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Blind Estimation of the Ocean Acoustic Channel
by Time–Frequency Processing
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Abstract—A blind estimator of the ocean acoustic channel
impulse response envelope is presented. The signal model is char-
acterized by a deterministic multipath channel excited by a highly
nonstationary deterministic source signal. The time–frequency
(TF) representation of the received signal allows for the separation
between the channel and the source signal. The proposed estimator
proceeds in two steps: First, the unstable initial arrivals allow for
the estimation of the source signal instantaneous frequency (IF) by
maximization of the radially Gaussian kernel distribution; then,
the Wigner–Ville distribution (WV) is sequentially windowed
and integrated, where the window is defined by the previously
estimated IF. The integral gives the channel impulse response
envelope, which turns to be an approximation to the blind con-
ventional matched filter (MF). The blind channel estimator (CE)
is applicable upon the following conditions: that the multipath
channel contains at least one dominant arrival well separated
from the others, and that the IF of the source signal is a one-to-one
function. Results obtained on real data from the INternal TIde
Measurements with Acoustic Tomography Experiments (INTI-
MATE’96), where the acoustic channel was driven by an linear
frequency modulation signal, show that the channel’s envelope
detailed structure could be accurately and consistently recovered,
with the correlation of the estimates ranging from 0.796 to 0.973,
as compared to the MF result.

Index Terms—Blind channel estimation, linear frequency mod-
ulation (LFM), multipath, time–frequency (TF).

I. INTRODUCTION

BLIND channel estimation is a topic of intense research in
the underwater acoustics community [1], [2], as well as

in signal-processing-related fields such as wireless communica-
tions [4], geophysics [5], etc. Being essentially transparent to
sound propagation, the ocean is a favorable medium for trans-
mitting information by acoustic signals, either for biological or
human purposes. This information is contained in the signal
emitted by the acoustic source, and is sensed by an acoustic
receiver, which can be positioned from meters to hundreds of
kilometers from the source. The received signal obviously con-
trasts with the emitted signal due to the severe distortion intro-
duced by the medium boundaries, the space- and time-variable
sound-speed, bottom properties, and source and receiver coordi-
nates, among other factors. Both emitted and received signals,
and the ocean distortion, can be modeled by time- (or space-)
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dependent functions. Assuming the ocean acoustic channel as
linear time invariant, the received signal can be modeled as a
noisy convolution of the emitted signal with the channel im-
pulse response. At the receiver end, the purpose is usually to
interpret the information contained in the source signal, for ex-
ample, in digital communications [3], or to estimate the physical
or geometric (e.g., water depth, source coordinates) parameters
responsible for signal distortion, which is the purpose of ocean
acoustic tomography [25], [26]. This purpose can be achieved
without major difficulty if the source signal is known at the re-
ceiver. Otherwise, in ocean monitoring scenarios, where the dis-
cretion of the receiver is important, as in biological studies or
military applications, the problem of channel estimation trans-
forms itself onto a blind estimation problem, in that the only in-
formation available to the receiver is the received signal, which
encapsulates the emitted signal, the channel distortion, and the
inevitable noise. Consequently, there is an increasing need for
the development of blind receivers capable of estimating the
ocean physical parameters, or the emitted signal, in the presence
of this unknown excitation source signal. Often, this signal is a
nonstationary transient that propagates from the source to the re-
ceiver after severe channel distortion and noise corruption. Re-
covering the ocean distortion amounts to solving a blind signal
deconvolution problem by modeling the ocean channel as linear
and time invariant. Blind deconvolution is itself a research area,
with specific principles and methods.

