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Abstract

The requirement for rapid environmental assessment has motivated the development of prediction tools, which allow the
observation and prediction in very short notice, of the ocean evolution in an interval up to 3–4 weeks, in given littoral areas.
Complex systems exist nowadays, where multidimensional quantities like the oceanographic–biogeochemical–optical–acoustic
fields, are tracked in time, melding measures and models of some or all the involved quantities. At some point in the prediction
system, the acoustic forecast is computed by acoustic propagation models taking as input the environmental forecast. Inevitably, the
error of the acoustic forecast as given by the model output, originates from at least two error sources. The first is the environmental
forecast error. The second is due to the model inaccuracies, and to the dependence of propagation on parameters not dealt with by
the prediction system, like geometric or geo-acoustic properties. The acoustic community has developed a large number of acoustic
inversion systems – based on e.g. matched-field processors or travel-time tomography – from which one can learn that an accurate
acoustic simulation requires feeding the acoustic model with an environment which differs from the actual environment by a certain
gap. This requires that the environmental forecast as given by ocean prediction systems be gap-compensated, prior to its inclusion
in the acoustic environmental input. This paper puts the environmental gap in evidence, considering environmental forecasts, and
historical and inverted data, to define heterogeneous environmental inputs to the propagation model. The corresponding acoustic
outputs are compared to actual data from the MREA '03 sea trial. It is observed that acoustic inversion can play a significant role in
converting the environmental forecast into the acoustic forecast.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Rapidly assessing the environmental conditions of a
given coastal area, with the capability of being able to
predict its evolution in the next days or weeks, has been

the goal of many initiatives, since the end of the cold war,
and the consequent shift of strategic regions to shallow
areas. This requirement is triggered by naval needs, from
which, the sonar performance (or acoustic detection
probability) prediction is one of utmost relevance. In
other words, it is important to predict the characteristics
(amplitude or phase at frequencies of interest, time
properties, etc.) of the acoustic signal received on a given
data acquisition system, hence the concept of acoustic
forecast. This purpose requires having at hand accurate
oceanographic forecasts of e.g. the ocean temperature,
salinity, currents, since these quantities directly influence
acoustic propagation. Most efforts were carried out by
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oceanographic teams providing data of various natures
(currents, sea surface temperature (SST), CTD, sea
surface height (SSH), ADCP data, etc.) to accurate
small-scale ocean observing and prediction systems
(OOPSs), such as mini-HOPS, or the small-scale version
of MODAS–NCOM (Martin, 2000). The OOPSs
respond to operational assessment requests effectively
on very short notice, providing nowadays forecast esti-
mates of temperature, salinity, water currents, density,
etc., typically up to one month (Robinson and Sell-
schopp, 2002). These systems work with interdisciplin-
ary data and models, comprising ocean circulation
models (in which, the oceanographic Primitive-Equation
model plays a fundamental role), acoustic and biogeo-
chemical data and models, assimilating in situ or remote
sensed data, like SSH and SST, and modelling as well as
tracking the forecast error (Robinson et al., 2002;
Robinson and Lermusiaux, 2003). Testing has been
going on for several years on the validation of such
OOPSs in various scenarios. Among others, the guide-
lines for the OOPSs development are to decrease the
error variance of various environmental parameter
predictions, with a minimal model initialization.

The possibility of estimating future environmental
conditions gave rise to operational applications for the
navy, coupling the OOPSs with acoustic models, i.e.,
feeding the latter with the environmental forecasts. For
tactical purposes, it was implicitly assumed that a de-
crease of the error variance of the environmental param-
eter predictions would necessarily imply a reduction of
the variance of the acoustic detection probability pre-
diction. This can be accepted as a general trend, but
cannot be guaranteed. First, the data gridding is coarse
in space–time, in oceanographic models, while it is fine
in acoustic models (for example, internal tides, which
have a significant acoustic impact, are not always taken
into account in ocean circulation modelling (Lermu-
siaux and Chiu, 2002)). Second, the acoustic data model
output accuracy is limited to a given frequency range
and to the degree of knowledge about the environment.
Third, the acoustic propagation model is parameterized
by quantities that are not dealt with by the ocean-
ographic model, e.g. bottom attenuation, density and
thickness of different layers. Recent improvements in
the OOPSs' structure have opened the possibility of
obtaining more accurate acoustic forecasts, by assimi-
lating ocean acoustic models and data in the ocean
observing and prediction system, as is the case in HOPS
(Robinson et al., 2002; Lermusiaux and Chiu, 2002).
Here, acoustic quantities are incorporated in an inter-
disciplinary physical–acoustic state vector, which re-
flects the physical–acoustic link through the sound

speed. Then, a physical–acoustic forecast error is
tracked and minimized. Nevertheless, the eventual
acoustic model environmental input error is modeled
by a stochastic extension of the Primitive-Equation
model, representing uncertainties due to sub-mesoscales
and internal tides not accounted for in the deterministic
mesoscale simulations (Lermusiaux and Chiu, 2002).

