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ABSTRACT This paper addresses channel compensation in underwater acoustic communications by propos-
ing a method for inserting physical propagation modeling into a passive time-reversal (PTR) receiver. PTR
is known as a low complexity channel equalizer that uses multichannel probing for time signal refocusing,
reducing inter-symbol interference caused by multipath propagation. The proposed method aims to improve
PTR communications performance by replacing the conventional noisy channel estimates with optimized
and noiseless channel replicas computed by a numerical ray trace model. The optimization consists of
environmental focalization in an ‘‘a priori’’ physical parameter search space to obtain ‘‘a posteriori’’ channel
impulse response replicas that best match the observed data. The results obtained on two data sets acquired
during theUAN’11 experiment in a shallowwater fjord near Trondheim, inMay 2011, show that the proposed
method clearly outperformed the traditional PTR by a mean square error gain from 1 up to 4 dB. Channel
tracking was effective despite a reduced physical parameter search space that could be exhaustively covered
with a minimal computational effort. To the best of our knowledge, this is the first successful report on
the usage of a physical parameter fed numerical model for underwater acoustic communications channel
equalization with real transmitted data in a useful underwater modem frequency band.

INDEX TERMS Underwater acoustic communications, time-reversal, channel estimation, environmental
focalization, coherent equalization.

I. INTRODUCTION
The last two decades have seen significant advances in
autonomous underwater sensing platforms, widening their
capabilities for complex long rangemissions. A crucial aspect
for this success is their ability to reliably communicate over
a rapidly changing underwater acoustic channel. The update
rate and complexity of channel equalization has been and still
is a central issue in underwater communications.

Equalization of underwater communication channels at
high data rate is challenging, and particularly difficult in the
shallow water case, characterized by a double time-delay
and frequency spread. Channel distortion is often attributed
to one or more of the following effects: multipath propaga-
tion, time compression/dilation induced by relative source-
receiver motion and wind-driven acoustic scattering at the sea
surface.

A well-known and widely used technique for channel
equalization is the Decision Feedback Equalizer (DFE) [1].
The DFE fits the channel with a nonlinear adaptive filter
which coefficients are estimated to compensate for channel
distortions, following an iterative procedure often used in

aerial wireless communications [2]. However, unlike in aerial
channels, in multipath prone underwater channels, conver-
gence problems inherent to the iterative algorithm may
occur in adaptive equalization, especially when using long
frames [3]. The DFE can also be implemented in multi-
channel receivers, as proposed in in [4] and [5].. A rather
different technique is the Passive Time Reversal (PTR) [6],
which is a low complexity receiver that uses multichannel
probing for time signal refocusing, effectively reducing inter-
symbol interference (ISI) caused by multipath propagation.
PTR assumes that a receiving array is available and that it
captures a significant portion of the energy propagating in
the water column [7]–[10]. In its conventional form, PTR
is based in data derived channel impulse response (CIR)
estimates and its performance is limited by noise (in the
CIR estimates) and by channel variability. Since PTR has
limited focusing capability [11], it is common to supplement
it with single channel linear equalization. Although adap-
tive PTR techniques were developed [12], [13], it is still
seen more as a channel pre-processor than as a full channel
equalizer.
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The motivation of this work is to improve PTR as a full
channel equalizer by increasing its performance through a
link with the physics of acoustic propagation. The current
coherent form to include physical parameters in underwater
acoustics is via numerical propagation models. Although,
numerical models have been rarely used in underwater acous-
tic communications, they have been proven successful in,
nowadays popular, techniques such as matched-field pro-
cessing (MFP) for source localization, initially proposed
by [14] and [15], (see details in [16] and an overview
in [17] and references therein), ocean acoustic tomogra-
phy (OAT) [18], [19] and matched-field inversion (MFI) for
generic environmental parameter estimation [20], [21]. There
exists a large body of work (impossible to fully cite here),
with a variety of processing techniques with their particular-
ities and application fields, but they all have one common
feature: they feed environmental information in numerical
models and compare the output to experimental data. In that
sense these techniques are often called as ‘‘model-based’’
as opposed to ‘‘data-driven’’ only. Many studies carried out
with model-based techniques refer the difficulties to favor-
able compare modeled and experimental data in the high fre-
quency range, say, above 2 kHz. This seems to be the reason
why, to the best of the authors knowledge, there are no reports
on the usage of numerical models to design CIR replicas for
channel equalization in underwater acoustic communications
with real data.

