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LARSyS,

Campus de Gambelas - Universidade do Algarve,

PT-8005-139 Faro Portugala)

Frédéric Sturm
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INTRODUCTION

Modeling of acoustic fields in three-dimensional waveguides had been an active field of research for
many years;2, 6, 7, 11, 23 the wedge problem has been an important reference in this context given the avail-
ability of an analytical solution.3, 4, 20, 22 Despite the apparent simplicity of the wedge waveguide the corre-
sponding solution has revealed many interesting features of three-dimensional propagation, such as horizon-
tal refraction and mode coupling. Experimental evidence also indicates important features of out-of-plane
propagation, i.e. rays that propagate up-slope before connecting a source to a receiver.15, 17 The issue of
cross-slope wedge propagation has been discussed in detail in9, 18, 19 for experimental data and for analyti-
cal predictions of adiabatic and non-adiabatic propagation using the parabolic equation model 3DWAPE;17

the model was able to provide extremely accurate predictions in all cases. The main goal of the work pre-
sented here is to develop a benchmarking of cross-slope wedge propagation with three-dimensional models,
relying on normal mode and ray tracing theory; the analytical cases and the experimental data for which
3DWAPE was already benchmarked are again considered. Such benchmarking is expected to identify the
advantages, accuracy and limitations of models that rely on approximations, different to the one used by
the parabolic method; the discussion is also important for the development of applications in more general
three-dimensional waveguides. This work is organized as follows: the geometry of the wedge problem is
presented in section 2, together with a compact description of the analytical solutions and of the tank scale
experiment; section 3 describes the three-dimensional models used in the benchmarking, while section 5
presents the results of benchmarking. The main conclusions and future work are presented in section 6.

CROSS-SLOPE WEDGE PROPAGATION

The geometry of cross-slope wedge propagation is shown in Fig. 1; bottom slope is given by α, the
source is located at the position (0, 0, zs) and the array is aligned horizontally along the Y axis; sound speed
in the water is constant, and the bottom is homogeneous, characterized by a given density, compressional
speed and attenuation; bottom shear is not considered. The following sections briefly discuss the analytical
solutions (which are available at the Ocean Acoustics Library website8), together with the scale experiment.
Specific values of wedge parameters are presented in section 5 and are further used for benchmarking.

ADIABATIC PROPAGATION

Three-dimensional propagation in any waveguide can be expanded on a basis of local modes, with modal
amplitudes obeying a set of differential equations containing crossed (non-diagonal) terms. For the specific
conditions of the wedge the local modes can be calculated using the formalism of the Pekeris waveguide; the
adiabatic approximation further relies on neglecting non-diagonal terms, a condition that is valid for “small”
values of α, altough this assumption is difficult to define for an arbitrary set of wedge parameters. When
mode coupling is neglected the original system of equations for the modal amplitudes is simplified and can
be solved analytically.9

NON-ADIABATIC PROPAGATION

The analytical solution for the wedge problem is based on the method of images; generally speaking, the
contribution of each image can be represented in terms of a Bessel function expansion inside an improper
integral; numerical implementation of the solution is generally intensive because the convergence of the
series is slow, and worsens when small α are considered; in this case the image solution can be replaced
with the much faster adiabatic solution.



EXPERIMENTAL DATA

Experimental data for benchmarking was obtained from a scale experiment, that was developed in July
2007 at the LMA-CNRS laboratory in Marseille, using an indoor shallow water tank with dimensions 10-m
long, 3-m wide and 1-m deep.,18 A bottom sloped half-space was made with river sand, whose properties
were measured carefully. Five-cycle pulses with Gaussian envelopes were transmitted in the watercolumn
overlying the sandy bottom for three different depths of the acoustic source. Time series were recorded in
a cross-slope direction at consecutive ranges from the source with step ∆r = 0.1 m up to 5 m. In order to
compare the results of the scale experiment with model predictions the following conventions will be used
in section 5:

• Experimental frequencies in kHz will be indicated as model frequencies in Hz (for instance, an exper-
imental frequency of 150 kHz will be indicated as a model frequency of 150 Hz).