In the context of associating a given actual acoustic
signal with an optimum acoustic model environmental
input, the appearance of matched-field tomography
(MFT) in the late 1980s, and its application to shallow
water scenarios on the early 1990s, has opened at least
two directions: first, the usage of acoustics for envi-
ronmental purposes; second, it has given some insight
into the sensitivity of the acoustic signal to environmen-
tal variations. A large number of experimental results
obtained by various teams using MFT in shallow water
regions, have shown the influence of internal tides and
waves, the strong influence of bottom properties on
signal propagation, and the crucial role of bathymetry
and source–receiver geometry on the inversion process.
Since even the most sophisticated propagation models
existing today (and presumably in the years to come)
cannot take into account all the real world details, in
many situations the outcome of the inversion process that
most closely matches the acoustic signal is an environ-
ment often “slightly shifted” from the actual measured
environment, thus the concept of equivalent acoustic
model. Hence, when the purpose is to predict the acous-
tic signal, even with an environmental forecast null error,
the forecast should be modified in order to compensate
the environmental model shift, to obtain the acoustic
signal that is closest to the actual acoustic signal.

At this point, an acceptable goal would be to use the
equivalent acoustic model computed at present time,
with the oceanographic model predictions, to obtain
accurate predictions of the acoustic field at some future
time. In principle, a set of inversion outcomes and
nowcasts could be used to ‘fine tune’ the environmental
model to be combined with the oceanographic forecast,
and finally compute the acoustic forecast. The bottom
properties considered in the acoustic forecast would be
strongly correlated with those estimated by acoustic
inversion at present time, for geo-acoustic range-inde-
pendent scenarios. As a matter of fact, the problem is not
so simple, since the environmental shift of the inverted
data may not be solely due to acoustic modelling issues,
but also to errors in the inversion process, and noise –
implicitly leading to random environmental estimates –
effects often difficult to separate.

Using the acoustic and environmental data gathered
during the MREA '03 sea trial, this paper intends to put
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in evidence the differences between the measured,
forecast and inverted environmental quantities – mainly
the water column temperature profiles – and the impli-
cations of these differences on modelling the acoustic
data. Also, the Acoustic Oceanographic Buoy (Jesus
et al., 2003) is presented as a promising tool for
operational acoustic rapid environmental assessment
(REA) of small coastal areas. This paper is structured as
follows. Section 2 defines the problem of acoustic fore-
cast, and summarily describes the Acoustic Oceano-
graphic Buoy, Section 3 compares actual data with
signal simulations with heterogeneous environmental
models, and some conclusions are drawn in Section 4.

2. Background

2.1. The acoustic forecast problem

The problem of acoustic forecast can be defined as
follows: given a set of acoustic and oceanographic models
and quantities measured in a given area, till present time
t0, it is required to estimate the acoustic field in the same
area, at a future time t1. The problem takes place in an
acoustic–oceanographic (AO) scenario. The actual
oceanographic, geometric and geo-acoustic parameters
are grouped into a time (t)-dependent vector, defining the
ocean AO conditions:

mðtÞ ¼ ½TðtÞSðtÞH0ðtÞsTðtÞhTðtÞbTðtÞlTðtÞ�T
¼ ½γTðtÞbTðtÞ�T; ð1Þ

where T(t), S(t), H0(t), s(t), h(t) and b(t) designate the
actual water column temperature, salinity and depth, the

source and hydrophone set coordinates, and the geo-
acoustic parameters, respectively. The vector l(t) contains
parameters that either do not influence significantly the
acoustic field at the considered space–time scales, or are
not always known with sufficient accuracy, like shear
speeds, sea surface/bottom roughness, etc.. Due to the bi-
disciplinary nature of the problem at hand, the parameter
set can be split into 2 sub-sets, namely the water column
parameters γ(t) and the remaining parameters β(t).
Considering an acoustic transmission through the medi-
um described by these conditions, the acoustic receiving
device (e.g. the AOB1, described in Section 2.3) will
receive the actual acoustic signal spatially sampled by a
set of L hydrophones:

XðtÞ ¼ g½mðtÞ�
¼ ½YT

n ðm; f1; tÞYT
n ðm; f2; tÞ; N ;YT

n ðm; fK ; tÞ�T;
ð2Þ

where g stands for the physical transformation of the AO
conditions into acoustics, and each kth frequency-depen-
dent vectorYn(μ, fk, t), k=1,…, K is the nth snapshot of a
single-frequency component of the signal received on the
L hydrophones. Note that X(t) contains the spectra of the
signals received on a given time interval. Let us refer to
Fig. 1, which illustrates a conceptual procedure to
compute the acoustic forecast. By one side, we have at
hand oceanographic and acoustic data, μ(t0) and X(t0),
respectively, at t0. Making use of acoustic inversion, the
acoustic data are transformed into the acoustic model
input μ̂a(t0). Hereafter, the subscript a will indicate that a
given quantity is an estimate, by acoustic inversion, of the
corresponding actual quantity in Eq. (1). The input μ̂a(t0)

Fig. 1. Acoustic forecast as an acoustic model input parameter estimation problem. The AO quantities available at t0 are enclosed by circles: the
measured oceanographic data μ(t0), measured acoustic data X(t0) and oceanographic nowcast μ̂ f (t0). The acoustic model input at t0, the nowcast and
the forecast serve as input to the acoustic forecaster, to estimate the acoustic model input at t1.
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is the vector corresponding to the simulated signal
closest to the data X(t0). By the other side, we have
at hand the forecast of the physical conditions, μ̂f (t1)=
[γ̂f

T(t1)β̂f
T(t1)]

T. The point now is to associate the fore-
cast μ̂f (t1) with an optimum simulated acoustic signal
X̂(t1). The acoustic model parameter that generates X̂ (t1)
is structured as μ̂a(t1)=[γ̂a

T(t1)β̂a
T(t1)]

T. The determina-
tion of the optimum values for the parameters in μ̂a(t1) is
equivalent to ideally solving the acoustic forecast
problem:

X̂ðt1Þ ¼ ĝ½m̂aðt1Þ�
m̂aðt1Þ ¼ arg min

masðt1Þ
U ½Xðt1Þ; ĝðmasðt1ÞÞ� ;

(
ð3Þ

where U [X(t1), ĝ(μas(t1))] is a cost function which
measures the proximity between the actual and simulated
signals. The vectorμas(t1) is a generic AO candidate, and
ĝ stands for the model of the actual acoustic distortion.
The acoustic model output is the acoustic signal forecast
X̂ (t1). The acoustic forecast can be constrained to lie in a
given subspace, if there is a priori knowledge about the
physics. Note that it is impossible to carry out the
minimization in Eq. (3), since the future acoustic signal
X(t1) is unknown. Even though, having at hand acoustic
data gathered at sea, at present time –X(t0) – it is possible
to ‘learn’ the relationship between the nowcast μ̂f (t0) and
the structure of μ̂a(t0). Then, this relationship can be
transposed to the future, to transform μ̂f (t1) into the
acoustic forecast X̂ (t1). This is represented in Fig. 1, by
feeding the “acoustic forecaster” with the nowcast μ̂f (t0),
the AO inversion result μ̂a(t0) and the forecast μ̂f (t1).

Note that every component of μ̂a(t1) is a variable
which contributes to maximize the ‘acoustic proximity’.
Since the proximity between the actual and every can-
didate acoustic signal is a function of the entire vector
μas(t1), it may happen that e.g. T̂a(t1) or Ŝa(t1) differ
respectively from T(t1) and S(t1), or from T̂f (t1) and Ŝf (t1).
This is a consequence of the inaccuracies of: the inversion
method (data model, a priori assumptions, etc.) and the
acousticmodel input parameterization (for instance, when
all inhomogeneities of the physical medium cannot be
taken into account). Also, the acoustic model response is
non-monotonic in the environmental input. The combi-
nation of all these factors implies a non-monotonic
relationship between ‘oceanographic proximity’ and
‘acoustic proximity’. While the oceanographic forecast
is the result of the minimization of functions involving
observed and modeled oceanographic states, the outlined
acoustic forecast is intended to minimize the distance
between observed and modeled acoustic signals derived
from those oceanographic states. Regarding the environ-
mental parameterization of the acousticmodel, in principle,

the parameter vector should include acoustically-influent
parameters, at the forecast frequencies. For example, a very
inaccurate acoustic forecast is expected at high frequencies,
if the bottom parameters are inverted with low frequencies.

2.2. Acoustic model input estimation by matched-field
acoustic inversion

The determination of the acoustic propagation model
input parameter that maximizes the ‘acoustic proximity’
is explained in this section. It constitutes a synchronous
estimation, since, for a given signal X(t), it gives as
output the vector μ̂a(t), containing the environment
estimate. The underlying method falls into the category
of matched-field processing, well known as a means of
estimating the physical state that constrains acoustic
propagation giving rise to the received acoustic signal.
The observed signal is inverted to the physical state.