This work proposes a communication channel PTR equal-
ization method based on physical modeling, hereby named
as Environmental-based Passive Time Reversal (EPTR).
The approach inserts a high-frequency acoustic propagation
model in the process of obtaining CIR replicas that best
match the observed data for time-reverse filtering. This is
performed through an environmental focalization algorithm
running on an ‘‘a priori’’ physical parameter space to obtain
the ‘‘a posteriori’’ best candidate CIR replicas. Thus, noisy
channel estimates are substituted by the best fit noiseless
channel replicas computed by the physical model.

Results obtained with EPTR and conventional pulse-
compressed PTR (PC-PTR) on real data records acquired in
two days of May 2011 during the UAN’11 experiment in
Trondheim (Norway), show that EPTR clearly outperformed
the conventional PC-PTR by an amount of 1 to 4 dB in
mean-square error (MSE). More important than the actual
comparative performance, that may vary from case to case,
these results show that environmental model-based methods
may be used with success on real data underwater communi-
cations, are robust and may efficiently use a priori environ-
mental information and therefore potentially track a changing
environment.

This paper is organized as follows: Section II describes
themodel-basedmethodology driven by environmental focal-
ization. Section III describes the UAN’11 experiment and
discusses the experimental results with coherent communica-
tions processed by PC-PTR and EPTR. Section IV concludes
the paper.

II. MODEL-BASED PASSIVE TIME REVERSAL WITH
ENVIRONMENTAL FOCALIZATION
In this section the conventional PC-PTR receiver is modi-
fied to include an environmental focalization algorithm that
employs a forward ray tracing model which input parameters
are adjusted to best match the channel CIR. The Bellhop
and Bounce models [22] are jointly employed to simulate
acoustic propagation of communication signals in a range
dependent ocean wave-guide with layered seabed, where the
former computes amplitudes and delays of arrival paths and
the latter computes reflection coefficients of the layered bot-
tom. In the next sub-sections the assumed data model and
the plain PC-PTR algorithm is introduced first and then the
environmental focalization processor is described in detail.

A. DATA MODEL FOR PASSIVE TIME REVERSAL IN
COHERENT UNDERWATER COMMUNICATIONS
A bit streammessagem[l] is digitally modulated with a phase
shift key scheme, up-sampled and filtered with a pulse shape
low pass filter p[n], so that after heterodyne to the carrier
frequency Fc the pass-band signal generated for transmission
is

s̃(t) =
∑
n

Re
[
s(t − nTb)ej2πFct

]
, (1)

where the base-band signal is

s[n] =
∑
l

a[l]p[n− lTs], (2)

and the MPSK message is

a[l] = ej2π (m[l]−1)/M , m[l] ∈ [1, ...,M ] (3)

with the base-band sampling interval being denoted as Tb,
the symbol interval as Ts, M as the symbol map size and Re
denotes real part.

The time-variant CIR for a particular source-receiver
transect can be represented by the two-dimensional com-
plex base-band variable h[n, k], where the discrete delay-
dimension k is the reduced time CIR snapshot coordinate,
while several sequential snapshots may be recovered along
the discrete true time variable n. Note that each CIR snapshot
represents a state of the time-variant channel in a particular
time instant and its replica can be modeled by computing
the path gain and delay pair generated by an appropriate
underwater acoustic propagationmodel. In the case of a linear
time-invariant system the received signal is calculated by
the convolution between the impulse response and the trans-
mitted signal, but in a time-variant system this is not valid.
Instead, an integral operation that performs time-variant fil-
tering must be done. Thus, assuming hereafter a complex
base-band equivalent representation, the noisy received signal
y[n] is given by

y[n] =
∑

h[n, k]s[n− k]+ w[n], (4)

where w[n] denotes additive random noise. Using matrix
notation, (4) can be rewritten as a function of CIR snapshots.
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Assuming that s ∈ CK×1, H ∈ CP×J , g ∈ CJ×1 one can
form HT

= [g1, g2, ..., gP], where gp is the p-th snapshot
and P = K + J − 1. Thus, the discrete time-variant system is

y = diag(SHT )+ w, (5)

where matrix S has a Toeplitz structure being computed from
zero-padded s with S ∈ CP×J .

Moreover, note that when the Doppler effect e.g. due to
sensor motion is sufficiently compensated for, then the snap-
shots are kept invariant along time and the received signal
becomes

y[n] =
∑
k

g[k]s[n− k]+ w[n] = s[n] ∗ g[k]+ w[n], (6)

where g[k] ' h[0, k] if assumed as an initial snapshot, or still
g[k] ' h̄[n, k] if assumed as an average snapshot (which
is the case in this work), and where symbol ∗ denotes
convolution.

