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Abstract.
Experimental observations of acoustic propagation through a Soliton

Wave Packet (SWP) show an abnormally large attenuation over some fre-
quencies, that was found to be significantly time dependent and anisotropic.
Nevertheless, by remarking the problem of signal attenuation, the approach
used in most of the studies can be considered as ”static” since no additional
effects were taken into account as a SWP evolves in range and time. Hy-
drographic and acoustic data from the INTIMATE’96 experiment clearly
exhibit traces of the presence of soliton packets, but in contrast with known
observations of attenuation its frequency response also reveals a sudden
increase of signal amplitude, which may be due to a focussing effect. This
signal increase appears to be in coincidence with a significant peak found in
current and temperature records. However, the correlation of both acous-
tic and hydrographic features is difficult to support due to the different
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time scales between the rate of hydrographic data sampling and the rate
of signal transmissions. In order to study the possibility that a SWP could
be responsible for the observed signal increase the INTIMATE’96 hydro-
graphic data was used to generate physically consistent distributions of
”soliton-like” fields of temperature and sound velocity, which were used
as input for a range-dependent normal-mode model; it was found that for
a particular soliton field the set of ”dynamic” (i.e., range-dependent and
time-dependent) acoustic simulations reveals an acoustic signature similar
to that observed in the data. These results contribute to a better under-
standing of underwater propagation in shallow-water coastal environments
and therefore provide a potential basis for range-dependent temperature
and sound speed inversions.

1. Introduction

It is known that naturally generated solitons can be often observed in
coastal zones, as a result of nonlinear interaction of the surface tide with the
continental shelf; the generation mechanism remains however poorly under-
stood. The significant circulation of organic surfactants caused by SWPs
induces small displacements of the ocean level and leads to a modulation
of the sea-surface roughness which can be clearly detected by satellite SAR
images. Such surface signatures provide a detailed information about the
propagation characteristics of SWPs (Small et al., 1995). Soliton packets
have been observed by satellite almost everywhere in coastal zones and in
particular near Portugal. Observations of propagating solitons include also
a considerable amount of current and temperature measurements. For ins-
tance during the summer of 1994 current and temperature data taken near
Porto (Sherwin et al., 1996) allowed for the observation of a wave packet,
constituted by three solitons, which could be tracked during its propaga-
tion towards the shore. The waves were characterized by sudden isotherm
depressions of up to 45 m lasting 10–35 minutes, accompanied by current
surges of up to 0.45 m/s and shears of up to 0.7 m/s (over 60 m). SWPs
propagated away from the shelf break towards the shore with an average
speed of 0.56 m/s and appeared each tidal cycle, which confirms the im-
portant role of tides as a significant source for the generation of SWPs.

The problem of acoustic propagation through SWPs has been inten-
sively studied in the last years, essentially in order to explain the anoma-
lous frequency response of shallow-water propagating signals, which were
found to be strongly time dependent, anisotropic and sometimes exhibit-
ing an abnormally large attenuation over some frequency range (Zhou et
al., 1991), (Caille et al., 1997). Most of the known reports remarked the
problem of signal attenuation, without regarding to additional effects as a
soliton packet evolves in time and range. Hydrographic and acoustic data
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from the INTIMATE’96 experiment clearly exhibit traces of soliton pre-
sence. However, in contrast with referenced observations of attenuation the
frequency response reveals also a ”soliton-like” acoustic signature which
corresponds to an increase of signal amplitude. Such acoustic feature can
be due to a focussing effect. In order to study the possibility that the signal
increase could be caused by the presence of a SWP in the acoustic wave-
guide the hydrographic data was used to generate physically consistent dis-
tributions of ”soliton-like” fields of temperature and sound velocity, which
were used as input for a range-dependent acoustic propagation model. As
will be shown in the following sections the results of acoustic ”dynamic”
(i.e., range-dependent and time-dependent) simulations strongly support
the assumption that a particular SWP was responsible for the observed
soliton-like acoustic signature.

2. Theoretical Background

2.1. HYDRODYNAMIC NORMAL MODES

For an environment with complex stratification the main characteristics
of SWPs depend on the Hydrodynamic Normal Modes (hereafter HNMs),
which are solutions of the linear rotationless form of coupled Hydrodynamic
Equations. The dependence of SWPS on HNMs is of central importance for
a detailed description of soliton propagation. For this reason this theoretical
background will start with a short introduction regarding HNMs.

