exploration.
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