Since the PC-PTR equalizer performs time-reversal
matched-filtering of the received signals on each channel
using the CIR estimates, its output is the sum

z[n] =
∑
l

zl[n] =
∑
k

Q[n]I [n− k] (7)

with

I [n] =
∑
k

s[k]R[n− k]; R[n] =
∑
k

p∗[k]p[n− k] (8)

and

Q[n] =
∑
l

∑
k

ĝ∗l [k]gl[n− k] (9)

The R-function is the auto-correlation of the pulse shape
and the I -function is defined by the convolution of the
R-function and the transmitted signal. The Q-function rep-
resents the cross-correlation between the estimated and the
actual CIR. TheQ-function is particularly useful as an indica-
tor of the PC-PTR performance, since an impulse-like shape
generally means a successful compensation of the multi-
path distortion. The present work processes real data which
precludes to know the actual CIR, however an equivalent
criterion is used for measuring the PC-PTR performance by
computing its output average power.

1) BACKGROUND IN STANDARD PASSIVE TIME REVERSAL
Aiming to make it more clear the above presented standard
time-reversal model to readers not familiar with it, the next
three paragraphs shortly discusses a basic background in
time-reversal acoustics applied to time-reversal underwater
communications.

Two essential properties of acoustic waves are that (i)
when two waves pass through the same location, they have
constructive interference (reinforce each other) if their peaks
and troughs correspond, and they have destructive interfer-
ence (tend to cancel each other out) if the peaks of one
combine with the troughs of the other; and (ii) the underlying

physical processes of waves would be unchanged if time were
reversed (reciprocity principle of the wave equation). The
former property often occurs in shallowwatermultipath prop-
agation, where echoes reflect back from boundaries, mixing
together different portions of the same wave so that a single
transmitted pulse generates multiple copies of itself at the
receiver. The latter property, that makes the time-reversed
acoustics method possible, can be observed by employing an
active Time-Reversal Mirror (TRM) composed by a vertical
line of transducers spanning in the water column to capture
the main modes of propagation. A signal transmitted by a
source is captured by the TRM transducers and then the
reverse version of the received signals are retransmitted caus-
ing the energy refocuses to the same position of the source,
no matter the complexity of the channel.

The passive time-reversal method, described in [8] and
in a large body of work in the literature, relies on mode
orthogonality (just as the active TRM), but instead of reverse
signal retransmission, it uses channel estimates to synthet-
ically perform a virtual ocean response match through the
use of conjugate reverse filtering and mixing. Despite its
simplicity, it requires a sufficiently long and dense array to
reduce ISI, avoiding poor sampling of the high-order modes
and subsequent orthogonality property violation. The CIR
estimates are typically obtained by correlating each received
distorted probe signal with the transmitted probe signal,
resulting in a noisy estimate of the channel Green’s function.
Such standard CIR estimation technique is equivalent to the
pulse compression (PC), commonly used by radar and sonar
to increase the range resolution and the signal to noise ratio.

Therefore, the standard PC-PTR receiver in the presence
of a noisy environment involves the filtering of stochastic
received signals by deterministic or stochastic CIR, whose
accuracy directly affects the performance of the time-reversal
method to reduce ISI.

B. THE ACOUSTIC FOCALIZATION PROCESSOR
The EPTR is based on an acoustic focalization processor
that aims at generating noise free channel replicas for time-
reversal matched-filtering implementation of the PC-PTR.
This focalization is done over a given number of environ-
ment candidates and selects those that best match the pulse-
compressed CIR estimate extracted from the observed data.
In order to clarify this, Fig. 1 shows the complete block
diagram of a single-input-multiple-output coherent commu-
nication receiver based on the EPTR processor. The standard
passive time-reversal is obtained with the switch in PC-PTR
mode, where the pulse-compressed (PC) CIR estimates are
directly used for matched-filtering each Doppler compen-
sated array channel and the outputs are coherently summed.
In EPTR mode, the PC estimated CIRs are used to select the
‘‘a posteriori’’ replicas from within an ensemble of possible
channel responses generated from an ‘‘a priori’’ search space
defined through a set of environmental parameters. This pro-
cess of tweaking the environmental parameters to obtain a
noise-free numerical model generated channel response that
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FIGURE 1. Block diagram of a single-input-multiple-output coherent communication receiver allowing for the
implementation of either the standard pulse compressed Passive Time-Reversal or the Environmental-based Passive Time
Reversal processors (see text for detailed explanation of the role of each block). SRRC is the square root raised cosine
pulse shape filter.