In the absence of rotation the system of linear coupled Hydrodynamic
Equations for the dynamic fields of current, density and pressure can be
written as follows (Apel, 1987):
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It can be shown that the dynamic fields can be expanded in terms of HNMs
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where N2 is the buoyancy frequency, which can be properly estimated from
the mean temperature T0(z), D is the water depth, φm = dΨm/dz and Ψm

obeys the following differential equation:

d2Ψm

dz2
+
N2

C2
m

Ψm = 0 .

Under top and bottom boundary conditions Ψm(0) = Ψm(D) = 0 the
HNMs will constitute two different orthogonal sets:

〈φmφn〉 =
〈
N2ΨmΨn

〉
= 0 ,

where m 6= n and the ”inner product” 〈 〉 is defined as
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. . . dz .

2.2. THE KORTEWEG-DE VRIES ”MODAL” EQUATION

Let us consider now that p = p0 + p′, ρ = ρ0 + ρ′, with dp0/dz + ρ0g = 0,
where (ρ′, p′) are perturbations from a mean state (ρ0(z), p0(z)). Under
this assumption the nonlinear rotationless form of coupled Hydrodynamic
Equations can be written as follows:
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w =
∂ξ

∂t
+∇h

(→
Uhξ

)
, ξ =

∑
m

ηmΨm .

where ξ represents nonlinear vertical displacement. Using the orthogonal
properties of HNMs and neglecting modal coupling and highly nonlinear
terms the set of nonlinear coupled equations can be reduced to the set of
Boussinesq equations (Ostrovsky, 1978), (Gabov, 1988):
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. Considering that the nonlinear perturbation

propagates along the x axis and by taking (Gabov, 1988)
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and ∂/∂t ≈ −Cm∂/∂x it can be obtained that modal vertical displacement
ηm obeys the following nonlinear equation:

∂ηm
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+
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which is called the Korteweg-de Vries ”Modal” equation (hereafter KdV).
The KdV equation applies also to Um, from which follows that Um ∼ ηm.
This implies that in the case of soliton propagation both modal vertical
displacement and current modal amplitudes will exhibit similar ”soliton-
like” shapes. In contrast with the corresponding equation for a homoge-
neous fluid (Gabov, 1988), which admits the generation of a single soliton,
it follows from Eq.(1) that each HNM generates a ”modal” soliton, with
characteristics that depend on that HNM.

2.3. THE ”SECH” SOLUTION

For displacements having large enough amplitudes and steepness it can be
shown that the KdV equation admits the well-known ”sech” solution (Apel
et al., 1997):

ηm = η0
msech2

(
x− Cmt

∆m

)
(2)
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where η0
m represents the peak amplitude of the modal soliton, which has a

nonlinear characteristic width

∆m =

√
12βm
αmη0

m

, (3)

and propagates with a nonlinear phase speed given by

Cm = Cm +
αmη

0
m

3
.

As seen from the above equations ∆m is inversely proportional to the am-
plitude of the modal soliton, whereas Cm is linearly proportional to η0

m. The
implication is that the larger η0

m, the faster the soliton propagates and the
narrower or steeper the soliton is. The solution given by Eq.(2) describes
a single nonlinear perturbation, which propagates in both time and range
without deforming its shape. In this way a single modal ”sech” solution
does not agree with observations, which show the propagation of SWPs
exhibiting dispersive properties and made up of different ”components”.
However, a reasonable explanation for this is that each component of the
SWP corresponds to a particular ”sech” profile and dispersion is a direct
consequence of the different phase speeds of packet components.

2.4. THE ”DNOIDAL” SOLUTION

Another solution to the KdV equation is (Apel et al., 1997):

ηm = η0
m

[
2dn2

(m,S)

(
x− Cmt

∆m

)
− (1− S

2)
]

(4)

where the index S is a complex function of normalized variable τ = x/Cmt
and dnS(ϕ) is the ”dnoidal” Jacobi elliptic function. Shapes of the ”dnoidal”
solution agree well with backscattered profiles measured from SAR images
(Apel et al., 1997). As S → 1 the above expression becomes the ”sech”
profile. The dynamics of a ”dnoidal” soliton is completely different than
the one of the ”sech” profile. Eq.(4) describes not a single but an entire
SWP which evolves in time and range. The number of solitons within the
packet depends on S and τ . This implies that one can derive entire sets of
”dnoidal” soliton packets from a single HNM.