• Experimental depths in cm will be indicated as model depths in m (for instance, an experimental
source depth of 8.3 cm will be indicated as a model source depth of 8.3 m).

• Experimental ranges in m will be indicated as model ranges in km (for instance, an experimental range
of 5 m will be indicated as a model range of 5 km).

• Attenuation units in dB/λ and sound speeds do not require any conversion.

THE MODELS

The models used for benchmarking were KRAKEN (a normal mode model), Bellhop3D and TRACEO3D
(both based on ray tracing). All models are described in the following sections.

KRAKEN

KRAKEN is a well known model based on normal mode theory,12 which is distributed as part of the
Acoustic Toolbox.8 KRAKEN is often used for two-dimensional calculations, but three-dimensional calcu-
lations in a variable bathymetry can be developed through the combination of local modes along different
bearings starting from the source; such calculations rely on an adiabatic approximation, which can account
for horizontal refraction.12

BELLHOP3D AND TRACEO3D

Bellhop3D is a recent three-dimensional extension of the Bellhop ray model;10, 13 both Bellhop and Bell-
hop3D are also part of the Acoustic Toolbox. Correspondingly, TRACEO3D is a recent three-dimensional
extension of the TRACEO ray model.14 Generally speaking, Bellhop3D and TRACEO3D produce a predic-
tion of the acoustic field in two steps: first, the Eikonal equation is solved in order to provide ray trajectories;
second, ray trajectories are considered as the central axes of Gaussian beams, and the acoustic field is cal-
culated as the coherent superposition of beam influences. Bellhop3D and TRACEO3D rely on different
numerical strategies to proceed along the two steps; yet, a detailed description of the corresponding details
is far beyond the main purpose of this work and will be addressed independently in the future.

BENCHMARKING

The wedge waveguides discussed in9, 19 and18 are here again considered for benchmarking with the most
recent versions of KRAKEN, Bellhop3D and TRACEO3D, looking for a common reference with 3DWAPE;
it should be noticed that, in a certain sense, there are an “old” and “recent”versions of 3DWAPE, since in



between the references cited above the model was progressively updated; the discussion presented here
is more focused on testing the accuracy of predictions, rather than discussing which version of 3DWAPE
was used. Waveguide parameters and corresponding values are summarized in Table 1 and Table 2; the
parameters for the non-adiabatic case correspond to the well known 3-D ASA wedge benchmark. The
benchmarking is particularly demanding for all models because field coherence is expected to be properly
predicted for large values of R/D(0); for the ray tracing models is additionally demanding because the
frequencies in all cases are below the threshold of validity of ray theory, given by:5

f > 10
cw
D(0)

. (1)

Ray model accuracy at low frequencies can be improved by including the beam displacement approxima-
tion, in which a ray propagates along a boundary before being reflected back to the watercolumn.1 Beam
displacement has been discussed for two-dimensional modeling in the case of flat and sloped bottoms;21, 24

for a Gaussian beam model the approximation needs to be written in terms of beam parameters, and it is
implemented in Bellhop only for a flat boundary (unfortunately, it seems to be undocumented). It will be
shown later that beam displacement can be replaced with a much simpler approach, namely by using an
“equivalent” value of cb, lower than the real one. The physical explanation fot this remains unclear, as well
as the criterion that can lead to a proper choice of the equivalent cb; both issues are expected to be addressed
in future discussions. Predictions with the KRAKEN model were produced in the analytical cases using a
set of N × N nodes, which defined a mesh based on Delaunay triangulation; an optimal value of N was
selected once convergence was achieved; horizontal refraction was taken into account to improve accuracy.
KRAKEN three-dimensional calculations rely on an adiabatic approximation; therefore, it was not surpris-
ing to find that the corresponding predictions for the experimental data did not produce accurate results; for
this reason only Bellhop3D and TRACEO3D results are shown in this case. To generate a prediction with
the ray models it was produced first a prediction with KRAKEN for a flat case; an estimate of ray aperture
(i.e. of [−θmax, θmax], where θ stands for ray elevation - the angle relative to the XY plane) was produced
by minimizing the standard deviation between the transmission losses calculated by KRAKEN and by the
ray model along a single azimuth (i.e. the angle φ on theXY plane relative to theX axis). With θmin fixed a
prediction was produced by the ray model along several azimuths, starting from φ = 90◦, until convergence
was achieved. Rays launched along a common azimuth quickly spread over the wedge in different direc-
tions depending on the original ray elevation; therefore, a value of Nθ = 401 was used to ensure a proper
superposition of beam influences. Values of θmax and [φmin, φmax] are indicated in all cases.

