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Travel-time-based tomography is a classical method for inverting sound-speed perturbations in an
arbitrary environment. A linearization procedure enables relating travel-time perturbations to
sound-speed perturbations through a kernel matrix. Thus travel-time-based tomography essentially
relies on the inversion of the kernel matrix and is commonly called ‘‘linear inversion.’’ In practice,
its spatial resolution is limited by the number of resolved and independent arrivals, which is a basic
linear algebra requirement for linear inversion performance. Physically, arrival independency is
much more difficult to determine since it is closely related to the sound propagating channel
characteristics. This paper presents a brief review of linear inversion and shows that, in deep water,
the number of resolved arrivals is equal to the number of independent arrivals, while in shallow
water the number of independent arrivals can be much smaller than the number of resolved arrivals.
This implies that in shallow water there are physical limitations to the number of independent travel
times. Furthermore, those limitations are explained through the analysis of an equivalent
environment with a constant sound speed. The results of this paper are of central importance for the
understanding of travel-time-based shallow water tomography. ©2000 Acoustical Society of
America.@S0001-4966~00!01212-1#

PACS numbers: 43.30.Pc, 43.60.Rw@DLB#
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I. INTRODUCTION

Ocean acoustic tomography has been suggested in
last two decades as a powerful tool for large-scale oc
temperature monitoring. In contrast with standard ‘‘loca
and ‘‘direct’’ methods, ocean acoustic tomography can
used to remotely determine mean current and tempera
evolution through time in an ocean volume bounded b
system of acoustic sources and receivers.1,2 Travel-time-
based tomography has been widely used in the contex
ocean acoustic tomography to invert for sound-speed pe
bations of a background~reference! profile.1–5 For instance,
tomographic inversion can be performed by linearizing
integral relationship between perturbations in travel time a
continuous perturbations in sound speed. After linearizat
the perturbations in travel time are related to a set of disc
perturbations in sound speed through a kernel matrix, wh
depends on stable eigenrays of propagation. Sound-s
perturbations can be estimated by calculating a general
inverse of the kernel matrix and relating back the set
sound-speed perturbations to travel-time perturbations. T
technique is sometimes called ‘‘linear inversion’’ and
spatial resolution~i.e., the number of depths at which soun
speed perturbations can be reliably estimated! is fundamen-
tally limited by the number of resolved—and as we will s
independent—arrivals.

Despite the significant number of references related
linear inversion most studies are limited to its application
deep water, where the effects of sound reflection on
ocean boundaries can be, to a certain extent, neglected

a!Electronic mail: orodrig@ualg.pt
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acoustic arrivals can be easily resolved for long-range pro
gation. In shallow water the interaction of sound with t
ocean boundaries plays an important role and time resolu
of closely spaced arrivals is generally an important pract
issue. As an example, Fig. 1 shows a typical shallow wa
channel impulse response estimate. It is clear from that
ure that initial arrivals are unresolved, while late arrivals a
well resolved and ‘‘clustered’’ in quadruplets. From ra
tracing predictions it can be shown that most of the init
unresolved arrivals correspond to refracted and bottom
flected eigenrays, while the quadruplets correspond to
face and bottom reflected eigenrays. An important featur
this example is the significant number of resolved arrivals
the context of travel-time-based shallow water tomograp
and through linear inversion, it seems reasonable that th
arrivals should be used to achieve a high spatial resolutio
sound-speed estimates. This would be the case providing
all the resolved arrivals are independent, i.e., that all
acoustic arrivals that can be identified from one transmiss
to another correspond to ‘‘pieces’’ of information indepe
dently related to the perturbation of sound speed. This
sumption seems to be implicitly accepted in some of
studies concerning linear inversion.1,3,4 Nevertheless, it is
shown in this paper that for shallow water the number
independent arrivals is in fact smaller, and in some ca
much smaller, than the number of actually measured
resolved—arrivals. This result implies that in shallow wa
part of the acoustic arrivals carry redundant information a
therefore there are fundamental physical limitations to
number of independent arrivals. Furthermore, and most
portantly, this paper shows that the redundancy of shal
water stable arrivals can be explained through the comp
2816108(6)/2816/7/$17.00 © 2000 Acoustical Society of America
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son of the original waveguide with an isovelocity equivale
Therefore, as a contribution to the general problem of aco
tic tomography this paper presents the set of fundame
requirements for successful tomographic inversion of aco
tic data in the context of travel-time-based shallow wa
tomography. This paper is organized as follows: Sec. II p
sents a brief theoretical review of linear inversion. This
view is used in Sec. III to show, through simulations, that
deep water the number of independent arrivals is equal to
number of measured resolved travel times, while in shal
water the number of independent arrivals is much sma
than the number of actually measured resolved arrivals.
results of shallow water simulations are explained in Sec.
through the comparison of the original acoustic wavegu
with an isovelocity equivalent, and conclusions are drawn
Sec. V.