For certain parameter choices the ”dnoidal” profile resembles better the
observations of SWPs. However, this leads to some ambiguity because if a
single ”dnoidal” solution resembles an entire packet it is not clear which of
the modal solutions has to be considered, and there is also the possibility
that the packet is made up of several ”dnoidal” components. This matter is
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clearly related with the discussion of packet propagation in terms of ”sech”
components and will be recalled during the discussion of thermistor data.

2.5. TEMPERATURE PERTURBATIONS

From the analysis of coupled nonlinear and rotationless form of Hydro-
dynamic Equations it follows that modal amplitudes of horizontal current
components depend linearly on modal vertical displacement (Um,Vm) ∼
ηm. Nevertheless, from a tomographical point of view, the system of Hy-
drodynamic Equations does not provide a physical basis for expanding the
sound speed field. To address the tomographic issue let us recall the ther-
modynamical equation (LeBlond et al., 1989)

D

Dt
(ρCvT ) = ∇ (kT∇T ) +QT

where Cv denotes the specific heat at constant volume, kT is the thermal
conductivity and QT represents all sources and sinks of heat. Linearizing
and solving this differential equation (Rodŕıguez et al., 1998) one can obtain
that:

T ≈ T0(z) +
dT0

dz

∑
m

TmΨm , (5)

where Tm ∼ ηm. The approximation becomes linear when dT0/dz ≈ con-
stant.

3. Hydrographic and Acoustic Data

The INTIMATE’96 experiment, performed during the summer 1996, North
of Lisbon (see Fig.1), was the first experiment on underwater acoustics to
be performed in Portuguese waters and involved the collaboration of several
institutions: the Universidade do Algarve, Faro, the Instituto Hidrográfico,
Lisbon, both from Portugal and the Centre Militaire Oceanographique–
SHOM, Brest, France, and has also received support from the Saclant Un-
dersea Research Centre, La Spezia, Italy. The experiment was conceived
with the main goal of applying the methods of Ocean Acoustic Tomogra-
phy to the detection and inversion of the internal tide. The area of the
experimental site was chosen because of the potential presence of internal
tides and internal waves. Some characteristics of the experimental site were
known from previous surveys performed by the Instituto Hidrográfico.

The general strategy of the INTIMATE’96 experiment was the follow-
ing (see Fig.2): the French vessel BO’DENTRECASTEAUX carried the
acoustic source which emitted a 2 seconds long LFM chirp with a band-
width of 500 Hz between 300 and 800 Hz, repeated every 8 seconds. The
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Figure 1. The INTIMATE’96 experimental site

Figure 2. General strategy of the INTIMATE’96 experiment
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signal was received on a Vertical Linear Array (hereafter VLA) with four
hydrophones, and then transmitted by radio to the Portuguese vessel NRP
ANDROMEDA, for online monitoring and backup.

Transmissions were performed from North and West positions, along
range-independent and range-dependent acoustic tracks, respectively, with
corresponding distances of 5.6 and 6.4 kms (see Fig.3). During the experi-
ment it was also conducted an intensive survey of thermistor, CTD, XBT
and ADCP data, which allowed for the calculations of empirical orthogonal
functions (hereafter EOFs) of currents and temperature, and also for the
calculations of HNMs (see Fig.4). In particular a high degree of correla-
tion was found between EOFs and HNMs, up to mode 3 (Rodŕıguez et al.,
1998). This is very significant since it indicates that every HNM is equiv-
alent to the corresponding EOF. Furthermore, the quantity and resolution
of EOFs depends on the number and resolution of measured profiles, while
HNMs can be obtained from a coarse estimate of mean temperature and
still provide a detailed description of the environmental dynamics. Once
the HNMs were determined, the relationship Eq.(3) was used to calculate
the characteristic soliton width ∆m as a function of peak amplitude η0

m (see
Fig.5). An important result of these calculations is that ∆m is complex ex-
cept for HNMs 1, 5, 11, 15 and 19. This simplifies significantly the analysis
of propagating SWPs since together with the degree of correlation between
HNMs and EOFs mentioned previously, the ambiguity related to the struc-
ture of soliton packets is eliminated: only the first modal solution of the
KdV equation will be responsible for the generation of SWPs. Whether the
packet corresponds to a ”sech” profile or a ”dnoidal” profile depends on
the particular conditions of soliton generation, which is beyond the scope
of this study.