The assumed data model decomposes Eq. (2) as

XðmÞ ¼ HðmÞSþ U; ð4Þ
where H(μ) is a broadband channel transfer function
matrix, structured as

H ¼
P
Hð f1;mÞ 0 : : : 0

0
P
Hð f2;mÞ : : : 0

v v ⋱ v
0 0 : : :

P
Hð fK ;mÞ

2
664

3
775; ð5Þ

where H
¯
( fk, θ) is a vector with the (narrowband)

channel transfer function at kth frequency, assumed time
invariant during the temporal observation window, and
U is an additive noise term, assumed zero mean and
white. The vector S accounts for the source signal and
random acoustic distortions not included in H(μ). The
(normalized) incoherent processor is given by

PðmÞ¼

XK
k¼1

P
HHð fk ;mÞĈ

YY

ð fk ;mÞPHð fk ;mÞ=k̂max;k

PK
k¼1

jj
P
Hð fk ;mÞjj2

; ð6Þ

where ĈYY ( fk, μ)=∑n=1
N Yn( fk, μ)Yn

H( fk, μ)/[N ||Yn( fk,
μ)||2] is the sample correlation matrix computed from N
snapshots, and λ̂max,k is the estimate of the maximum
eigenvalue of CYY ( fk, μ). This processor is a particular
form of the broadband processor proposed in Soares and
Jesus (2003), where here it is assumed that the source
power spectrum is unknown and flat.

2.3. The Acoustic Oceanographic Buoy

For the purpose of acoustic REA, an acquisition
system was developed to measure and estimate the
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temperature and acoustic fields, in the operational area
of interest. This system is the Acoustic Oceanographic
Buoy-version 1 (AOB1), which is a light (≈ 80 kg,
including all sensors and batteries) receiving device
which incorporates last generation technology for
acquiring, storing and processing acoustic, positioning
and temperature signals received on four vertically
separated sensors. The physical characteristics of the
AOB1, in terms of size, weight and autonomy, will tend
to those of a standard sonobuoy, with however the
capability of local data storage, processing and online
transmission. Data transmission is ensured by seamless
integration into a wireless local area network, which
allows for space-variant tomography within ranges up to
20 km. The system bandwidth reaches 15 kHz, which
allows its usage in other applications, such as active
sonar and underwater communications.

The AOB1 hardware is described, in more detail, in
Jesus et al. (2003) and Soares et al. (2004). The AOB1
software has the function of online controlling,
monitoring and inverting the collected data. In this
preliminary test, the software was separated into two
parts: the buoy control and monitoring, and the online
data inversion. The buoy control and monitoring was
performed by a specially developed Windows operating
system oriented program running on a laptop. This
computer was fitted with a wireless pc-card attached to
an omnidirectional 12 dBi outdoor antenna via a 1 W
amplifier. It was also possible to transfer acoustic data
from the AOB1 via ftp, for on-board online inversion.
The inversion software was based on code previously
developed for blind ocean acoustic tomography (Jesus
et al., 2006), with different settings for the parameter
search bounds and the genetic algorithm conversion
parameters, taking into account that the source position
was approximately known, and that only very few
hydrophones were available.

3. Data/model comparison

Environmental assessment results are presented in
this section, where the inverted oceanographic field is
compared to the ground truth field observed on the
MREA '03 sea trial. The purpose of this comparison is
to focus on the importance of acoustic inversion in
minimizing the variance of the sonar performance
prediction. It addresses general issues to be taken into
account, when defining an estimator of μ̂a(t1). Although
a closed-form approach to the estimation of μ̂a(t1) is not
presented, it is discussed the impact of diverse
combinations of predicted, inverted and measured
oceanographic, geometric and geo-acoustic data –

which define μ̂a(t1) – on the prediction of the acoustic
field. It is expected that the optimum vector μ̂a(t1) be a
function of some of those quantities.