II. LINEAR INVERSION: THEORETICAL BACKGROUND

It can be shown on the basis of ray theory that the p
turbation in travel time of an acoustic pulse can be writ
as1,2

Dt5E
G

ds

c~z!
2E

G0

ds

c0~z!
, ~1!

whereG and G0 represent the eigenrays corresponding,
spectively, to the perturbed and background sound-sp
profilesc(z) andc0(z). The background sound-speed profi
c0(z) is considered to be known, for instance, from histori
data. For small perturbations of sound speeddc(z)5c(z)
2c0(z)!c0(z) one can takeG'G0 , so the previous equa
tion becomes

Dt i5t i2t i
05E

G i

ds

c~z!
2E

G i

ds

c0~z!
'2E

G i

dc~z!

c0
2~z!

ds,

~2!

where the integral is taken along the unperturbed eigen
G i . The fundamental statement of this relationship is tha
first-order perturbation in sound speed leads only to a fi

FIG. 1. Typical shallow water short-range arrival pattern showing un
solved~initial! and resolved~late! arrivals; resolved arrivals are ‘‘clustered
in groups of quadruplets@real data, taken from Jesuset al. ~Ref. 6!#.
2817 J. Acoust. Soc. Am., Vol. 108, No. 6, December 2000 O.
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order perturbation in travel time, while the path of the eige
ray is not affected by this perturbation. In this senseG i cor-
responds to a stable eigenray andt i andt i

0 can be considered
as resolved travel times~or resolved arrivals!. It is clear that
the number of perturbations in travel time should be equa
the number of resolved eigenrays or, correspondingly, to
number of resolved arrivals. By ‘‘collecting’’ a set ofT per-
turbations in travel time and representing the acoustic wa
guide as a system composed ofL layers, one obtains the
following linear system:2

y5Ex1n, ~3!

wherey5@Dt1Dt2 ...DtT# t, x5@dc1dc2 ...dcL# t, eachdcj

is an average ofdc(z) in the jth layer, andn represents the
contribution of noise to the set of observationsy. Since the
linear inversion will be tested with simulated data it will b
considered in the following that there is a perfect match
tween both sides of the equation and the observations
fully deterministic~i.e., n50!.

Matrix E, dimensionT3L, is called the ‘‘kernel ma-
trix,’’ the ei of which have the following structure:

ei5FDsi1

c01
2

Dsi2

c02
2 ...

DsiL

c0L
2 G , ~4!

whereDsi j stands for the length of rayi inside layerj with
i 51,2,...,T and j 51,2,...,L. The choice of the number of lay
ers L can be done in many different ways. In generalL is
made as large as possible and in practice it is often la
thanT. Under this assumption ofL.T, Eq. ~3! consists of an
underdetermined system of equations that has more
knowns than equations, and therefore has an infinite num
of solutions. Formally, the columns of matrixE form a de-
pendent set and, in practice, there is also no guarantee thT
rows of E are linearly independent, which is equivalent
saying thatE may be rank deficient. In terms of the unde
lying problem of time delays and sound-speed perturbatio
rank deficiency means that not all resolved arrivals ca
independent sound-speed information. Straight linear alge
tells us that such a system of equations has a solutionx, but
that solution is not unique; that is to say that further info
mation is needed to pick one among the possible solutio
The set of possible solutions are those that satisfy the sys
of equations

Ex̂5p, ~5!

wherex̂5@EtE#21Ety and thereforep is the projection ofy
onto the column space ofE. If such additional information is
not available, the solution of Eq.~5! is the one that has
minimum length. That solution is generally called the min
mum norm solution and is given by the pseudoinverse

x#5E#y. ~6!

