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Abstract—This paper presents experimental results of coherent
communications comparing the following methods of underwa-
ter channel identification applied to a time-reversal processor:
pulse compression, L1-norm regularization and channel physical
modeling. The first method is the Passive Time Reversal in its
conventional form: a low complexity technique to mitigate inter-
symbol interference due to multipath propagation; the second
method is an estimator of sparse channels, inspired by the theory
of compressed sensing; and the third method is the proposed
environmental-based approach that generates channel replicas
through inverse numerical modelling using the physical proper-
ties of the underwater media between the emitter and the receiver.
Data from a quadrature-phase-shift-keyed low resolution image
transmitted on May 27, 2011 during the Underwater Acoustic
Network 2011 experiment conducted off the coast of Throndheim
(Norway), are processed using these three methods and their
mean square error performance is compared. The results show
that the proposed environmental-based approach outperforms
the other two channel identification methods by one to four dB
over the duration of the transmitted image packet.

I. INTRODUCTION

Performing digital acoustic underwater communications at
high data rate is a challenging problem, mainly due to the
need to compensate for a double spreading channel and the
requirement to use a coherent signaling scheme to increase the
data throughput. The channel has double spreading because
(i) multipath propagation causes spreading of path delays in
the channel impulse response (CIR) generating inter-symbol
interference, and (ii) frequency spreading causes both carrier
offset and signal spectrum distortion. Compensating for such
distortions of the underwater channel by applying a robust
coherent equalizer is essential for high data rate message
recover.

A well-known low complexity channel compensation
method for underwater communications is the Passive Time
Reversal (PTR), which mitigates inter-symbol interference by
performing synthetic time signal retro-focusing, assuming that
the receiving array sufficiently spans the water column for
capturing the most significant propagating acoustic modes and
the CIR estimates are sufficiently stable in time [1], [2]. PTR
requires channel probing for obtaining CIR estimates to be
used in their conjugate reverse filters, usually employing a
pulse with suitable correlation properties to estimate the chan-
nel with Pulse Compression (PC). Another possible channel
estimator is the Regularized `1-Norm (RegL1), designed to
identify sparse channels and widely employed in compressive

sensing theory [3], [4]. RegL1 yields cleaner CIR estimates
then PC because of its higher immunity to noise and path
side lobes effects, however it tends to suppress less significant
paths. A different possibility for CIR estimate is to use an
acoustic propagation model. However, since obtaining accurate
CIR for communication channel compensation through simple
direct modeling is difficult, acoustic inversion can be employed
to generate appropriate CIR. Existing equalizers do not employ
physical models in their design, lacking to incorporate the
knowledge of acoustic propagation influent physical param-
eters into the communication channel replicas.

This work proposes a method for underwater channel com-
pensation that explores the influence of acoustic propagation
environmental parameters by jointly achieving acoustic inver-
sion and PTR and is therefore termed as Environmental Passive
Time Reversal or EPTR. The approach is to identify channel
physical parameters by optimizing an objective function that
correlates channel probe data with modeled replicas generated
with a suitable numerical model constrained in a search
space of a priori parameters. Then, refined CIR estimates
corresponding to a posteriori parameters are selected and
tested through a maximum output power criterion yielding
the CIR to be time-reversed in PTR. The methodology is
inspired in model-based techniques such as Matched Field
Processing (MFP) for source localization [19] and Matched-
Field Inversion (MFI) for the estimation of environmental
parameters [12]. There is a large body of research in this field,
much of which can be found in overview papers [14], [20].
Most of this effort was directed to low-frequency applications
(say below 2 kHz) due to requirements of propagation range,
bottom penetration or other. Applications above that frequency
range are rare, possibly due to the modelling detail required
for parameter estimation in the high-frequency (tens of kHz)
regime. In our case we are not interested in physical parameter
estimation, but solely in CIR modelling. The physical mod-
els Bellhop and Bounce [15] were used as forward acousti
propagation models for generating CIR candidate replicas
search space. Advantages of EPTR over the conventional PTR
are to achieve noiseless CIR estimates and perform channel
compensation together with physical parameters assessment.
A disadvantage is to expend more computational cost. Fur-
thermore, since PTR is limited to coarsely mitigate inter-
symbol interference in nearly static channels [16], [17], time
compression/dilation compensation pre-processing and phase



locking post-processing for phase rotation compensation are
done together with EPTR.