Fig. 2. Source–AOB1 geometry, estimated from GPS recordings.
(a) Source and AOB1 tracks, superimposed to the bathymetry in
contour lines. The acoustic source was carried by the R/V Alliance,
defining the trajectory in the dashed line. The AOB1 was free drifting
– continuous line – during the whole acoustic trial, from 09:04 to
15:16 June 21st. (b) Time-variant source range and (c) depth. The
acoustic trial has comprised frequency transmissions on the bands
500–800 and 900–1200 Hz.
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3.1. The MREA '03 sea trial and oceanographic
forecasts for the trial area

The MREA '03 sea trial took place off the west coast
of Italy, in the north Elba Island area, during June 2003,
and involved a bi-disciplinary team working on the
acoustic and oceanographic fields. The sea trial com-
prised a set of acoustic and oceanographic measure-
ments, to be combined with models, with the goal of
REA. The oceanographic instrumentation consisted of
ADCPs, current-thermistor chains, one meteo buoy, one
CTD, Lagrangian drifters and one directional wave rider
buoy, between other instrumentation. The acoustic com-
ponent of the campaign involved an acoustic source,
deployed from the R/V Alliance at a variable depth
between 60 and 100 m (depending on the ship speed)
and the recently developed Acoustic–Oceanographic
Buoy as the acoustic acquisition system, deployed on
June 21st, with very favorable weather conditions, in an
area of mild range-dependency. The buoy was deployed

at Julian time (JT) 171.412, and recovered at JT
171.719. Fig. 2 shows the source–receiver geometry,
estimated from global positioning system (GPS) record-
ings. The source–receiver range varied between 0.5 and
9 km. The bathymetric signature varies between 115 and
145 m on the acoustic trial area. The data acquisition
objective was twofold: (1) to permit source localization,
using a single buoy with a few hydrophones in an
unknown and range-dependent environment, and (2) to
perform tomographic inversions for the environmental
parameters, which serve as input to maritime REA pur-
poses. Broadband 2-s duration linear frequency modu-
lation (LFM) signals were transmitted in a lower and a
higher band, 500–800 Hz and 900–1200 Hz, respec-
tively, in JT intervals 171.403–171.496 and 171.510–
171.584, respectively. The repetition rate was 8 s.

A conventional approach to REA was implemented,
combining measures of the ocean conditions with an
ocean circulation model, to obtain estimates of the three-
dimensional water column temperature and salinity. The
considered model, tailored for the regional area of
interest, is the data-assimilative re-locatable model
MODAS–NCOM (Martin, 2000). This model took as
input SSH and SSTsatellite measures, as well as archival
water column temperature profiles in the area. For June
21st, a nowcast and a set of 8 forecasts were calculated at
0 h of the day, for the whole day, with a 3-h interval.
Also, a set of 22 CTD measurements was taken in the
area, every 67 min in average, spanning the whole day.
Fig. 3 shows the temperature forecasts and the measured
temperature profiles. The high values for the depth-
averaged RMSE between the actual and estimated
profiles, in Fig. 3(b), can be explained by the fact that
the oceanographic model assimilates only SSH and SST

Fig. 3. (a) Temperature forecast bounds (solid lines) overimposed to
the CTD measure bounds (dashed lines) in the MREA '03 sea trial, for
June 21st. The forecast bounds are those for the time instants closest to
the CTD cast times. (b) Depth-averaged root-mean-square-error
(RMSE) of the forecasts, along time.

Fig. 4. Baseline model for the MREA '03 acoustic data inversions. All
model parameters are range-independent, except the water depth.
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measures. Even though, the water surface temperature
forecast differs significantly from the measured values,
possibly due to the presence of clouds in some of the
satellites vision fields. The temperature and salinity
forecasts (the latter not shown here) define the vector
μf(t), for all the 8 forecast outcomes for June 21st.

3.2. Environmental assessment results

Given the acoustic data received on the AOB1 on
June 21st, a set of tomographic inversions was carried
out. In particular, two empirical orthogonal functions of
temperature were considered. Their coefficients search
bounds were set according to the temperature profile
time-variability observed on CTD measurements along
days 16, 17 and 19 of June. The baseline environmental
model is shown in Fig. 4, indicating 3 out of 4 AOB1
hydrophones that were processed, thus selected due to
the presence of strong impulsive noise on the 4th
hydrophone. The baseline parameter values were taken
from Gingras (1994). The considered forward model
was the normal mode propagation model C-SNAP
(Ferla et al., 1993).

Considering that thesourcepositionhistory isknown–
see Fig. 2 – the water column temperature and all the
bottom parameters in Fig. 4 were inverted, by fixing the
sourceposition to itsknownvalues.Afterwards, amodel
validationexercisewasperformed, invertingonlyfor the
source position,with large search intervals of [1, 10] km
and [1, 110] m for range and depth, respectively. Only
those environmental estimates conducive to a location
estimate with an error of 5% of the search interval
amplitude–0.45kmin range, and5.45mindepth–were
considered hereafter, in both lower frequency (LF) and
higher frequency (HF) bands. A set of 22 equi-spaced
frequenciescovering thewholebandofeachLFMsignal
was used for the inversion. To compute the sample
correlationmatrices,N=10 snapshots were considered.
ThegeneticalgorithmsettingsaresummarizedinTable1.
Thesearchboundsfor the invertedparametersareshown
inTable2.