ANALYTICAL SOLUTIONS

Benchmarking results with KRAKEN, Bellhop3D and TRACEO3D for adiabatic propagation are shown
in Fig. 2; to ease the comparisons the entire range is divided in two intervals, one from 0 to 4 km and one
from 4 to 8 km. The KRAKEN prediction was obtained with N = 35; parameters for the ray models were
given by θmax = 38◦ and φ ∈ [90◦, 100◦]. Clearly KRAKEN produces the best match in the first interval,
while in the second interval the prediction starts to exhibit a progressive phase mismatch; Bellhop3D and
TRACEO3D produce very similar predictions along the two intervals, but they tend to follow KRAKEN’s
phase, rather than the reference one; Bellhop3D and TRACEO3D also produce less smooth predictions, a
fact which is believed to be due to the low value of frequency.

Benchmarking results with KRAKEN, Bellhop3D and TRACEO3D for non-adiabatic propagation are
shown in Fig. 3; again, to ease the comparisons the entire range is divided in two intervals, one from
0 to 9 km and one from 9 to 18 km; beyond 18 km propagation is dominated by the first mode. The
KRAKEN prediction was obtained with N = 41; parameters for the ray models are given by θmax = 29◦

and φ ∈ [90◦, 110◦]. This time KRAKEN’s prediction is accurate only up to 5 km, after that phase and
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Figure 1: Cross-slope wedge geometry; α stands for the bottom slope, D(0) is bottom depth at the source
position, the double circle indicates the position of the acoustic source, the hydrophone array is located
along the Y axis.

Table 1: Wedge parameters and corresponding symbols.

Parameter Symbol
Bottom slope α

Source frequency f

Depth at source position D(0)

Source depth zs

Receiver depth zr

Maximal range R

Water sound speed cw

Bottom compressional speed cb

Bottom compressional density ρb

Bottom compressional attenuation αb



Table 2: Wedge parameters for the different benchmarking cases and corresponding units.

Adiabatic Non-adiabatic LMA-CNRS Experiment Units
α 0.5 2.86 4.55 4.55 4.55 degrees
f 50 18 150 150 150 Hz

D(0) 90 200 44.4 44.2 44.1 m
R 8 25 5 5 5 km
zs 10 100 8.3 17.5 25.4 m
zr 10 30 9.3 8.5 8.5 m
cw 1500 1500 1488.2 1488.7 1488.7 m/s
cb 2000 1700 1700 1700 1700 m/s
ρb 2 1.5 1.99 1.99 1.99 kg/m3

αb 0.5 0.5 0.5 0.5 0.5 dB/λ
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Figure 2: Benchmarking results for the analytical adiabatic case: interval from 0 to 4 km (top), and from
4 to 8 km (bottom); color convention: black, reference; gray, KRAKEN; thin black, Bellhop3D; dashed
gray, TRACEO3D.



amplitude mismatches steadily grow and the model prediction deviates from the reference solution; this is
believed to be due to the failure of the adiabatic approximation used by KRAKEN, which is no longer valid
for the given wedge slope. Despite the low value of frequency Bellhop3D produces a surprisingly accurate
match, both im amplitude and phase, while TRACEO3D produces a good amplitude prediction, but steadily
accumulates a phase mismatch along range.