Experimental results were achieved with EPTR applying
the mean CIR modeled from acoustic inversion in time-
reversal filtering. During the Underwater Acoustic Network
2011 (UAN11) experiment that took place in the Strindfjorden
(Norway) in May 2001, a quadrature-phase-shift-keyed mod-
ulated image message transmitted at 4000 bits per second was
received on a vertical line array of 16 hydrophones, 890 meters
away and processed with the three algorithms: PC, RegL1 and
EPTR. The results show that the EPTR outperformed the other
two algorithms over a the whole time frame.

This paper is organized as follows: Section II presents
the EPTR data model and shortly review the PC and RegL1
methods in PTR. Section III shows results of EPTR applied
to real data from the Underwater Acoustics Network 2011
(UAN11) sea trial, and compares its performance to the
conventional PTR performance. Section IV concludes the
paper and indicates future work.

II. DATA MODEL

Consider that a low resolution image is to be transmitted
through the underwater channel and received on a vertical
array. The image pixels are ordinarily converted into a bit
stream a[n] that is digitally modulated with the Quadrature
Phase Shift Key (QPSK) scheme. After appropriately up-
sampled and heterodyne to the carrier frequency, the passband
signal s̃(t) is generated for transmission, being represented by

s̃(t) = Re
[
a[l]p(t− lTs)ej2πFct

]
(1)

where

a[l] = ej2π(m[l]−1)/M ; m[l] ∈ [1, ...,M ] (2)

The symbol interval is denoted by Ts, Re denotes real part,
the symbol map size is M (M = 4 in QPSK), p(t) denotes a
pulse shape and Fc is the carrier frequency.

The time-variant CIR of the underwater waveguide for a
particular receiver sensor can be represented digitally by a
two-dimensional complex baseband variable h[n, k], where k
is the reduced-time delay for each propagating path of a CIR
snapshot, which evolves along true time n. Note that each
CIR snapshot represents a state of the time-variant channel
where the degree of variability depends on a variety of factors,
for example source-receiver relative movement and/or water
column and sea surface variability. As discussed below the
channel identification algorithms proposed and tested in this
paper have different degree of adaptivity to cope with time-
variant channels [24]. Assuming hereafter complex baseband
equivalent representation, a noisy received signal y[n] is

y[n] =
∑
k

h[n, k]s[n− k] + w[n], (3)

where w[n] denotes additive random noise. Using matrix
notation and assuming that s ∈ CQ×1, H ∈ CP×R, g ∈ CR×1

with HT = [g1, g2, ..., gP ], where gp is the p-th snapshot and
P = Q+R− 1 allows to rewrite (3) as

y = diag(SHT ) + w, (4)

where matrix S has Toeplitz structure, being computed from
zero-padded s with S ∈ CP×R.

Further, one may observe that the system can be as-
sumed as linear time-invariant whether frequency offset due
to transmitter-receiver impairments or any Doppler trend due
to sensors motion is compensated and under the assumption
that any other channel variability effects are negligible. Thus,
since the snapshots are assumed time-invariant, the received
signal becomes

y[n] =
∑
k

g[k]s[n− k] + w[n] = s[n] ∗ g[k] + w[n] (5)

where g[k] ' h[0, k] if assumed a initial snapshot, or still
g[k] ' h̄[n, k] if assumed an average snapshot (which is used
in this work), and the symbol ∗ denotes convolution.

A. Passive time reversal

The PTR performs filtering of the received signal at each
sensor of the array based on cross-correlation between the
estimated (or modeled) CIR and the actual CIR. Mixing the
filtered signals yields the PTR output as follows

z[n] =
∑
l

zl[n] =
∑
k

Q[n]I[n− k] (6)

with

I[n] =
∑
k

s[k]R[n− k]; R[n] =
∑
k

p∗[k]p[n− k] (7)

and thus
Q[n] =

∑
l

∑
k

ĝ∗l [k]gl[n− k] (8)

The R-function is the autocorrelation of the shaping pulse and
the I-function is defined by the convolution of the R-function
and the transmitted signal. The Q-function represents the
cross-correlation between the estimated and actual CIR. The
Q-function is particularly useful as an indicator of the PTR
performance, since an impulse-like shape generally means
a successful compensation of the multipath distortion. The
present work processes real data, which precludes to know
the actual CIR. However, an equivalent criterion for measuring
the PTR performance is the PTR output average power at an
observation interval of size N , given by

zP =
1

N

N−1∑
n=0

|z[n]|2 (9)

B. Channel identification

PTR processing requires channel identification information
which is performed in this work by the PC, the RegL1
and model-based high-frequency acoustic inversion. The PC
is a classical `2-norm estimator which is robust and valid
for general channel identification and the RegL1 includes a



weighted `1-norm to solve a convex optimization problem
in the particular case where the channel can be assumed as
sparse [4]. One should observe that this may be often the case
of shallow water underwater channels. A short description of
these methods is presented below.