The inversion results for the water column and the
bottom compressional speed are shown in Figs. 5 and 6,
respectively. The estimated temperature profiles cannot
be compared with ground truth values, since, for the
acoustic transmission period, there are no available CTD
measures. It can be seen that the surface temperature
structure is the most difficult to estimate. This can be
explained by the strong summer thermocline, which
implies a low signal-to-noise ratio at the shallowest
hydrophone depth. However, the surface estimates
interval of 22.5 to 27.5 °C agrees with the range 22.8
to 26.7 °C observed on days 16, 17 and 19 of June,
during the observation time in coincidence with the LF
period. Regarding the inverted bottom parameters, it is
observed that the compressional speed fairly agrees with
the baseline model in Fig. 4. The other, not shown,
inverted parameters values are quite variable, and
oscillate significantly around the baseline values. This
variability can be explained by a small sensitivity of the
cost function to bottom environmental changes, since it
considers data from only 3 hydrophones, or by a space-
variant bottom, different from that in the baseline model
in Fig. 4, or, at last, by the equivalent acoustic model
concept — leading to approximately equal acoustic

Table 1
Genetic algorithm settings for environmental assessment

Parameter Setting

Generations 30
Population size 200
Independent populations 1
Mutation probability 0.004
Crossover probability 0.9
Number of crossover points 4

Table 2
Search bounds for the inverted parameters, for environmental
assessment

Model parameter Lower
bound

Upper
bound

Quantization
steps

Water column
1st EOF coefficient (°C) − 15 15 128
2nd EOF coefficient (°C) − 7 7 128

Sediment
Upper compressional
speed (m/s)

1470 1560 64

Lower compressional
speed increment (m/s)

0 100 64

Density (g/cm3) 1.2 2.5 64
Compressional attenuation
(dB/λ)

0.01 0.5 32

Thickness (m) 2 6 64
Subbottom
Compressional speed
increment (m/s)

1 100 64

Density (g/cm3) 1.2 2.5 16
Compressional attenuation
(dB/λ)

0.01 0.5 16

Geometric
Lowest receiver depth (m) 74.5 76.0 16
Tilt (rad) − 0.025 0.025 64

The sediment lower compressional speed value is the increment relative
to the estimated upper speed, and the subbottom compressional speed is
the increment relative to the estimated sediment lower speed.
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responses corresponding to different combinations of
bottom parameters.

3.3. Acoustic assessment results

In this paper, the concept illustrated in Fig. 1, to
forecast the acoustic signal, was partially applied. At the
end, the oceanographic forecast μ̂(t1) as given by ocean
circulation modelling, the environmental inversion
results of water column and bottom parameters, and
archival values of the bottom parameters, are available.
This work intends to put in evidence the sensitivity of
the output acoustic forecast X̂ (t1) to different structures
of the AO environment μ̂a(t1). The available environ-
mental data coming from different sources (ocean
prediction, acoustic inversion, etc.) can, in principle,
be assimilated, in order to define an optimal vector μ̂a(t1)
and compute the corresponding acoustic forecast. Here, a
closed form for μ̂a(t1) is not derived, but the gain in
utilizing multidisciplinary data is put in evidence. At the
end, one can say that the inverted environment at present
time contains valuable information to be combined with
the predicted environment, in order to obtain optimal
acoustic signal forecasts.

A set of 4 combinations of measured, forecast and
inverted physical parameters was chosen, to define the
acoustic model input μ̂a(t1), and then simulate the
acoustic field along the ship-AOB1 track:

• Water column forecast and historical bottom data: in
this combination, the AO environment is defined by

linearly-interpolated averaged MODAS–NCOM
predicted temperature profiles for each geometric
source–receiver slice, and archival bottom para-
meters, taken from (Gingras, 1994). The considered
predicted temperature profiles are contained in the
interval shown in Fig. 3(a), and the bottom param-
eters are given in Fig. 4.

• Water column forecast and inverted bottom profile:
here, the AO environment is defined by the
MODAS–NCOM predicted values for the water
column temperature, and the inverted bottom para-
meters mentioned in Section 3.2.

• Inverted water column and bottom parameters: the
AO environment is defined by the inverted temper-
ature profiles and bottom parameters, mentioned in
Section 3.2.

• Inverted water column and historical bottom para-
meters: here, the AO environment is defined by the
inverted temperature profiles in Fig. 5, and the bot-
tom archival parameters in Fig. 4.