Classical deconvolution is a well-established inversion
method, which allows for the estimation of either the channel
or the source signal. When the source signal is known, a
correlator receiver can be used for channel estimation, which
constitutes an application of the classical matched filter (MF).
As is well known, the performance of this estimator is de-
pendent on the source signal’s bandwidth, which has a direct
impact on the estimate quality. For low signal-to-noise ratio
(SNR) environments, the correlator can be improved with a
prior denoising step. This has been done in [6] by using a chirp
signal as training sequence to estimate the impulse response
of the channel. The proposed method makes use of the high
concentration of the chirp signal when compared to the noise
spreading in the joint time–frequency (TF) plane. In essence, a
time-variant filter is applied to the received signal, resorting to
the Gabor transform, before conventional channel estimation.
If the channel has a multipath structure, which is a reliable
approximation in the ocean-channel case, then channel estima-
tion can be transformed into a time delay estimation problem
[7]–[9]. This can also be addressed in the spectral domain, as
proposed by Kirsteins [10]. This method is based on fitting
weighted complex exponentials to the spectrum of the received
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signal. In this case, the drawbacks of ill-conditioning and bias,
and the requirement of considering contiguous frequency sam-
ples, led to the development of other algorithms, which attempt
to find least squares unbiased estimates of the time delays [1].
In this last reference, the techniques were extended to the blind
deconvolution of a gated sinusoid, where the sinusoid and
channel parameters are searched simultaneously. A common
problem in signal deconvolution is ill-poseness. In underwater
acoustics, this problem was dealt with by observing the source
signal through a multichannel array [11], [12]. The method
presented in [11] is based on maximum a posteriori probability
(MAP) likelihood estimation, assuming a stochastic model for
the source signal. The approach proposed by Smith and Finette
[12] solves an iterative minimization problem using simulated
annealing. In this last reference, the authors mention that the
proposed method can be extended to the case of the simul-
taneous estimation of the source signal and the multichannel
impulse response.

Blind deconvolution methods that deviate from classical
deconvolution generally involve higher order statistics of the
source signal or the channel. One important requirement is
that the involved signals satisfy ergodicity and stationarity.
The techniques are based on the principle that the higher order
moments of the input signal are decreased by convolution with
a linear and time-invariant channel. The problem is solved
by maximization of the higher order moments (equivalently,
minimization of the entropy) of the deconvolved quantities.
Finding obvious applications, for example, in wireless com-
munications, blind deconvolution has, in this field, exploited
also the cyclostationary properties of the received signal. As
an example, Gardner [13] has proposed a method for channel
identification based on the second-order cyclic autocorrelation
function. This method involves the use of a training period,
during which, the unobserved channel input is transmitted at
a slow rate, making the intersymbol interference negligible.
The need for a training period can however fall off (increasing
the available bandwidth) for certain channel models, as shown
by Tong et al. [14], using extensions of Gardner’s original
method. A comprehensive study on the use of blind deconvo-
lution on communication systems was presented in [4]. Blind
deconvolution methods dealing with higher order statistics have
been applied also in geophysics [5] to estimate the reflection
coefficients of a layered Earth model. The same principles were
recently applied, in underwater acoustics, to the deconvolution
of signals with a moderate degree of temporal nonstationarity
[2]. However, the deconvolution result is influenced by a free
parameter—the filter length—and an open question on whether
such principles could be applied to signals with a high degree
of nonstationarity remains.

This paper presents a blind estimator of the ocean acoustic
channel, excited by a highly nonstationary source (probe)
signal. Assuming deterministic models for the channel and
source signal, the method is divided into two steps. The first
step consists of the estimation of the source signal instanta-
neous frequency (IF). In the second step, the Wigner–Ville
distribution (WV) of the received signal is integrated along
delayed versions of the source signal IF estimate, giving as
output the channel impulse response envelope estimate.

The paper extends the work presented in [15] and [16] and is
structured as follows. Section II defines the problem and briefly
sketches its solution by TF methods; the TF estimator is pre-
sented and characterized in Section III. Experimental results
with underwater acoustic data are presented in Section IV, and
some conclusions and perspectives are drawn on Section V.