FIGURE 2. Block diagram of the environmental focalizer for EPTR
implementation.

best matches the observed channel, is termed ‘‘environmental
focalization’’. The detail of the environmental focalizer block
section is given in the diagram of Fig. 2. The ‘‘a priori’’
physical parameters are provided by the user to the focal-
ization block, in which the core optimization is performed.
In general, it is important to note that environmental focal-
ization results depend on an appropriate choice of ‘‘a pri-
ori’’ search space data. For instance, the use of a search
space too large can generate ambiguity and an unrealistic set
of ‘‘a posteriori’’ CIRs, making the channel compensation
to fail due to modeling errors. Successful results depend,
in some degree, on an appropriate choice of the search space
from a physical viewpoint, which can be complemented by
prior environmental assessment of the area of interest with

dedicated equipment. These parameters should be chosen
based on in-situ measurements or background historical data.
The choice of the set of environmental parameters to be
included in the search space is a compromise between a
meaningful CIR model to mimic channel variability and the
computational load to run the optimization. A high number of
optimization parameters may become quickly computation-
ally prohibitive. These two objectives converge to selecting
environmental parameters along a well known hierarchical
list from the most to the least influential parameters on the
output modeled acoustic field. This hierarchy is known to put
on top of the list the geometrical parameters as for exam-
ple source depth, source-receiver range, and receiver depth.
On top of the most influential environment-related parame-
ters are the water column sound speed and the compressional
speed on the upper sediment layer. Then, parameter selection
becomes very case dependent and there is no generic rules
so, this is often based on a trial and error for fine tuning of
the focalization procedure. The basic rule is that the search
space should be just wide enough to capture the channel
variability during the transmission time frame. Another time
frame, another day, or a fortiori, another location would, in
principle, require readjustment of the parameter search space.
More on this in section III.

The optimization was performed using a Bartlett objective
function to select a small refined set of CIR candidates that
best correlate with the pulse-compressed estimated observed
CIR. The objective function employed in this work is defined
in time-domain by

B(ψ) =
ğHl [n, θd,ψ ] C[n, θd ] ğl,p[n, θd,ψ ]

‖gl(n, θd ]‖ ‖ğl(n, θd,ψ )‖
, (10)
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with the covariance matrix of observed data being

C[n, θm] =
1
P

P∑
p=1

gl,p[n, θd ]gHl,p[n, θd ], (11)

where ğ denotes the predicted CIR data, g denotes observed
CIR data, P is the number of observations, L is the num-
ber of hydrophones, θd is the d-th physical parameter and
9 is the set of CIR replica candidates generated by the
search space. Using the maximum a posteriori criterion,
the best fitness candidate is computed by performing BMAP =
maxψ∈9 B(ψ).

Furthermore, a Maximum Power Decisor is employed to
test the CIR candidates ‘‘a posteriori’’ and select the CIR
that maximizes the PTR output power. The maximum power
parameters set ψmp is given by

ψmp = arg max
ψoutput

1
N

N−1∑
n=0

|

∑
l

ğl[n, θd,ψoutput ] ∗ y
†
l [−n] |

2

(12)

where ∗ denotes convolution, † denotes conjugate andψoutput
denotes the few set of parameters obtained as output of the
inversion. Thus, the EPTR output signal is

zmp[n] =
∑
l

ğl[n, θd,ψmp ] ∗ y
†
l [−n] (13)

Additionally to the focalization, and since time-reversal is
limited to coarse ISImitigation [11], post-processing in single
channel is performed to compensate phase rotation, using
probe-based mean phase estimation and complex conjugate
compensation to the corresponding slot, as well as using least
mean squares to minimize symbol recovery residual error.

III. EXPERIMENTAL DATA PROCESSING
A. THE UAN’11 EXPERIMENT
The Underwater Acoustic Network 2011 (UAN’11)
experiment took place in Strindfjorden, Trondheim (Norway)
during May 2011. See objectives and details of the experi-
ment in [23]. During this experiment a network composed
of several nodes, including both mobile (AUV mounted)
and fixed (moored) transmitters/receivers, was deployed and
operated during the whole period. Every node of the net-
work was equipped with modified Kongsberg cNODE Mini
modems and one of the nodes included a receiving only
vertical array with 16 channels - the Sub-surface Telemetry
Unit (STU). Detailed characteristics of the environment and
the signals processed in this work are presented in the follow-
ing subsections.