1) Snapshot CIR identification with classical `2-norm esti-
mator: The PC can be derived from the Minimum Variance
Unbiased (MVU) estimator. Assuming a linear time-variant
system y = Sg+w with yl ∈ CP×1, gl ∈ CR×1, wl ∈ CP×1

and S ∈ CP×R, the MVU estimator is

ĝ = (SHS)−1SHy; Cĝ = σ2
w(SHS)−1 (10)

where C denotes the estimator covariance. Note that the
autocorrelation and cross-correlation properties of probe signal
s directly affect the estimator performance, being a good
choice to use a probe that makes the inverted matrix in (10)
to appear close to diagonal. For the l-th hydrophone, the PC
performs a cross-correlation based solution given by

ĝl = SHyl (11)

2) Snapshot CIR identification with regularized `1-norm:
The RegL1 is usually employed in compressive sensing for
system identification in sparse channels, i.e. where the impulse
response is characterized by a few strong arrivals at specific
time delays and by nearly null magnitude for other delays.
The optimization problem is defined as

Pl : arg min
gl

‖gl‖1 s.t. yl − Sgl ≤ εwl
(12)

where εw denotes a noise-driven error threshold. Unfortunately,
there is no closed form solution for this problem. However, the
problem can be solved with numerical computation by an iter-
ative algorithm as, e.g. Least Absolute Shrinkage and Selection
Operator (LASSO) or Least Angle Regression (LARS). In this
work, the CVX model [18] is employed to achieve RegL1.

3) Inversion of acoustic propagation parameters and CIR:
Figure 1 shows a block diagram of the model-based acous-
tic inversion channel identification module. The underwater

Fig. 1. Block diagram of the model-based acoustic inversion channel
identification module for EPTR.

acoustic channel is parametrized by m physical parameters, so

that the corresponding CIR snapshot is written in explicit form
as g[n, θn]. Assuming that there is an a priori knowledge of
the channel physical parameters, an appropriate search space
of “a priori” parameters is created and the corresponding CIR
candidate replicas generated through numerical modelling.
The parameter search space in the present work contains the
following physical parameters: source depth (SD), receiver
depth (RD), source-receiver range (SRR), sediments com-
pressional velocity (cp1), sediments compressional attenuation
(ap1), sediments density (ρ1). The other parameters required
by the physical model have fixed values in order to limit the
search space and therefore reduce the computational burden.

In the EPTR processor the CIR is first estimated with PC or
RegL1 to generate the observed CIR, which is then used for
the optimization to obtain the “a posteriori” noiseless modeled
CIR candidates. The selection of such CIR candidates is done
by maximizing a Bartlett objective function (Bartlett processor
in Fig. 1) that compares observed data with the replicas built
from a search space of a priori parameters, thus yielding the
a posteriori physical parameters and the corresponding CIR.

The objective function used in EPTR for CIR snapshot
modeling is defined in time-domain as

B(ψ) =
ğHl [n, θm,ψ]

[
1
I

∑I
i=1 ĝl,i[n, θm]ĝHl,i[n, θm]

]
ğl,i[n, θm,ψ]

‖ĝl[n, θm]‖ ‖ğl[n, θm,ψ]‖
(13)

where ĝ denotes observed data and ğ denotes predicted data,
such that ĝl,i[n, θm] means the CIR snapshot estimated from
the i-th observation for the l-th sensor in the underwater
environment parametrized by m acoustic propagation physical
parameters. Similarly, gl[n, θm,ψ], means the ψ-th modeled
CIR snapshot (corresponding to the ψ-th set of m physical
parameters contained in a search space of size Ψ) that is
predicted for the l-th sensor. Note that using the maximum
a posteriori criterion the best fitness candidate is reached by
performing BMAP = maxψ∈ΨB(ψ). The three CIR with best
fitness are then processed with PTR to select the candidate
that yields maximum output power, which is finally used in
the time-reversal filtering. Further, since PTR is limited to
coarse ISI mitigation, post-processing to compensate for phase
rotation is performed.