II. PROBLEM STATEMENT AND TF APPROACH

Consider both an acoustic source and receiver positioned at
given locations in the ocean. Assuming that their positions are
stationary along the propagation time (here, 4.5 s), and that
the environmental conditions do not change significantly along
this same period, the acoustic channel linking the source to the
receiver can be characterized by a linear and time-invariant im-
pulse response. Note that for different source and/or receiver
positions, and/or for environmental temporal variations on time
scales that are larger as compared to the observation time (in
the considered experimental setup, this time is 1.5 min, see
Section IV), as, e.g., tidal-induced water depth variation, the
source and received signals will be linked by time-varying im-
pulse responses. Thus, during the observation time, the received
signal can be modeled by a noisy and channel-distorted ver-
sion of the deterministic source signal

(1)

where is the impulse response of the ocean channel,
is zero-mean stationary additive noise, stands for convolution,
and is the complex representation (analytic signal) of the
real source signal

(2)

where and are the instantaneous amplitude (IA) and
phase, respectively. The IF of is readily given by

(3)

One key point in considering an impulse response model for
the ocean acoustic channel is its structure, which, when given
by a series of delayed impulses, generally constitutes a realistic
model. Further, the initial impulses are typically very close in
time, and at least one of them has a high amplitude as compared
to the remaining well-separated impulses. The initial high-am-
plitude impulse(s) is (are) due to direct eigenrays or eigenrays
with a small number of reflections, while the well-separated im-
pulses are due to several surface and/or sediment reflections.

The problem at hand is, knowing , to recover the impulse
response envelope , assuming no knowledge about ,
which constitutes a classical blind channel (envelope) estima-
tion problem. The present TF approach does not allow to esti-
mate the phase of the impulse response, since the procedure is
based on TF integration, which gives a measure of signal power.
Nevertheless, if this impulse response estimate is to be used,
e.g., in travel time acoustic tomography, where only the time
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Fig. 1. Blind channel estimation procedure.

delays of the impulse response are important, the envelope es-
timate is sufficient for postprocessing. Hence, the parameter of
interest is designated by

(4)

To solve this problem by a TF approach, it is important to ev-
idence the following key ideas, which emerge as conditions of
application.

1) The acoustic channel is described by a set of arrivals, with
at least one having a high amplitude relatively to the other
arrivals.

2) The acoustic source emits a deterministic and nonsta-
tionary signal, whose IF is an injective (one-to-one)
mathematical function.

The channel estimation procedure is schematized in Fig. 1. As
illustrated in this figure, the first step relies on the representation
of the received signal by a signal-dependent time–frequency dis-
tribution (TFD). The maximization of this distribution gives the
source signal IF estimate. The second step consists of coherently
measuring the WV energy of the received signal on TF supports
defined by the source signal IF estimate. The obtained estimator
is a suboptimal blind channel estimator (CE), as compared to the
MF estimator.

III. CHANNEL ESTIMATION

Taking into account that nonstationary signals are common in
practical applications, TF processing appears in such cases as a

natural tool. TF representations indeed provide a means for de-
tailed analysis of the local TF structure of the received signal. As
a consequence, if the channel impulse response and the source
signal have “distinct” TF patterns, they can be separated and re-
covered in the TF domain. In this work, the Wigner–Ville and
the radially Gaussian kernel (RGK) [17] TFDs are used.

A. Correlator CE

Let us take as a reference CE the correlator receiver. This es-
timator makes use of the principle behind the MF, and it can
only be used when both received and source signals are avail-
able. The correlator receiver output is given by

(5)

and is used as a term of comparison to evaluate the performance
of the TF blind CE, concerning the real data results presented in
Section IV.

B. TF Blind CE

This section describes the TF blind CE. A nonblind directly
related estimator is first presented, and its similarity to the MF is
discussed. Then it is seen that the multipath nature of the channel
allows for the derivation of an estimator of the IF of and the
consecutive definition of the blind CE.