1) BATHYMETRY AND SOURCE / RECEIVER-ARRAY
GEOMETRY
Fig. 3 shows the network nodes’ positions superimposed on
the bathymetry of the experiment test site. Various fixed
nodes (FNO), the STU, the pier and two mobile nodes (OBJ)
are shown. In the present work the data obtained on the

FIGURE 3. UAN’11 network node position superimposed on the
bathymetry map of the area: FNO# denotes fixed nodes, STU is the
Sub-surface Telemetry Unit multichannel array and OBJ# denote AUV
mounted mobile nodes. The transect between FNO2 and the STU is 890 m
long, and is range-dependent attaining a maximum depth of 100 meters.

FIGURE 4. Sound velocity profiles measured with CTD#4 near the STU
location on May 24 (a) and on May 27 (b), 2011.

transect between source node FNO2 and the receiving multi-
channel array STUwere analyzed. The source is at 28m depth
and 890 m away from a vertical line array of 16 hydrophones,
4 m equally spaced, spanning from 14.1 m to 74.1 m depth.
Both the source and the receiving array are moored at the
marked positions, therefore sensor movement is expected
to be reduced to a small horizontal oscillation. In addition,
the tide variation at the experiment site is less than 2 m,
considered small relative to the water depth at the source of
about 38 m and 98 m at the position of the receiving array.

2) SOUND SPEED PROFILES FOR DAYS
MAY 24 AND MAY 27, 2011
Several Conductivity Temperature Depth (CTD) casts were
made during the UAN11 sea test. The measurements made on
May 24 and May 27 with CTD#4 located near the STU are
used in this work. The two Sound Speed Profiles (SSP), are
shown in Fig. 4. The figure shows upward refracting profiles
with a initial formation of a mixed layer in the upper 40 m on
May 27, that was not present on May 24. The mixing layer
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TABLE 1. Environmental physical parameters for propagation modeling
and focalization.

on May 27 probably occurred because of changes in weather
conditions and due to the influence of fresh water from rivers
flowing in the region near the fjord.

3) TRANSECT SCENARIO AND SEABED
GEOACOUSTIC PROPERTIES
The FNO2 - STU 890 m transect is strongly range-dependent
with water depth varying between 38 and 98 m. The bottom
parameters were derived from historical information of the
area of a ‘‘rock bottom covered by mud or clay’’ using the
Hamilton relations and also compiling the information used
in [23]. The adopted environmental model is composed of a
5 m thick sediment layer over a bottom half space, which
characteristic parameters are listed in column ‘‘Reference’’
of Table 1. This table also shows in the last two columns,
the search interval and number of discretization intervals,
respectively, for those parameters included in the environ-
mental focalization procedure discussed below.

In order to obtain a glimpse of the possible propagation
conditions for an acoustic transmission between FNO2 and
the STU, Fig. 5 shows the Bellhop/Bounce model computed
eigenrays between the source location and each of the ver-
tical array receivers along the transect with the following
path color coding: direct (magenta), surface reflected (blue),
seabed reflected (red) and surface-bottom reflected (gray).
One can see that there are very few bottom-reflected rays
(in red) reaching the hydrophones 6 to 9, in comparison to the
surface-reflected rays (blue) that reach all hydrophones. This
occurs due to a low slope bottom near the source followed
by a high slope bottom, creating a shadow zone for bottom-
reflected rays. For this reason, it is expected that the CIR will
have a second arrival pathwith a higher frequency spread (due
to free surface motion) than the first arrival path.

4) DATA FRAME STRUCTURE AND MODEM FEATURES
The transmissions at the FNO2 node were performed by
a cNODE-Mini modem transponder model 34180 provided
by Kongsberg Maritime (KM, Kongsberg, Norway) and

FIGURE 5. Scenario for the transmitter-receivers transect (FNO2-STU):
range-dependent 890 m long transect, source depth 28.1 m,
16 hydrophones vertical array 4 m equally spaced from 14.1 m to 74.1 m
depth, maximum water depth 100 m, 5 m sediment layer (in dark-yellow
color) over bottom half-space (in orange color). The eigenrays are color
coded as follows: direct paths in magenta, surface-reflected paths in
blue, bottom-reflected paths in red, and surface-bottom-reflected paths
in gray.

TABLE 2. Frame structure of the transmitted data stream.

specifically adapted to tasks of the UAN’11 experiment [23].
This acoustic modem is described in detail in [24] and it
has a 180 beam pattern transducer at a center frequency
of 25.6 kHz, with a bandwidth of 8 kHz and an emitted power
between 173 and 190 dB re 1µPa@1m.