The pseudoinverseE# is efficiently computed through the
singular value decomposition7 ~SVD! of matrix E, E
5USVt, which provides a way of dealing with the rank ofE
by analysis of the singular spectra,s1 ,s2 ,...,sT , diagonal
entries ofS, and further selection of the significants i in the
SVD. However, such selection can not be done in a uni
manner since it generally depends on the particular cha

-

2817C. Rodriguez and S. M. Jesus: Limitations of SW tomography



d
FIG. 2. Deep water test: Backgroun
c0(z) ~dotted-dashed line! and per-
turbed c(z) ~continuous line! SSPs
~left!; stable eigenrays~right!.
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teristics of the problem. And even with the SVD solutio
being a minimum norm solution, nothing guarantees t
such solution will be close to the searched solution, which
to say that minimizingix#i does not imply the minimization
of ix#2xi .

Finally, once the rank of the kernel matrix has be
calculated, the minimum norm solution can be written as

x#5VrSr
21Ur

t y, ~7!

where subscriptr5rank~E!, and denotes that matricesV and
U are formed by theirr first singular vectors, and matrixSr is
square with its first~highest! singular values along the diag
onal.

III. SIMULATION TESTS

Using the theoretical background presented in the pr
ous section, travel-time-based tomographic invers
through ray-tracing simulations is tested to determine
number of independent arrivals in both deep and shal
water scenarios. For each scenario a background and a
turbed sound-speed profile~SSP! are chosen in order to ob
tain a negative perturbation of sound speed, which co
sponds to positive perturbations in travel time. For each S
a set of eigenrays is calculated and the set of stable ei
rays, resolved arrivals, and corresponding perturbation
travel time are determined. The kernel matrix,E, is con-
structed with the stable eigenrays and then the inverse s
tion is calculated from its SVD. When dealing with real da
the number of independent eigenraysN ~which is the same as
the number of independent arrivals! can be estimated by us
ing statistical criteria.6,8 Since the test case presented here
fully deterministic, an alternative method for estimating t
rank of matrixE is proposed. That method takes advanta
of the structure of the inverse solution based on the SVD
the kernel matrix, which was discussed in the previous s
tion, and introduces the following functional:

E~ i !5
ixi

#2xi2

ixi
#i2 , ~8!
2818 J. Acoust. Soc. Am., Vol. 108, No. 6, December 2000 O.
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wherexi
# is the inverse solution obtained from Eq.~7! and

calculated with the firsti singular values. The ‘‘real’’ pertur-
bation x is calculated fromdc(z) ~which is known in our
simulated case! according to the adopted depth discretiz
tion. Using the functionalE( i ) one can obtain the following
estimator of the number of independent arrivalsN:

N̂5arg$min
i

E~ i !%. ~9!

The minimum ofE( i ) does not have to be a minimum in th
conventional sense since solutions withN51 or N5T will
also be admitted. IfN5T ~which should not be surprising!
the natural conclusion is that all resolved arrivals are in
pendent and therefore they all contribute with independ
information to the tomographic inversion. However, ifN
,T ~and from ray tracing there is no apparent reason for
to be so!, then the unexpected conclusion is that onlyN of T
resolved arrivals are independent, and the remainingN2T
convey redundant information. Those redundant arrivals w
not contribute with additional information to the tomogr
phic inversion. It will be shown in the following subsection
that in deep water one obtains the ‘‘expected’’ conclus
(N5T), while in shallow water part of the resolved arriva
are redundant, i.e.,N,T.

A. Deep water test

The well-known analytical expression for the Munk v
locity profile was used to generate the SSPs~see left panel of
Fig. 2!. Following the geometry of a real experiment4 the
acoustic source and the receiver depths arezs51500 andzr

51650 m, respectively, the depth of the acoustic wavegu
is D54100 m, and the distance separating the source and
receiver isR5270 km. The asymmetryzsÞzr is intentional.
In fact, as discussed by Munket al.,2 by locating both source
and receiver at the same depth one gets symmetric eigen
with turning points at the same depths. Therefore, th
eigenrays sample the ocean in the same way and constit
preliminary source of redundancy in the kernel matrix, whi
should be avoided. After eigenray ray tracing for the ba
ground and the perturbed SSPs, a set of five RR stable ei
2818C. Rodriguez and S. M. Jesus: Limitations of SW tomography
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rays and one surface-reflected–bottom-reflected~SRBR!
stable eigenray were found~see right panel of Fig. 2!. The
reflected eigenray should be considered in a somehow fo
way ~in fact this is the only eigenray that spans the en
water column! since in real conditions the amplitude o
SRBR eigenrays is difficult to detect over the level of en
ronmental noise.9 Using Eq.~8! it can be found thatN56
~see Fig. 3!. From this result it can be concluded that all t
resolved arrivals are independent and this is the ‘‘expect
conclusion.