1) Nonblind Estimator: Let us state the definition of a TF
nonblind CE by first considering the formulation of the MF in
the TF domain. This can be accomplished by means of the clas-
sical Moyal formula, which relates the overlap of two signals
in the time domain with the overlap of their respective bilinear
unitary TFDs [18], [19]

(6)

where designates any unitary cross distribution of
the generic signals and . For the particular cases of

and , and
when the unitary distribution is the WV , (6)
transforms into

WV WV

(7)

where the second term is simply a squared version of the MF
channel estimate (5). This expresses the equivalence between
the MF and a correlation in the TF domain with respect to the
temporal variable. This equivalence has already been used in
the context of detection in [20]. Thus, if the source signal was
known at the receiver, an MF estimator could be implemented
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in the time domain, by (5), or equivalently in the TF domain, by
the TF-based CE

WV WV (8)

In the case that the IA of the source signal does not change
significantly with time, the spread in frequency of WV
can be approximated by [21]

(9)

where designates the derivative of . The value of
will be small, for a slowly varying function , meaning

that the WV is highly concentrated along the IF. This will be
the case when considering the experimental data in Section IV.
Upon this assumption, one can obtain an approximation to (8),
by approximating WV as

WV (10)

Upon insertion of (10) into (8), a simply structured TF nonblind
CE is obtained

WV (11)

Note that this estimator is suboptimal with respect to the MF,
in terms of output SNR, due to the approximation (10). Let us
define the conditions upon which (11) can be applied as a CE.
Taking into account (1) and the fact that the WV satisfies the
convolution property, (11) can be developed as

(12)

where refers to the signal component

WV (13)

with

WV (14)

and and refer to the noise and crossed signal–noise
components

WV

WV (15)

and

WV

WV (16)

respectively. Let us analyze only the signal component .
Note that if, at every frequency

WV (17)

then (13) can be approximated by

WV (18)

which, for nonnoisy data, leads to the approximate channel es-
timate

(19)

Approximation (17) holds, as long as 1) at every frequency
, the distribution WV has at maximum one peak, and

2) the distribution WV is infinitely concentrated along
. For condition 1) to hold, it is necessary that be an

injective (one-to-one) mathematical function—a function that
maps distinct values of to distinct values of . For condi-
tion 2) to hold, it is necessary that the WV of the signal be
defined by a bidimensional Dirac distribution centered on

WV (20)

where is a complex scalar. It is well established that the class
of deterministic source signals, for which both conditions are
satisfied, entails the linear frequency modulation (LFM) signal

(21)

where , , and designate the modulation rate, initial fre-
quency, and initial phase, respectively, and the Dirac distribution

(22)

Note that the requirements for optimality of the TF CE are
very similar to the requirement of an impulsive autocorrelation
of the emitted signal for the MF estimator. In the former case,
the emitted signal is required to have a concentrated signature
in the TF plane, while in the latter, it is required to have a con-
centrated autocorrelation signature. In practice, none of these
conditions can be fully verified, which leads to suboptimal esti-
mators. In Section IV, the results obtained with a finite-duration
smooth-amplitude LFM signal in a real underwater environment
are shown to provide reliable and consistent channel estimates.
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2) Blind Estimator: To construct a blind CE, it is reasonable
to modify (10) according to an estimate of the IF

WV (23)

Using this approximation in (8), the final TF blind CE is given
by

WV (24)

Thus, in contrast to the nonblind CE, the blind estimator requires
prior estimation of the source signal IF .

3) Instantaneous Frequency Estimator: In several real un-
derwater scenarios, the ocean is reliably modeled by a multipath
channel, with impulse response

(25)

where and designate each of the channel amplitudes
and time delays, respectively.1 For this case, an estimator of

has been derived, taking advantage of a reduced cross-
terms TFD. As is well known, TFDs of this type are usually
derived as a tradeoff between linearity and high resolution. First,
let us consider an ideal (linear and infinitely concentrated) TFD

of (assumed a monocomponent signal), defined as

(26)

The expected value of the ideal distribution of the received
signal, assuming that this expected distribution would represent
the noise term as a constant , would be given by

(27)