Following the same type of analysis presented in (Apel et al., 1997), and
taking advantage of the correlation between EOFs and HNMs, the empirical
”modal” amplitudes of hydrographic data were filtered into low-pass and
high-pass frequency components; the cutoff frequency for separation was
chosen in order to obtain a ”tidal” band (with periods shorter than 18h)
and a ”buoyancy” band (with longer periods). Due to the low sampling
frequency (∼ 1/10 minutes) the estimation of vertical displacement from
thermistor data did not resolve the structure of soliton packets. Nevertheless
it was expected to ”capture” some of the solitons within a packet -if any-
in the high-pass frequency component; they could be recognized as being
part of a SWP due to the correlation of such peaks with the maximae of
the low-pass frequency component. However, the processing of data did not
provide any physical information about the direction and phase velocity of
SWPs due to the lack of information at other locations.

The results of filtering are shown in Figs.6 and 7. There are two common
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Figure 3. General bathymetry of the INTIMATE’96 experiment.

Figure 4. Normalized Hydrodynamic Normal Modes Ψm (continuous line) and their
derivatives φm (dott-dashed line) calculated from CTD data near the VLA.
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Figure 5. Characteristic modal soliton widths ∆m as a function of their peak amplitude
η0
m, with numbers indicated the corresponding indexes of the Hydrodynamic Normal

Mode.

features that can be seen in both figures: the first is the tidal oscillation of
the low-frequency components, which is related to the process of propaga-
tion of the internal tide; the second is the presence of significant ”peaks” in
all high-frequency components. For the case of currents (see Fig.6) peaks
reach amplitudes up to 40 cm/s, which agrees with observations from (Apel
et al., 1997) and (Sherwin et al., 1996). The distribution of peaks is not
arbitrary. By looking at their positions (see for instance Fig.7) it becomes
clear that peaks are ”aligned” with the maximae of the low-frequency com-
ponent, indicating propagation of tidal solitons. Peaks are located slightly
behind the maximae. A reasonable explanation for this is that the phase
speeds of the internal tide and SWPs are different, leading to a difference
in travel times as the internal tide and the SWPs propagate away from the
shelf break towards the shore.

4. Acoustic Data and Simulations

From an acoustic point of view the third peak found in the high pass filtered
thermistor data of Fig.7 was of particular interest, since part of acoustic
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Figure 6. Filtered modal amplitudes of horizontal current components u (top) and v
(bottom); units are given in cm/s.
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Figure 7. Filtered modal amplitude of temperature; units are given in Celsius degrees.

transmissions covered a temporal window of 3 hours around that peak. The
corresponding calculation of relative Transmission Loss (see Fig.8) revealed
two bright symmetric ”stripes” for which TL increases along frequencies.
This is an effect compatible with that expected from acoustic propagation
through a SWP. However, the most interesting feature is a ”soliton-like”
signature between the ”stripes”. It corresponds to an increase of signal
amplitude lasting over 15 minutes and can be due to a sort of focussing
effect. Such particular behaviour of TL along time is not described in any of
the consulted referencies. The increase in signal is significantly enhanced in
the curve of TL at 430 Hz (see Fig.9). Unfortunately the correlation between
the considered peak of thermistor data and the ”soliton-like” signature of
acoustic data is difficult to support due to the significant differences between
the sampling rate of hydrographic data (1 sample every 10 minutes) and the
rate of acoustic transmissions (1 transmission every 8 seconds). To clarify
this issue we exploited the theoretical knowledge on soliton propagation to
generate ”soliton-like” fields of temperature and sound velocity and used
them as input for the acoustic model C-SNAP (Ferla et al., 1993). From a
previous estimation on internal tide propagation (Rodŕıguez et al., 1998)
the angle of propagation of SWP was estimated as θ ≈ 15◦ (see Fig.10).
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The solutions Eqs.(2) and (4) were used to derive a single ”sech” profile and
several ”dnoidal” profiles, with the number of solitons within each packet
being controlled by S and τ . Acoustic simulations were performed with C-
SNAP at 430 Hz and for each of such fields, as if SWPs were propagating
from the VLA to the North Position. For each soliton profile it was found a
complex dependence of TL on the particular characteristics and position of
the SWP. The best result of simulations was obtained for a ”dnoidal” packet
with four solitons (see Fig.11). Simulated TL reproduces the behaviour of
attenuation, signal increase and attenuation again. However the pattern
is not symmetric around the attenuation maximae and the signal increase
lasts twice longer than observed. Additional calculations of TL at more
frequencies (see Fig.12) reveal the effect of signal increase if the constraint
of keeping only 10 propagating modes1 is applied. Again in simulations the
effect of signal increase is broader than that observed, and it holds only for
some frequencies.