A Maximum Power Decisor is employed to test the CIR
candidates generated by the acoustic inversion algorithm and
select the CIR that maximizes the PTR output power. The
maximum power parameters set ψmp is given by

ψmp = arg max
ψoutput

1

N

N−1∑
n=0

|
∑
l

ğl[n, θm,ψoutput ] ∗ y
†
l [−n] |2

(14)
where ∗ denotes convolution, † denotes conjugate and ψoutput
denotes the few set of parameters obtained as output of the
inversion. Thus, the output signal is

zmp[n] =
∑
l

ğl[n, θm,ψmp
] ∗ y†l [−n] (15)



III. EXPERIMENTAL RESULTS

Experimental results are presented for the data recorded
on May 27, 2011, during the Underwater Acoustic Network
2011 (UAN’11) sea trial that took place in the Strindfjorden,
Throndheim (Norway). Figure 2 shows the scenario with en-
vironmental information collected with dedicated equipment.

Fig. 2. Typical scenario of one transmit-receive leg of the UAN11 sea trial:
sound speed profile taken on May 27, 2011 (left) and range-dependent transect
(890m), source depth 28.1m, 16 hydrophones vertical array 4m equally
spaced from 14.1m to 74.1m, maximum water depth 100m, 5m sediments
layer over bottom half-space (right).

The transmitted message is a stream of 71504 bits cor-
responding to the pixels of a low resolution gray image.
This data is QPSK modulated so that 35752 symbols are
generated to be the payload of a signal frame with fixed size
of 50000 symbols. The frame structure is organized in order
by a preamble m-sequence with 511 symbols, header with 40
symbols, payload and postamble m-sequence with 511 sym-
bols. The preamble and postamble are used to perform time
compression/dilation compensation, aiming at removing clock
synchronization impairments between transmitter and receiver
and a possible Doppler distortion, which is expected to be
small since the sensors are moored. The payload contains a se-
quence of 20 short m-sequences with 127 symbols each, which
are inserted every 1 second to track the channel variability and
to be used in the acoustic inversion. The symbol sequence is
upsampled and heterodyned to the carrier frequency of 25.6
kHz by the cNODE-Mini transponder model 34–180 provided
by Kongsberg Maritime [21], which was specifically adapted
for UAN’11 as decribed in [22]. The data is transmitted at a
rate of 4000 bps to a vertical line array of 16 hydrophones
positioned at 890 m along a range dependent transect with
maximum 98 m water depth. The array spans from 14.1m to
74.1m, 4m equally spaced.

A. Channel estimates and replicas from inversion

Figure 3 shows the wavefronts that reach the hydrophone
array as estimated by PC (a), by RegL1 (b), modeled by high
frequency acoustic inversion in EPTR based on PC (c) and
modeled by high frequency acoustic inversion in EPTR based
on RegL1 (d). One can clearly distinguish two main paths
whereas the amplitude of the second arrival has a variable

amplitude along depth. The slight arrival angle of the main
arrival may be due to an array tilt.

(a) (b)

(c) (d)

Fig. 3. Wavefronts estimated with PC (a), estimated with RegL1 (b) and
modeled with high-frequency acoustic inversion by EPTR based on PC (c)
and by EPTR based on RegL1 (d).

Figure 4 shows for channel 8 the time variability of the
estimated CIRs again with PC (a), modeled with acoustic
inversion based on PC (c), estimated with RegL1 (e) and
modeled with acoustic inversion based on RegL1 (g). Also,
the mean power of the CIRs is shown in the right column, (b),
(d), (f) and (h) for the four cases, PC, modeled based on PC,
RegL1 and modeled based on RegL1, respectively. Observe
that the time-variant CIRs are sharper, i.e., the path peaks have
narrower lobes, when estimated with RegL1 than with PC.
This is caused by the sparse estimator design that includes
`1-norm regularization to better explore the sparsity of the
CIR in shallow water. Further, observe that, as expected, the
modeled CIR generated by EPTR yields noiseless wavefronts
and noiseless time-delay mean CIRs in comparison to PC, even
though there are some delay mismatch for the later arrival.