Consider now that the channel highest amplitude impulse
is well separated and significantly stronger than the closely
spaced impulses. In this case, at least one of the replicas of

is represented in by a large amplitude along
the delayed IF of . Thus, maximization of with
respect to , within a given band of interest , would select
the strongest arrival, giving an unbiased estimate2 of .
Obviously, within the available nonlinear TFDs, signal analysis
is constrained by the particular characteristics of the kernel and
finite data lengths. Nonetheless, it seems reasonable to apply
the maximization with respect to , to a TFD with reduced
cross terms of the received signal, which will give an accurate
estimate3 of , if this distribution is a good approximation

1Here, frequency dispersion effects are neglected, because the ratios water
depth/maximum wavelength and source–receiver distance/maximum wave-
length are of orders 10 and 10 , respectively.

2It is expected that this estimate, seen as a function of frequency, is also a
close estimate of the group delay of s(t).

3The IF estimate is not rigorously a function of t, due to its definition as the
“inverse function” of a noninvertible function.

to , i.e., it attains a significant cross-terms rejection
without causing a significant broadening of the signal com-
ponents. In this work, the distribution used for IF estimation
was the signal-dependent RGK distribution of the received
signal, RGK . The signal dependence of this distribution
allows a reduced cross-terms TF representation of the multi-
path received signal, even when the IF of is a nonlinear
function. This is due to the distribution capability of adapting
the shape of a radially Gaussian lowpass filter to a broad class
of signals [17], hence, attenuating the TF spurious cross terms.
The volume of the distribution kernel was set to 1, since this
is the volume of every spectrogram kernel. In the ideal case
in which the calculated kernel of the RGK would equal the
Doppler-reversed ambiguity function of , the RGK would
coincide with the MF spectrogram. This point is discussed
below in more detail. Obviously, other distributions could be
applied as well due to their cross-terms rejection capabilities,
such as the polynomial or modified WV [22], or TFDs with
adaptive window width, to mention only a few.

Considering the presence of snapshots at recep-
tion—which is the case in the real data presented in the
next section—each one obeying model (1), the estimation of
the IF may take into account the information contained in the
set of snapshots to construct a TF representation that is close
to . This TF representation is defined as the average
RGK over the snapshots

RGK RGK (28)

where designates the th snapshot of the received signal.
The multisnapshot estimator is defined by means of the maxi-
mization of RGK

RGK

(29)
This signal-dependent maximization on the TF plane will be il-
lustrated with experimental data in Section IV (see Figs. 9 and
10, and discussion). It is expected that the average RGK
preserves the replicas of , while the noise contributes as a
simple additive term, in the TF plane. This is difficult to as-
sert theoretically, since the RGK is a signal-dependent TFD.
However, a simple analysis can be done by considering a TFD
whose kernel is perfectly adapted to the multicomponent re-
ceived signal. Such a distribution, considering the multipath na-
ture of , is the matched filter spectrogram (MFS) [17] whose
analysis window is thus coincident with . The kernel of the
MFS can be expressed as

(30)

The MFS represents the best attainable representation of
by the RGK, in terms of the tradeoff signal terms informa-
tion/cross-terms rejection. Finally, one can interpret the average
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RGK as an estimator of (31) shown at the bottom of the page,
where

(32)

For a monocomponent signal , it is expected that for the
terms in (31), for which , the different delays in the am-
biguity functions will render the integrand approximately null.
For the terms in which , the integrals transform into

(33)

which corresponds to slightly broadened signal terms in the
TF plane. Thus, is to be viewed as a lowpass filter,
which will retain only the eigenterms of , leading to
an approximate linear TFD MSF . Ideally, the maxi-
mization of the expected MFS [requiring the knowledge of ]
would be meaningful as an IF estimator; in practice, the ex-
pected MFS is approximated by the average RGK.