The simulations described above concerned propagation from the point
of view of normal modes. However, it was also important to obtain some
support with the help of ray tracing. In order to accomplish this task it
was performed a preliminary range-independent ray tracing for a narrow
beam of rays (see Fig.13). From that figure it can be seen that the beam
width increases monotonically with range. Two cases of range-dependent
ray tracing were considered: the first for the position of the ”dnoidal” SWP
where signal attenuation was found (see Fig.14, on top), and the second,
where the SWP leads to signal increase (see Fig.14, on bottom). From the
ray tracing it can be seen that the SWP leads to additional refraction of rays
at the end of the ray beam. However, the refraction acts in different ways
depending on the position of the SWP: when compared with the range-
independent case, the beam becomes wider in the first case and narrower
(or ”focussed”) in the second. This indicates that one can expect a decrease
of signal amplitude followed by its increase as the SWP propagates towards
the source. These ray tracing simulations agree qualitatively with the results
that were obtained with C-SNAP.

The quantitative differences between real data and simulations indicate
that the soliton profile which provided the best results does not constitutes
the closest estimate to the real soliton perturbation. However, the quali-
tative agreement achieved confirms the assumption of propagating SWPs
providing the appropriate conditions for the observation of the signal in-
crease.

1This is twice more than the number of propagating modes considered in (Zhou et
al., 1991).
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Figure 8. Relative transmission loss in dB along frequency.

Figure 9. Averaged and smoothed transmission loss at 430 Hz.
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Figure 10. Considered geometry of SWP propagation.
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Figure 11. Simulated transmission loss at 430 Hz.

Figure 12. Dynamic simulations over frequency.
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Figure 13. Range-independent ray-tracing; part of the ”dnoidal” SWP is plotted for
comparison with the range-dependent cases (see below).

Figure 14. Range-dependent Ray-tracing showing beam spreading (on top) and focussing
(on bottom).
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5. Conclusions

On the basis of this analysis the following conclusions can be drawn: based
on the nonlinear rotationless form of Hydrodynamic Equations it can be
shown that a stratified environment admits the generation of ”modal” soli-
tons, with characteristics that depend on Hydrodynamic Normal Modes
(HNMs); the ”sech” solution of the KdV equation describes a single modal
nonlinear perturbation, which propagates in range and time without chang-
ing its shape; the ”dnoidal” modal solution of the same equation describes a
dynamically evolving SWP, where the number of solitons inside the packet
varies in range and time; further analysis of the nonlinear rotationless form
of Hydrodynamic Equations indicates that modal amplitudes of current
and temperature will be proportional to modal vertical displacement, i.e.,
will exhibit a similar ”soliton-like” shape; this can be exploited to generate
physically consistent ”soliton-like” distributions of temperature and sound
velocity; filtering of modal amplitudes of current and thermistor records
from the INTIMATE’96 experiment into low-pass and high-pass frequency
components reveals possible propagation of SWPs across the experimental
site; one of the SWPs is coincident with an increase of signal amplitude,
which can be due to a focussing effect; acoustic range-dependent and time-
dependent simulations through ”soliton-like” fields of sound velocity agree
with observations when a particular ”dnoidal” profile is considered; the re-
sults of normal-mode calculations are qualitatively supported with range-
dependent ray tracing tests for the positions of the SWP where the normal
mode results indicate successive signal attenuation and signal increase.
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