In predicting the acoustic field, it is necessary first to
define what features of the field are to be estimated, and
a functional which quantifies the proximity between the
data and the model. For this purpose, one can resort to a
multitude of cost functions. For example, they may
involve either time or frequency characteristics of the
signals, and depend on cross-correlations or differences
between the data and the acoustic model output. Among
a possibly infinite number of cost functions that can be
defined, it is guaranteed, at least in simulated noiseless

Fig. 5. Inversion results (dotted lines) for ocean temperature, in the two frequency bands 500–800 Hz (a) and 900–1200 Hz (b). The continuous lines
represent the CTD measures closest in time to the acoustic experiment: before (a) and after (b) the experiment, at Julian times 171.34 and 171.76,
respectively. The dash-dotted lines represent the inversion results closest in time to the above CTD measures, respectively.
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data, that the global optimum of any cost function will
be attained at the AO environment that generated the
acoustic data. Outside the global optimum, each cost
function may have a different variational behaviour.
This topic is supported by the illustration in Fig. 7,
where two cost functions are shown, for simulated
noiseless data generated with the baseline model in
Fig. 4. Here, the reference data was generated with a null
value for the first EOF coefficient α1. By generating
acoustic replicas with a variable α1, both the Bartlett-

based cost function (6) and the transmission loss (TL)-
based cost function

PTLðmÞ ¼ 1−
jj TLY−TLHðmÞ jj

2
; ð7Þ

where TLY (TLH (μ), respectively) are extended
normalized versions of vectors containing the data
(replica, respectively) TL at all frequencies and sensors,
are plotted. In the figure, it is seen that the overall

Fig. 6. Inversion results for the compressional speed of the sediment and subbottom layers, in the lower and higher frequency bands.
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behaviour of both cost functions is similar. Also, in
some cases, a higher acoustic match in the TL sense
does not imply a higher match in the Bartlett sense —
see the opposite functional variations, in the particular
points marked by squares, in Fig. 7. This can be ex-
plained by two reasons. First, the cost functions involve
different quantities: the TL-based function compares the
magnitude of the acoustic field, while the Bartlett

function compares the full field, in amplitude and phase.
Second, both cost functions synthesize the acoustic
match at a set of spatial positions and frequencies in a
single value. Lower matches at some points can be
obscured by the integral cost value and may not coincide
between the different cost functions. Thus, in Fig. 7, if
α1 approaches 1 by the left side, the environmental
match is decreased, the acoustic match in the Bartlett-
sense is decreased, but the acoustic match in the TL-
sense is increased. The opposite effect can be observed
when α1 approaches 3 by the right side. These subtle
differences between the environmental mismatch impli-
cations on different cost functions are enlarged when
considering actual noisy data.

To assure consistent results and conclusions, in the
problem at hand, it was chosen to quantify the acoustic
prediction quality by the same functional used in the
inversion process. The acoustic simulation outputs cor-
responding to the four environmental parameter vectors
defined as previously explained, were compared to actual
data, using Eq. (6), and this comparison is illustrated in
Fig. 8. In both plots, as expected, it can be seen that the
‘acoustic forecast’ corresponding to the inverted physical
vector (dashed line) is closest, in the sense of Eq. (6), to
the measured data. From the curves representing mixed
heterogeneous environments, the one corresponding to
the inverted temperature (continuous line) is generally

Fig. 7. Two possible cost functions in the coefficient of the first
empirical orthogonal function of temperature – α1 – with simulated
noiseless data: Bartlett power (6) (—) and transmission loss-based cost
function (7) (- - -). The reference data was generated with the baseline
model in Fig. 4, and a null value for the EOF coefficient. The squares
indicate the points where the functions derivatives have opposite sign.

Fig. 8. Acoustic forecast results: Bartlett power (6), for the different combinations of water column and bottom parameters, γ(t1) and β(t1),
respectively, taken from inverted, archival and forecast acoustic and/or oceanographic quantities, for the LF (a) and HF (b) periods. The power was
calculated for the acoustic inversion times.
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larger than the other curves. The curve which corresponds
to the water column forecast and the bottom archival data
assumes generally the smallest values, specially in the
lower frequency period. In the initial part of the LF period,
the higher values can be explained by the large source
depth of ≈ 105 m, which makes the transmission loss
structure more insensitive to the differences between the
thermocline depths of the inverted and predicted
profiles — compare Figs. 5 and 3, respectively. These
facts support the idea that, even in shallow water, both
the water column structure and the geo-acoustic play a
significant role on the definition of the acoustic signals.
From all the curves in Fig. 8, the periods where the
continuous line has the second largest values indicate a
predominance of the water column properties in the
definition of the acoustics; the periods where the second
largest values are given by the dash-dotted curve
indicate the predominance of an optimum definition of
the geo-acoustic properties.