A final concern about IF estimation relates to non-LFM
source signals. In this case, each of the source signal replicas
(in the received signal) contains its own cross terms in the
TF plane, which will be added to the implicit cross terms due
to the multipath channel. It is difficult to predict the relative
amplitude between the signal terms and the cross terms, and
the maximization of the signal-dependent TFD can be trapped
into the cross terms at given frequencies instead of the signal
term. To avoid this problem, it may be necessary to decrease
the volume of the RGK distribution kernel to filter out all
the high-amplitude cross terms and guarantee that the global
maximization will pick only the signal term(s) due to the initial
strong channel arrival(s).

Note that the required minimum time separation ( 20 ms, in
the considered data) between the strong channel impulse(s) and
the remaining impulses is much smaller than the source signal
duration (2 s, see Fig. 3), since the considered impulse response
structure corresponds to a shallow-water scenario. This implies
that each arrival overlaps several other arrivals, in the received
signal, in the time domain. This is opposed to the TF domain,
where the interarrival overlap is spread in the two dimensions
of the plane. For extremely short-duration source signals, or in

Fig. 2. INTIMATE’96 real data environment scenario.

deep water scenarios, if there was a completely isolated arrival
in the received signal, the channel impulse response could be
estimated, for example, by simply cross correlating that arrival
with the remaining portion of the received signal.

IV. EXPERIMENTAL RESULTS

The experimental results presented in this section concern
data from the acoustic tomography experiment INternal TIde
Measurements with Acoustic Tomography Experiments (INTI-
MATE’96), whose details have appeared in [23]. The experi-
ment was conducted in the continental platform near the town
of Nazaré, off the west coast of Portugal, during June 1996. For
the data considered here, the acoustic source and receiving hy-
drophone were respectively located at 92 and 35 m depth, 5.6
km apart in an approximately 135-m-deep range-independent
shallow-water area, as shown in Fig. 2. The SNR estimate at the
receiver was 10 dB within the frequency band of interest. The
sound source was emitting a 300–800 Hz, 2-s duration LFM
sweep , repeated every 8 s. At the receiver, 10 consec-
utive sweeps were processed to form one single channel esti-
mate under stationarity assumptions. This process was repeated
every 5 min, during 19 h of transmissions, with the objective
of analyzing the time variations of the acoustic channel due to
tidal waves. The frequency response of the electroacoustic trans-
ducer used as sound source presented a main resonance at 650
Hz and a secondary resonance at 350 Hz. The convolution of

MSF

(31)
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Fig. 3. Computer-generated transducer response to the 300–800 Hz 2-s duration LFM sweep [real part of s(t)] used during the INTIMATE’96 sea trial.

Fig. 4. INTIMATE’96 data set: (Nonblind) channel estimates obtained with
the MF [(5) arranged as in (35), with N = 10].

one LFM sweep with the transducer response is shown in
Fig. 3. Straightforward lengthy calculations show that this con-
volution may be approximately expressed as a product, leading
to

(34)

where is a factor due to the transducer response that effec-
tively modulates the source signal in amplitude. As a matter of
fact, Fig. 3 clearly shows the influence of the transducer res-
onances on the amplitude of the emitted signal. Note that the
actual signal amplitude, as modified by the transducer, is not
taken into account when performing blind channel estimation,
and is another contribution (together with the noninfinite con-
centration of the TFD) to the deviation from the optimal case.
Moreover, signal amplitude discrepancy should be taken into
account when comparing the (nonblind) MF channel estimate
(which “knows” the transducer response) to the blind TF esti-
mate, which does not know the transducer response.

A. Channel Estimation Results

Taking into account that for an observation time of the order
of minutes, the acoustic multipath channel can be assumed non-
stationary in the amplitudes and stationary in the time delays

Fig. 5. INTIMATE’96 data set: Blind channel estimates obtained by TF pro-
cessing [(24) arranged as in (35), with N = 10].