The physical parameters that had the best match with the
observed data are obtained as output of the acoustic inversion
algorithm. Figure 5 shows, for snapshots 1 to 20, the evolution
of the combination of geometrical physical parameters that
generated the best CIR replica with EPTR based on PC. The
geometric parameters are source-array range, source depth
and hydrophone array depth, using the shallowest hydrophone
as reference. Other physical parameters of the seabed were
inverted (not shown), but aiming at improving the adjustment
between replicas and observation, the so-called “focalization”
as suggested in [12], [23]. The variability of the inverted “a
posteriori” parameters observed in fig. 5 can be explained not
only by the actual physical variability but also by the solution
of an equivalent model that is influenced by the non-inverted
parameters.

B. Communications performance

Figure 6 shows the results in terms of mean square error
for the received signal after being processed by PTR with PC
estimation (blue crosses), by PTR with RegL1 (red crosses),



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4. Channel number 8 estimated CIR with PC (a,b), modeled with acoustic
inversion by EPTR based on PC (c,d), estimated with RegL1 (e,f) and modeled
with acoustic inversion by EPTR based on RegL1 (g,h). CIRs time variability
(left) and mean power CIRs (right).

Fig. 5. “A posteriori” geometric parameters computed by the acoustic
inversion algorithm for each of the 20 slots of the data frame using EPTR
based on PC.

by EPTR with PC acoustic inversion (magenta circles) and
by EPTR with RegL1 acoustic inversion (green stars), along
20 slots of signal frame containing the payload image data.
The EPTR using acoustic inversion yielded the best results,
with similar performance when using observed data from PC
or RegL1. EPTR reached a performance significantly superior
to PTR with PC estimation (that is used here as reference)
and marginally better than RegL1. The improvement of EPTR

Fig. 6. Mean square error results with PC estimation (blue), RegL1 estimation
(red), PC inversion (magenta) and RegL1 inversion (green).

inversion over PC estimation can be explained by the fact
that the channel replicas obtained with inversion modeling
are free of noise, which is an unavoidable drawback in the
case of pulse compression. The EPTR based on PC has
improved performance relative to EPTR based on RegL1. This
is probably due to the fact that RegL1 tends to suppress less
significant paths, which can probably degrades the matching
between observation and modeled replicas performed by the
acoustic inversion processor.

Figure 7 shows the received symbols along time after being
processed by the conventional PTR (a) and with the EPTR
based on PC (b). These constellations show that the cluster

(a) (b)

Fig. 7. Received symbols along time after processing with the conventional
PTR (a) and with the EPTR based on PC (b). The vertical axis denotes the
angles of recovered QPSK symbols. The horizontal axis is the effective time
of payload transmission.

variance is clearly reduced in EPTR relative to conventional
PC-based PTR.

Figure 8 shows the transmitted low resolution image (a), the
recovered image with conventional PTR (b) and the recovered
image after EPTR processing based on PC (c). The received
image processed by the conventional PTR presents several
wrong pixels. The image processed by EPTR (c) corrects
most of such errors, yielding an image quite similar to the
transmitted image in (a), thus presenting a clear communica-
tion performance improvement driven by the use of physical
channel modeling coupled with model-based inversion.



(a)

(b) (c)

Fig. 8. Transmitted low resolution image (a), recovered image with PC
estimation (b) and recovered image after processed by EPTR inversion (c).

IV. CONCLUSION

This paper presents a channel compensation method that
uses environmental-based acoustic inversion designed for un-
derwater communications. The Environmental-based Passive
Time Reversal explores the influence of acoustic propagation
physical parameters in benefit of equalization. CIR modeling
from “a posteriori” acoustic propagation physical parameters
which are reached by power optimization over a search space
of “a priori” parameters relative to observed data estimated
by PC or RegL1 are employed into passive time reversal.
After conjugate reverse filtering, time compression/dilation
compensation and phase recovery the original message is
reconstructed. To the authors knowledge, this is the first
time that a modeled CIR is successfully used to process
real data in underwater communications. Experimental results
are consistent and yield reasonably low mean square error,
allowing to recover the transmitted image with low error,
reaching MSE of approximately −12 dB over a real channel
of 890 m range and depth between 34 m and 98 m. As
future work, the authors intend to perform (i) time robustness
tests of the UAN11 experiment data for the EPTR and the
RegL1-based PTR, (ii) space robustness tests with different
environments and (iii) optimization processing of the `1-norm
regularization factor.
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