B. Shallow water test

The shallow water background SSP for this test cor
sponds to the mean profile from conductivity, temperatu
depth ~CTD! data used in Jesuset al.;6 a particular profile
from the same data was considered to be representativ
the perturbed SSP~see left panel of Fig. 4!. The geometry of
propagation was taken also from that reference, with

FIG. 3. Deep water test: Estimation of independent arrivals; the projec
of the minimum@Eq. ~8!# onto the horizontal axis indicates the number
independent arrivalsN.
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acoustic source at depthzs590 m, the hydrophone at dept
zr5115 m and rangeR55.6 km, and the total depth of th
waveguide beingD5135 m. As in the deep water test, th
asymmetry zsÞzr avoids the redundancy of symmetr
eigenrays with equal turning depths. From ray tracing it c
be found that all eigenrays are of RBR or SRBR types~see
Fig. 5!. The RBR eigenrays@Fig. 5~a!# are not stable~see left
box of right panel of Fig. 4! and therefore they can not b
used in the tomographic inversion. The SRBR eigenr
@Fig. 5~b!# are stable and ‘‘clustered’’ in quadruplets and a
therefore, suitable for inversion purposes~see right box on
right panel of Fig. 4!. In general, the clustering of arrival
depends on the particular characteristics of the wavegu
geometry and associated SSP. For the shallow water env
ment and SSP of this test one can remark that each qua
plet contains the arrival timest, ordered according to the
general sequence,

~t2m21
1 ,t2m

1 ,t2m
2 ,t2m11

2 !, ~10!

where the index of eacht represents the number of refle
tions on the surface or bottom of the corresponding eigen
a ‘‘1’’ or a ‘‘ 2’’ sign indicates whether that eigenray wa
launched toward the surface or toward the bottom, resp
tively. To calculate the kernel matrix an homogeneous la
grid was introduced. Each layer has a thicknessDz54 m,
which is four times more than the spatial resolution of t
discretized sound-speed profile. The depth of every layer
terface was coincident with every fourth depth of the d
cretized sound speed. To simplify the calculations, additio
interfaces were added at depthszs , zr , andD, which were
not included in the homogeneous grid. Thus a total of
layers was used to calculate the kernel matrix. The so
speed for each layer was the average of the discretized s
speeds contained within the layer. The functionalE( i ) was
calculated considering a total of 20 resolved arrivals. Ho
ever, its minimum is reached atN54 ~see Fig. 6!, which
indicates that only 4 of the 20 resolved arrivals are indep
dent, while the other 16 are redundant. It should be remar
that this result is in agreement with a statistical estimation
uncorrelated paths presented in Jesuset al.6 It is clear that

n

-
-

FIG. 4. Shallow water test: Back-
groundc0(z) ~dotted-dashed line! and
perturbedc(z) ~continuous line! SSPs
~left!; backgroundt0 ~lower sequence!
and t ~upper sequence! travel times
~right!, left box indicates unstable ar
rivals, right box indicates resolved ar
rivals.
2819C. Rodriguez and S. M. Jesus: Limitations of SW tomography
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FIG. 5. Rays of propagation for un
stable arrivals~a! and stable arrivals
~b!. ~For simplicity only the first three
quadruplets are shown.!
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the result depends deeply on the particular structure of
kernel matrix, which will be discussed in the following se
tion.