[24], and that an accurate estimate of the time delays is sufficient
for postprocessing, e.g., in ocean acoustic tomography [26], the
presented results privilege time delay estimation. Thus, due to
the similarity between the nonblind TF and MF channel estima-
tors, and proceeding as in [24], for the derivation of the MF, in
the presence of a set of snapshots at the reception, the effectively
used channel estimators were given by

(35)

where CE is to be replaced by MF or TFB, to obtain averaged
versions of the estimators (5) and (24), respectively. This is ex-
pected to reduce the bias and variance of the final estimators, by
comparison to the single snapshot estimators . The IF
estimate to be inserted in (24) was obtained by maximization of
the average RGK within the band [300, 800] Hz, coinci-
dent with the LFM’s band. Note that it is not necessary to have a
priori knowledge of the emitted signal’s band, provided that
is chosen large enough, since the energy of the received signal
will lie essentially within the emitted signal’s band, in the TF
plane.
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Fig. 6. Measure of quality for the IF estimate, using (36) (dash dots), and for the blind TF channel estimate, as the correlation between the blind TF and the MF
estimates (solid), over the whole INTIMATE’96 data set. The vertical dashed and dotted lines indicate 20:08:00Z and 22:52:00Z as the times corresponding to the
best and worst blind channel estimates, respectively.

Fig. 7. INTIMATE’96: Channel estimates given by the (a) (nonblind) MF and (b) blind TF channel estimators, corresponding to the worst blind channel estimate,
at time 22:52:00Z of Fig. 6. The blind estimate quality [correlation coefficient between (a) and (b)] is 0.796.

The results obtained along the 19-h duration data set are
shown in Figs. 4 and 5 for the MF and TF estimators, respec-
tively. It can be seen that the blind channel estimates are, in
general, similar to the homologous (nonblind) MF estimates.
Of most concern here is the ability to: 1) discriminate closely
spaced arrivals; and 2) follow the arrivals waving through time.
It can be noted that these concerns are both met: After the initial
nonseparated arrivals ( 25 ms), four distinct arrivals can be

seen on each of the following seven packets of arrivals; the long
period waving due to tidal influence can clearly be seen on the
later arrivals, shown in both figures.

B. Performance Analysis

It is now important to quantify the accuracy of the blind TF
CE, taking, for example, the (nonblind) MF estimator, as ref-
erence. For each TF channel estimate, the quality measure is
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Fig. 8. INTIMATE’96: Channel estimates given by the (a) (nonblind) MF and (b) blind TF channel estimators, corresponding to the best blind channel estimate,
at time 20:08:00Z of Fig. 6. The blind estimate quality [correlation coefficient between (a) and (b)] is 0.973.

Fig. 9. INTIMATE’96: IF estimates (29) for the worst (�) and best (+) cases as shown in Figs. 7 and 8, respectively. The underlying straight line represents the
true IF.

defined as the maximum of the normalized correlation between
the TF and MF channel estimates. In the same way, the quality

of the IF estimate (29) is defined as

(36)

where and are normalized versions of the in-
stants corresponding to the true IF and its estimate, respectively.
Both channel and IF estimate quality measures are shown in

Fig. 6 for the whole 19-h data set. It can be seen in this figure
that, in general, the IF and the channel estimates are directly re-
lated, i.e., the channel estimate quality is highly sensitive to the
IF estimate quality, as can be seen in, e.g., the estimates obtained
at times 17:07:00Z and 04:09:00Z. This fact can be explained
by the high concentration of in the TF plane, which leads to
meaningless values for the integral (24), when the IF is not ac-
curately estimated. To closely characterize the proposed IF and
blind TF estimators, it is important to look at the worst and best
cases over the whole data set.
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The reference channel given by the MF, corresponding to the
worst blind channel estimate, is shown in Fig. 7(a), while the
corresponding blind estimate, with quality 0.796, is depicted in
Fig. 7(b). In this case, the acoustic channel consists of a set of
leading closely spaced arrivals with large amplitude, followed
by a peaky pattern with smaller amplitude and well separated in
time. It can be seen that the MF and TF estimates differ mainly
on the amplitude envelope but not on the arrival times. How-
ever, the total number of arrivals seems to be higher in the TF
estimator than in the MF estimator.