The results reinforce the idea that, assuming a given
environmental parameterization structure (range-depen-
dent or -independent water depth, temperature or other
parameters, number of acoustic layers, etc.), comprising
both oceanographic and non-oceanographic parameters,
if the purpose is to give as output an accurate acoustic
signal (here, to compute an ‘acoustic forecast’ outcome),
then, the process of acoustic inversion plays a
significant role in determining adequate values for the
acoustic model input. Should the model input structure
be slightly modified (e.g. increasing the detail of the
bathymetry, decreasing the complexity of the bottom
parameterization), then, in principle, it would be pos-
sible to obtain other ‘acoustic forecast’ outcomes with
the same accuracy, by re-adjusting the values for the
parameters of the new environmental model.

Let us refer back to Figs. 5 and 6. It can be seen, by
comparing the reasonably stable Bartlett values in the
dashed line of Fig. 8 with the unstable values for the
water column – Fig. 5 – and some of the bottom
parameter estimates – Fig. 6 – that the unstability
observed in the inverted values can be attributed to the
equivalent acoustic model concept. Considering the
higher frequency period – see Fig. 2 – where the
bathymetry is mildly range-independent, it is unlikely
that the referred physical parameters have such sig-
nificant different values. To attain the objective of
acoustic forecast, it is desirable to perform acoustic
simulations with stable environmental parameters, in
order to maximize the forecast window duration and
minimize the forecast uncertainty. This is possible, in
principle, by combining the inversion results in Fig. 6 –
for assumed space-invariant parameters – in order to

obtain a single environmental parameter set which con-
tains most of the acoustic information contained in any
of the outcomes in Fig. 6.

In conclusion, having at hand only the water column
conditions forecast and archival bottom data from a
given area of interest, is seen to not provide enough
information to obtain an optimum acoustic output,
where optimality must be defined e.g. in the Bartlett
sense, TL-sense, etc. This is a natural consequence of
model-based acoustic prediction, and also of dealing
with estimated quantities with intrinsic variances: the
water column conditions forecast is the output of an
oceanographic estimator with a coarse resolution in
space, and optimizing only for oceanographic quanti-
ties; the archival bottom data, taken either from mea-
sures or from ‘historical’ acoustic inversions, also
contains uncertainties, and usually correspond to an
even coarser space resolution.

4. Conclusion

This paper considered the problem of environmental
and acoustic assessment with data from the MREA '03
sea trial, an acoustic–oceanographic experiment where
the acoustic signals of interest were received in a 3-
hydrophone array, which is part of the self-contained
Acoustic–Oceanographic Buoy. Environmental assess-
ment is an established discipline, where ocean predic-
tion systems, and more recently, acoustic inversion
tools, play a fundamental role. This paper has pointed
out the importance of combining such estimation tools,
to obtain what was designated by acoustic assessment,
i.e., the estimation of the present and future acoustic
field on the observing array.

The problem of predicting the acoustic field on the
array was conceptually approached. Here, the focus was
on the strong dependence of the acoustic forecast result
on the acoustic model parameterization. This allowed to
formulate the problem of acoustic forecast as a problem
of estimating the optimal acoustic model environmental
input. With the aim of predicting the acoustic signal, a
comparison was done between actual acoustic data and
candidate simulations. The latter differed on the struc-
ture of the environmental input, which alternatively
considered water column conditions coming from fore-
casts or acoustic inversion, and geo-acoustic properties
derived from archival data or acoustic inversion. The
results have shown that the acoustic simulated field
closest to the actual field is the one corresponding to the
inverted environment. This shows the gain that can be
obtained from acoustic inversion, by comparison to
traditional acoustic forecast techniques, where the
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forecast water temperature and geo-acoustic properties
(even if coming from direct core measurements) are fed
directly to the acoustic propagation model. Acoustic
inversion can be interpreted as a ‘fine-tuner’ of the
propagation model input parameters.

Considering the present study, the intrinsic problem
is that, at the time of the forecast estimation, there is no
information about the signal received in the future time,
and the possibility of doing acoustic inversion is con-
fined to acoustic data that might be acquired at present
time. In this paper, the ‘acoustic forecast’ results quality
are to be treated as an upper bound, since the envi-
ronmental parameter considered to compute the acoustic
field was determined by acoustic inversion of the off-
line future data.

Future work will use training data sets consisting of
environmental inversion results and environmental
nowcasts, to estimate transforming functionals between
these two environment outcomes. The transforming
functionals are to be used with water column forecasts,
to produce estimates of future inverted environmental
outcomes, and finally future acoustic outputs (acoustic
forecasts) on the array.
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