During days May 24 and 27, the message data were the
pixels of a gray image, converted into a bit stream QPSK
modulated at a data rate of 4000 bps. The data frame structure
is shown in Table 2 and has a total size of 50000 sym-
bols, thus containing 100000 bits. The structure of this data
frame is organized (in order) as a preamble m-sequence with
511 symbols, an header with 40 symbols, a payload and
postamble m-sequence with 511 symbols. The preamble and
postamble are used to perform time compression/dilation
compensation, aiming at removing clock synchronization
impairments between transmitter and receiver and a possible
Doppler trend. The payload contains the bit-stream message
corresponding to the image pixels and a sequence of 20 short
m-sequenceswith 127 symbols each, which are inserted every
1 second for channel tracking. In addition to channel tracking,
these short m-sequences are used for PC-PTR and EPTR
CIR estimation through PC and environmental focalization,
respectively. The final channel matched-filtering in the time-
reversal receiver is performed with the mean CIR over the
20 short m-sequence estimate, both for PC-PTR and EPTR.
Further, since the bit stream length is variable according to a
particular message or set of image pixels and the frame size is
fixed (50000 symbols), a constant stream of the symbol 1 is
positioned at the end of the payload with the length needed
to complete the frame size. Fig. 6 shows the spectrogram of a
signal received at the deepest hydrophone where the constant
stream is seen as a tone at the carrier frequency after the
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FIGURE 6. Spectrogram of a signal received at hydrophone 1 (deepest) ,
with sound pressure level (SPL) in decibel referred to 1µPa at 1 m. Carrier
frequency 25.6 kHz. The constant stream of 1’s is filling the data packet
between 20 and 25 seconds.

FIGURE 7. Wavefront estimated by PC-PTR (a) and by EPTR
focalization (b) for May 24 data. The colorbar shows magnitude in decibel
referred to full scale (dBFS).

payload end and before the final postamble, between 20 and
25 seconds.

B. EPTR EXPERIMENTAL RESULTS AND DISCUSSION
This section presents the results of PC-PTR and EPTR in the
experimental data acquired during the UAN’11 experiment in
days May 24 and 27, 2011.

1) ANALYSIS OF TIME-VARIANT CIR DATA
The first point to be verified is the time-variant CIR, obtained
by PC of the received signals using the transmitted probes,
after polyphase resampling (Doppler compensation block
in Fig. 1). Fig. 7 shows the wavefronts estimated with PC
(a) and modeled after environmental focalization (b) for data
of May 24, in a 16 ms time window. The wavefronts show
that two arrivals are clearly distinguished with a relatively
good match between data and model. The water wavefront
has a clear maximum of energy at the minimum of the sound
speed while the second wavefront is downward propagating.
Clearly the wavefronts estimated with PC-PTR show noise
while those obtained with EPTR are noiseless and therefore
much better defined.

Fig. 8 shows, for the data collected on May 24 at the
hydrophone 6 (54.1 m depth), the CIR estimated with PC in
time-delay representation along the 20 seconds (a), the mean
CIR estimated power (b), the CIR modeled by EPTR using
environmental focalization in time-delay representation (c)

FIGURE 8. CIR for the data collected on May 24 at hydrophone 6 (54.1 m
depth) estimated by pulse compression (a) and (b) and modeled through
environmental focalization with EPTR (c) and (d). Time-delay CIR
representation (a) and (c) and average magnitude CIR (b) and (d). The
colorbar shows normalized magnitude in dBFS.

and the mean CIR modeled power by EPTR (d). Comparing
plots 8 (a) and (c), a good match is clearly visible between
path arrival times and amplitudes. There is a considerable
amount of noise on the observed data, which tends to obscure
the secondary paths with smaller magnitude. As expected,
comparing the first and second rows in Fig. 8, the noise
reduction is clearly noted.

Fig. 9 shows the same type of plots as Fig. 8 but for the data
set ofMay 27. Again in this case and despite the very different
sound velocity profiles (Fig. 4), the capture of the overall
path arrival structure as well as the small scale variability is
strinking in the modeled data of Fig. 9, plots (c) and (d), when
compared to plots (a) and (b), respectively. Note, however,
a small discrepancy on themean arrival time of the late path at
around 14ms delay when comparing plots (b) and (d). Fig. 10
compares the baseband complex envelope estimated with PC
with that obtained by EPTR focalization for snapshot 4 of
May 27, hydrophone 6. This comparison illustrates the much
lower noise level on the ‘‘a posteriori’’ modeled CIR snap-
shot, when compared to the corresponding pulse-compressed
estimate.