According to the measure of quality plot shown in Fig. 6, the
best blind TF channel estimate is obtained at time 20:08:00Z,
and the corresponding MF and TF estimates are shown in
Fig. 8(a) and (b), respectively. The most important difference
when comparing Fig. 8(a) to the MF estimate in the worst
case of Fig. 7(a) is the rapid progressive amplitude attenuation,
leading to a greater amplitude ratio between the initial and
the remaining arrivals. The best blind TF estimate, depicted in
Fig. 8(b), shows that both the envelope and arrival positions
are well estimated and the MF and TF estimates are indeed
very similar. As in the worst case, the number of arrivals is
overestimated on the TF estimator by comparison to the MF
estimator.

Fig. 9 shows the IF estimates for the worst and best cases
as discussed above. Clearly, the worst case IF estimate shows a
piecewise line where the IF oscillates well away from the due
straight line IF, and the best channel estimate corresponds to
an accurate IF estimate close to the true straight line. These IF
estimates were obtained by maximization of the average RGKs
shown in Fig. 10, where one can see that, unlike for the best case
in (b), the worst case in (a) corresponds to initial high-amplitude
overlapped replicas of in the average RGK.

Considering the available data, one can deduce that the
quality of the channel estimate is largely dependent on the
quality of the IF estimate. A set of close unresolved strong
arrivals with similar amplitude, as is the case corresponding to
the worst estimate, corresponds to energy spreading in the TF
plane, which, added to the lowpass filtering effect on the WV, in
the computation of the RGK, gives a biased estimate . This
difficulty is not observed for the case corresponding to the best
estimate. An additional concern is about the apparent higher
resolution of the TF estimator, leading to a larger number of
small peaks along the arrival pattern, by comparison to the
MF estimator. This can be explained by the use of the IA
information of the emitted signal in the MF, while that infor-
mation is not used in the blind TF. Using the IA means using a
reduced bandwidth of the transducer frequency response when
compared to the blind TF, where all frequencies are assumed
to equally belong to the emitted signal spectrum: Reduced
bandwidth implies larger correlation functions and therefore a
lower resolution.

V. CONCLUSION

In this paper, a blind suboptimal TF channel envelope esti-
mator was proposed. This estimator was tested on a 19-h du-
ration real data set from the INTIMATE’96 sea trial, where
a severe multipath underwater channel was driven by a deter-
ministic linear frequency modulated signal. Three main topics

Fig. 10. INTIMATE’96: contour plots of the average RGK distributions from
which the IF estimates for the (a) worst and (b) best cases as shown in Figs. 7
and 8, respectively, were obtained.

emerge as conclusions. The first concerns the restrictions im-
posed by the blind channel envelope estimator. This estimator
requires the multipath channel structure to consist of at least one
leading strong arrival well separated from the highly attenuated
remaining arrivals. In addition, the emitted signal is required to
have a concentrated TF signature and an injective (one-to-one)
IF function. The second topic concerns the influence of the IF
estimate on the channel envelope estimate. The quality of the
TF channel envelope estimate is largely sensitive to the source
signal IF estimate. Indeed, a small inaccuracy in the IF estimate
causes a large degradation in the channel envelope estimate, due
to the high TF concentration of the source signal. The last topic
is that the TF blind channel envelope estimator is reliable in that
it gives similar results to the MF, in terms of the arrival struc-
ture and resolution. In addition, though the blind estimator does
not achieve an optimal output SNR, its higher resolution can be
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viewed as an advantage when emphasis is given to the estima-
tion of the channel time delays.

As future trends, the TF channel envelope estimator will pos-
sibly be extended to a broader class of source signals for which
the IF estimator could be reformulated by using the product
high-order ambiguity function. The integration in the TF do-
main could be operated on a highly concentrated TFD, e.g., the
polynomial or modified WV.
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