IV. DISCUSSION

The simulation results obtained in the previous sect
show that the number of independent arrivals~and therefore,
of independent eigenrays! can be much lower than the num
ber of resolved arrivals. It follows from those results th
there are fundamental physical limitations to the number
independent parameters available for travel-time tomog
phy. However, the general understanding of the simula
results still remains incomplete because those results
sayhow manyof the eigenrays are independent, but they
not saywhich are the independent eigenrays and the rea
for being so. Intuitively it seems reasonable to admit t
each set of eigenrays, corresponding to a particular qua
plet, are independent, and therefore, that each of those e

FIG. 6. Shallow water test: Estimation of independent arrivals; the pro
tion of the minimum@Eq. ~8!# onto the horizontal axis indicates the numb
of independent arrivalsN.
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rays contains a ‘‘piece’’ of independent information.
mathematical terms this assumption states not only that r
~E!54, but also that for a given quadrupletq the correspond-
ing four rows inE are linearly independent, and can be us
to calculate the four rows of any other quadruplet. Howev
within the context of ray theory there is not a clear explan
tion to support this assumption. In part this is due to the f
that, for a generic sound-speed profilec0(z), one can not
derive explicit analytic expressions for each rowei of the
kernel matrix, thus ‘‘hiding’’ any possible dependence b
tween different sets of rows. In general, for a shallow wa
waveguide, one can expect that most of the SRBR eigen
are characterized by steep launching angles and by a sig
cant number of reflections on both surface and bottom.
the number of reflections increases, the shape of the SR
eigenrays tends to be closer to straight lines. Therefore, f
waveguide geometry like the one discussed in the shal
water test, but with an equivalent—constant—sound-sp
profile, the isovelocity kernel matrix can provide a reaso
able approximation to the original matrixE. Moreover, for a
constantc0 , each row ofE can be explicitly calculated, mak
ing it possible to understand which eigenrays are the in
pendent ones. Those results can provide fundamental kn
edge related to the structure of the original kernel matrix, a
thus provide an answer to the questions discussed in
beginning of this section.

In general, an SRBR eigenray launched to the surf
can arrive at the hydrophone after being reflected an
number of times 2m21, or after being reflected an eve
number of times 2m, wherem can take the values 1,2,...
The same kind of reasoning can be applied to an SR
eigenray being launched to the bottom. Thus for a fixedm,
there are four types of eigenrays connecting source and
ceiver. In the isovelocity case the launching angles of th
four eigenrays can be derived by inspection and are given

tanu2m21
1 5

~2m22!D1zs1zr

R
,

-

2820C. Rodriguez and S. M. Jesus: Limitations of SW tomography
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tanu2m
1 5

2mD1zs2zr

R
,

~11!

tanu2m21
2 5

2mD2zs2zr

R
,

tanu2m
2 5

2mD2zs1zr

R
,

where the convention of the ‘‘1’’ or a ‘‘ 2’’ sign was al-
ready introduced in the discussion of the shallow water t
The number of total reflections is given by the index of ea
u. There is no practical sense in calculating theum for large
values ofm because the contribution of a particular eigenr
to the pressure field decreases as the number of reflec
increases. Furthermore, the arrival times correspond to

tm
1/25

R

c0 cosum
1/2 . ~12!

For an isovelocity SSP the clustering of arrivals depe
mainly on the particular values ofzs , zr , D, andR. How-
ever, by taking the values used in the shallow water test,
taking c051510 m/s, it can be found that the set of fo
arrivals will be ordered again according to the general
quence Eq.~10!. For the sake of simplicity let us conside
further that the linear inversion is performed with a set oq
quadruplets, soT54q. A simple choice of the layer system
consists in selecting a homogeneous grid composed ofL lay-
ers, each with a thicknessDz5D/L. The layer thickness will
be taken sufficiently small to separate the source and
receiver with at least a single layer, i.e., the layer inde
will obey the following order:

j 51,2,...,L51,2,...,S,S11,...,R,R11,...,L. ~13!

The indexesS and R correspond to the integer parts
zs /Dz andzr /Dz, respectively. Furthermore, for the trave
time sequence given by Eq.~10! the isovelocity kernel ma-
trix can be written as

E53
e1

e2

e3

e4

e5

]

eT

4 53
@Ds11Ds12¯Ds1L#/c0

2

@Ds21Ds22¯Ds2L#/c0
2

@Ds31Ds32¯Ds3L#/c0
2

@Ds41Ds42¯Ds4L#/c0
2

@Ds51Ds52¯Ds5L#/c0
2

]