2) ‘‘A POSTERIORI’’ PHYSICAL PARAMETERS
A second point to be checked is the set of physical parameters
resulting from acoustic modeling optimization. The physical
parameters that best match the observed data are obtained as
output of the acoustic focalization algorithm after an exhaus-
tive search over the parameter space defined in columns
‘‘Search’’ and ‘‘Size’’ of table 1. The dimension of the search
space is 5000. Although the focus of this work is not on
environmental inversion, the obtained ‘‘a posteriori’’ physical
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FIGURE 9. CIR for the data collected on May 27 at hydrophone 6 (54.1 m
depth) estimated by pulse compression (a) and (b) and modeled through
environmental focalization with EPTR (c) and (d). Time-delay CIR
representation (a) and (c) and average magnitude CIR (b) and (d). The
colorbar shows normalized magnitude in dBFS.

FIGURE 10. A CIR snapshot comparison. Envelope of complex baseband
equivalent CIR obtained by PC estimation with PC-PTR (magenta) and by
environmental focalization with EPTR (blue), for hydrophone 6 on May 27,
slot number 4.

parameters can be seen as a by product of the EPTR commu-
nication system. The term ‘‘geometric parameters’’ denotes
the physical parameters directly related to the source and
receiver positions, i.e., source-array range, source depth and
the receiving array depth (using the shallowest hydrophone
as reference).

Fig. 11 shows for snapshots 1 to 20 the evolution of the
combination of geometrical physical parameters that gener-
ated the three best CIR replicas for the data collected on
May 24 (a) and on May 27 (b): the best fitness maximum ‘‘a
posteriori’’ parameter estimates (dash blue-circle), the second
best fitness parameters (dash red cross) and the third best
fitness data (dash green cross). It can be seen that there is a
reasonably good trend between the three candidates for each
geometric parameter, even though the data of May 27, shows
a higher variation than that of May 24.

In addition to the parameters shown in Fig. 11, the geoa-
coustic parameters of the sediment layer shown in Table 1,
are also used in the focalization process (not shown). For the
scope of this work, their inclusion in the search space aims at
improving the adjustment between replicas and observation

FIGURE 11. Maximum a posteriori geometric parameters obtained
through environmental focalization for each slot of the data frame
received on May 24 (a) and on May 27 (b). The three best fitness set of
parameters are shown: maximum ‘‘a posteriori’’ set (blue circles), second
maximum set (red cross) and third maximum set (green cross).

during the objective function optimization [21], [25]. Further,
since there are physical parameters not inverted for, i.e.,
parameters with fixed values along the optimization, it is
expected to observe variability on the output inverted param-
eters that is not only due to their actual physical variability,
but also due to the their ability to compensate those fixed
parameters not considered for optimization. This procedure
that divides the channel parameters in two component groups,
one fixed and the other variable, is usual in matched-field
inversion.

The compressional sound speed in the sediment repeatedly
reaches the lower boundary of the search space along the
time slots (not shown). At first, one is tempted to decrease
the lower boundary of the search space, but since its value is
1480 m/s, already lower than the mean water sound speed,
it was decided to maintain the search interval in order to
avoid generating an excessively non-realistic environment,
which scope would be to, probably, compensate other param-
eters not included in the search. This is the process known
as acoustically-equivalent environment [26] or equivalent
model [27] that we use here at our advantage for CIR replica
channel equalization.

In this work the bottom half-space parameters were
not optimized for because it is expected that at this
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TABLE 3. Performance analysis of PC-PTR and EPTR.

high-frequency regime (carrier frequency at 26.5 kHz) the
propagating signals have very small interaction with that
region, due to strong attenuation on the seabed and rays
refraction occurring only in the sediment layer.

More controversial is that, also the SSP was not optimized
for during the focalization process. Instead, the profiles taken
nearby to the STU receiving array of Fig. 4 were used.
However, the SSP is an important modeling parameter since
it directly influences the refraction of the propagating rays
in the water column and its time variability has a certain
impact on the CIR. The reason for not including the SSP in the
search space was twofold: one is that there was no sufficient
terrain information and two it would substantially increase
the search space. The SSP difference between the two days
makes May 24 data set a much benign channel that that of
May 27, with a low distortion and a diagram constellation
with low cluster variance and better performance, as shown
in the metrics of table 3. The SSP of May 27 is significantly
different from that of May 24, and shows a higher variability
with, in general, worse results for both the PC-PTR and EPTR
processors, although in both cases the EPTR yielded a visible
gain over the conventional PC-PTR, actually with a higher
gain in the ‘‘worst’’ day of May 27, as shown in Table 3.

3) COMMUNICATION PERFORMANCE ANALYSIS
The last point is to evaluate the performance of the com-
munication system in recovering the transmitted message.
This may be done in a variety of forms, one of which is by
observing the received signal constellation diagram, as shown
in Fig. 12 for May 24 with PC-PTR (a) and EPTR (b) and for
May 27 with PC-PTR (c) and EPTR (d). It can be observed
that the EPTR constellations are better separated than the
PC-PTR constellations. This assertion is striking for the data
set of May 27, plots (c) and (d). This reduced cluster variance
means a clear soft-decision improvement.