EXPERIMENTAL DATA

The scale tank experiment considered three different positions of the acoustic source (see Table. 2),
called “H1”,“H2” and “H3”, for the upper, middle and lower positions, respectively. Experimental data
for H1 was acquired not only at 150 kHz, but also at 122, 141.6, 161.13 and 180.05 kHz1. An important
aspect of the experimental parameters indicated in Table. 2 is that they were optimized for 3DWAPE to
produce the best predictions of transmission loss. The analytical solution for non-adiabatic propagation can
be used here for an important test, namely, to compare the analytical predictions with the experimental data
using the parameters shown in the table. Surprisingly, such predictions (not shown here) exhibit a slight
phase mismatch in all cases. It was found that the phase mismatch could be mitigated (and the accuracy of
prediction greatly improved) by using a value of cb, lower than the one indicated in Table. 2. The reason
for this remains unclear; it is believed to be an important feature of model ambiguity, in the sense that
different three-dimensional models will not necessarily provide a common set of waveguide parameters
when optimized to the same set of data. To provide a proper reference for the benchmarking of Bellhop3D
and TRACEO3D with the experimental data the following strategy was adopted: analytical solutions were
compared with the experimental data, for all frequencies and source positions, lowering the value of cb until
the best match was achieved; the value of cb that provided the better match along frequencies and source
position was used as the “equivalent” cb to used for benchmarking. In this way the parameters for the ray
models were given by θmax = 24◦, φ ∈ [90◦, 110◦] and cb = 1656 m/s.

Benchmarking results with Bellhop3D and TRACEO3D for the upper position of the acoustic source
and different frequencies are shown in Fig. 4. They indicate that as long as the eqivalent value of cb is used
Bellhop3D and TRACEO3D are able to produce accurate predictions of the experimental data along the
different frequencies.

Benchmarking results with Bellhop3D and TRACEO3D for the three positions of the acoustic source
and 150 Hz are shown in Fig. 5. One more time Bellhop3D and TRACEO3D produce similar predictions,
but as source depth increases both predictions start to deviate from the reference, implying that the strategy
of using a lower cb is not always effective.

CONCLUSIONS AND FUTURE WORK

A three-dimensional benchmarking for cross-slope wedge propagation, with a normal mode model and
two ray tracing models, was discussed in detail for analytical solutions and for experimental data. Generally
speaking, the results are encouraging. The normal mode model KRAKEN was able to provide smooth and
accurate predictions for the adiabatic case; despite the low frequencies considered in all cases the recent
ray models Bellhop3D and TRACEO3D were found to provide accurate predictions, when the reference
compressional sound speed was substituted with an equivalent value. Such substitution is believed to be
a simpler way to account for beam displacement, although this hypothesis requires further research. As
shown by the comparison between the source images solution and experimental data (not shown in this
discussion) this issue is also related to model ambiguity, in the sense that optimization to the same data with
different three-dimensional models can provide different waveguide parameters. Bellhop3D was found to

1Experimental frequencies; for modeling purposes a factor 1000:1 is applied, thus 122 kHz becomes 122 Hz, 141.6 kHz becomes
141.6 Hz, and so on.
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Figure 3: Benchmarking results for the analytical non-adiabatic case: interval from 0 to 9 km (top), and
from 9 to 18 km (bottom); color convention: black, reference; gray, KRAKEN; thin black, Bellhop3D;
dashed gray, TRACEO3D.
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Figure 4: Benchmarking results for experimental data and the upper position of the acoustic source;
from top to bottom: 122, 141.6, 161.13 and 180.05 Hz; color convention: black, reference; thin black,
Bellhop3D; dashed gray, TRACEO3D.
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Figure 5: Benchmarking results for experimental data and different positions of the acoustic source: H1
(top), H2 (middle) amd H3 (bottom); color convention: black, reference; thin black, Bellhop3D; dashed
gray, TRACEO3D.



be the fastest model in terms of computational speed, followed by KRAKEN and TRACEO3D; certainly,
the current version of TRACEO3D will be improved to allow faster computations. The specific numerical
strategies adopted by each model are worth additional discussion, and will be addressed in detail in the
future. Development of studies for real environments, with complex bathymetries and sound speed fields,
will be also of fundamental importance.
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