@DsT1DsT2¯DsTL#/c0
2

4
53

a2M21
1 3e2M21

1

a2M
1 3e2M

1

a2M
2 3e2M

2

a2M11
2 3e2M11

2

a2M11
1 3e2M11

1

]

a2M12q21
2 3e2M12q21

2

4 , ~14!

where am
1/25(c0

2 sinum
1/2)21, and the index 2M21 repre-

sents the number of even reflections of the first eigen
within the first quadruplet. The rowsem

1/2 are given by
2821 J. Acoust. Soc. Am., Vol. 108, No. 6, December 2000 O.
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e2m21
1 5@2mDz 2mDz...~2m2S!Dz

1zs~2m21!Dz...~2m212R!Dz

1zr~2m22!Dz...~2m22!Dz#,

e2m
1 5@2mDz 2mDz...~2m2S!Dz1zs~2m21!Dz...

~2m211R!Dz2zr2mDz...2mDz#,
~15!

e2m
2 5@2mDz 2mDz...~2m1S!Dz

2zs~2m11!Dz...~2m112R!Dz

1zr2mDz...2mDz#,

e2m11
2 5@2mDz 2mDz...~2m1S!Dz

2zs~2m11!Dz...~2m111R!Dz

2zr~2m12!Dz...~2m12!Dz#.

It follows from the previous set of equations that the ro
em

1/2 can be calculated recursively, through the relationsh

e2m11
1/2 2e2m21

1/2 5e2m12
1/2 2e2m

1/25@2Dz 2Dz...2Dz#. ~16!

As shown by Eqs.~15!, every four rowsei corresponding to
a given quadruplet are independent. Furthermore, sincea i is
a common factor to all the components of each rowei , the
set Eqs.~16! indicates the linear dependence between e
pair of rowsei andei 14 . In this way, the previous analysis o
the isovelocity kernel matrix indicates not onlyhow manyof
the eigenrays are independent@since the analysis shows tha
rank ~E!54#, but indicates also in detailwhich are the inde-
pendent eigenrays. For the case of a more generic so
speed profilec0(z), as the number of reflections increase
one notes that the slope of each SRBR eigenray approach
constant, given by the slope of the launching angle tau.
Also significant is that the length of a single eigenray cro
ing a particular layer approaches the ratioDz/sinu. In this
way, the general structure of Eqs.~15! suggests that, for the
shallow water test, each row ofE can be approximated as

ei'a i3FMi1

Dz

c01
2 Mi2

Dz

c02
2 ¯MiL

Dz

c0L
2 G , ~17!

wherea i5(sinui)
21 andMi j represents the number of time

that the eigenrayi crosses the layerj. Through further anal-
ogy the set Eqs.~15! guarantees that there are at least fo
different types of row components~since the layer thicknes
is not a common factor!, and that guarantees the linear ind
pendence of those four rowsei , corresponding to a particula
quadruplet. The analogy to Eqs.~15! allows one to note also
that

ei 14'a i 143F ~Mi112!
Dz

c01
2 ~Mi212!

Dz

c02
2 ¯~MiL12!

Dz

c0L
2 G ,

~18!

which brings back the linear dependence between each
of rows ei and ei 14 . Thus the analysis of the isovelocit
kernel matrix, and its analogy to the kernel matrix of t
original shallow water waveguide, provide a full understan
ing of the results of the shallow water test.
2821C. Rodriguez and S. M. Jesus: Limitations of SW tomography
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V. CONCLUSIONS

On the basis of this analysis the following conclusio
can be drawn:~1! in the context of travel-time-based shallo
water tomography it is of fundamental importance to det
mine the number of independent resolved arrivals;~2! with
real data the estimation of independent arrivals can be d
through statistical tests, while in simulations the estimat
can be performed by comparison of the inverse and expe
solution; ~3! it can be shown through ray-tracing simulatio
and under the condition of placing the source and the
ceiver at different depths, that in deep water the numbe
independent arrivals is equal to the number of resolved
rivals; corresponding simulations in shallow water rev
that the number of independent arrivals is much smaller t
the number of actually measured—resolved—arrivals;~4! fi-
nally, the problem of travel-time redundancy in the shallo
water waveguide is fully explained through the detail
analysis of the kernel matrix of an equivalent isoveloc
waveguide, where the rows of the isovelocity matrix show
fundamental rank deficiency of the kernel matrix associa
with the original shallow water waveguide.
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