Another, possibly more objective, form for performance
evaluation is through bit error rate (BER) and mean square
error (MSE). Table 3 shows the values of MSE, BER and
number of wrong symbols of these constellations over the
whole data horizon, where it is observed that the EPTR
yields a considerable gain both on May 24 and on May 27.
Observing the constellations and the numerical metrics it is
clear that the performance of the system has been improved
by using the EPTR processor.

FIGURE 12. Constellation of the signal received on May 24, after being
processed with PC-PTR (a) and EPTR (b), and for the signal received on
May 27, after being processed with PC-PTR (c) and EPTR (d).

FIGURE 13. BER results per slot: May 24 data set (upper subplot), PC-PTR
(magenta) and EPTR (red); May 27 data set (lower subplot), PC-PTR (cyan)
and EPTR (green). The diamond marker denotes an error-free slot.

Fig. 13 shows, for each slot along the signal frame, the
BER results of the signal collected on May 24 after being
processed by PC-PTR (magenta) and by EPTR (red), and
on May 27 after being processed by PC-PTR (cyan) and by
EPTR (green). Observe that several slots of the May 24 data
are error-free, both for the PC-PTR and the EPTR, while
the EPTR results overcome the PC-PTR results in general,
except for the slot number 19. On May 27, only the EPTR
yields error-free slots and its performance by far overcomes
the results reached with the PC-PTR.

Fig. 14 shows the soft-decision MSE results along the
20 slots of the signal frame, for May 24 data with
PC-PTR processing (magenta circles/dashed line) and with
EPTR (red circles/dashed line), and for May 27 with PC-PTR
(cyan crosses/full line) and by EPTR (green crosses/full line).
The EPTR results have a lower MSE then the PC-PTR both
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FIGURE 14. Mean square error of the received equalized communications
signal for the full array. Results along the 20 slots in the signal frame with
PC-PTR on May 24 (magenta), EPTR on May 24 (red), PC-PTR on
May 24 (blue) and EPTR on May 27 (green).

on May 24 and on May 27. In particular, on May 27, EPTR
outperforms PC-PTR by approximately 4 dB, which is the
highest value over the whole data set processed in this work.
Moreover, results shows a consistent improvement along the
20 seconds data frame.

IV. CONCLUSION
This paper presents results of coherent underwater
acoustic communications that employ an environmental
focalization algorithm for improving passive time-reversal
performance. Environmental focalization works as a sub-
processor that uses any available a priori or historical envi-
ronmental information to search for numerical model outputs
that best approach channel probe pulse compressed estimates.
The fact that these model outputs are noise free while the
originally used pulse compressed estimates are noisy, provide
the potential for the processing gain.

The proposed EPTR algorithm is applied to real data sets
acquired in two different days during the UAN’11 experiment
carried out in Trondheim (Norway), over a range depen-
dent shallow water 900 m long transect. QPSK modulated
data packets were transmitted with a cNode-Mini Kongsberg
modem at 4k bits/s during 20 s each day, in different environ-
mental conditions and were received on a 16 channel vertical
array. The results obtained show that EPTR outperforms stan-
dard PC-PTR by an amount varying from 1 to 4 dB, in MSE
gain, over the two processed data records. The proposed
method is shown to be robust yielding results that are nearly
always equal or better than those provided by standard passive
time-reversal, despite the considerable variation of channel
responses both at micro-scale from second to second or from
one day to the other. The results also show that the modeling
errors (inevitably) present at the focalization algorithm output
were small enough to still provide processing gain of the noise
present in the pulse-compressed channel estimate. To some
extent this method trades modeling errors for noise, with a
net gain for the former.

The focalization algorithm provides enough detail to cap-
ture and to follow over time the essence of channel variability.

It is unknownwhether that variability is due to sensor motion,
surface agitation, currents or micro temperature changes, but
a minimal set of physical parameters were able to track it
and successfully undo channel paths by matched filtering
the array receivers. The search space for the focalization
was sufficiently small to be exhaustively covered, while still
running in a reasonable time on a laptop computer.

To the authors best knowledge this is the first time that
numerical modeling channel estimates were directly used for
channel equalization of underwater acoustic communications
with real data at an useful frequency range, say, over 20 kHz.
In that regard, these results represent a step towards using the
potential of connecting environment and channel compensa-
tion in field experiments.
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