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Kernel-Function-Based Models for Acoustic
Localization of Underwater Vehicles
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Abstract—This paper proposes a novel design for the localization
system of autonomous underwater vehicles (AUVs) using acoustic
signals. The solution presented exploits models based on kernel
functions with two main purposes: 1) to reject outliers; and 2) to
correct or improve accuracy of measurements. The localization
system discussed is based on well-established techniques such as
support vector data description (SVDD) and autoassociative kernel
regression (AAKR) derived from machine learning theory that uti-
lizes heuristic models for classification and regression tasks, respec-
tively. By coupling the algorithm to the navigation system, we seek
to reduce the sensitivity of the localization scheme to the reflected
acoustic waves or fluctuations of underwater channel properties
without modifying the solution used for data fusion or overloading
the algorithm embedded in the vehicle. Data collected in the field
with a light underwater vehicle (LAUV) were used to demonstrate
the advantages of the proposed approach.

Index Terms—Acoustic localization, underwater vehicles, statis-
tical learning theory, kernel-based models.

I. INTRODUCTION

OVER the past few years, interest in underwater vehi-
cles for applications in security, rescue, archaeological

research, etc., has grown significantly. In environmental moni-
toring, for instance, these platforms have become fundamental
tools for gathering data from aquatic ecosystems [1], for taking
pictures of the environment’s geography, and also for inspecting
underwater structures [2]. Technological advances have made
autonomous underwater vehicles (AUVs) suitable to support
missions covering large areas and, because they are equipped
with off-the-shelf sensors, capable of measuring chemical and
biological variables in dynamic environments, such as oceans
and rivers [3]–[5].

Despite the high technological advance in inertial sensors,
which provide accurate information about motion and orien-
tation, the acoustic localization system remains critical for
improving the accuracy of navigation. The field of underwa-
ter acoustic localization can be investigated from different per-
spectives. One of them relates to the configuration of acoustic
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sensors that can be fixed at known positions in the environment,
such as in buoys equipped with global positioning system (GPS)
[6] or installed in other vehicles in a cooperative configuration
[7]. Regarding the mitigation of uncertainties associated with
underwater sensing, there are solutions for data fusion using
Bayesian filters (e.g., extended Kalman filter (EKF) [8]), and
using numerous nonparametric approaches (e.g., work of Caiti
et al. [9]) through the set-membership formulation or using nu-
merical methods such as the particle filter in [10].

This study proposes a design for the acoustic localization,
considering the most widely used scheme for this purpose, the
long baseline (LBL) [11] , [12]. In this configuration, an AUV
transceiver pings several transponders, which have been de-
ployed in known locations, and listens for sequential replies.
The time of flight (ToF) of these waves carries information
about the relative position of the vehicle. Here, the solution
presented enhances the acoustic localization performance usu-
ally degraded by high noise levels, multiple wave reflections,
and significant changes in the sound-speed profile throughout
the water column. The main idea of the algorithm is the use
of measurement history through empirical models for two main
purposes: 1) to reject outliers; and 2) to correct or improve the
accuracy of the ToF measurement. The latter one deals with the
raw data, while the former one looks for a standard behavior in
the residuals generated.

Recently, the process of learning from data has been used in
applications related to signal processing. For acoustic localiza-
tion, we observe the study carried out in [13] where the bias in
a semicoherent ToF estimation is corrected using a regression
model. The model outputs an additive offset, which is used to
correct the misidentification of the main peak in the matched
filter. Interesting results are achieved in [14]–[16] using a pat-
tern matching algorithm to treat the underwater localization.
In this case, the goal is to predict the receiver location from
an acoustic-signal map. The probability that a received signal
occurred at an arbitrary location is viewed as the weight for ref-
erence location selected at the online stage. Statistical learning
theory [17], particularly the support vector machines (SVMs),
was employed in [18] to reduce the influence of the change of
statistical properties in the system noise and the observed noise
in a simultaneous localization and mapping framework for ve-
hicle localization. In relation to antenna array processing and
electromagnetic application, the use of SVM is also discussed in
[19] and [20] for issues such as beamforming and determining
of the angle of arrival. In previous studies [21], the authors have
exploited the kernel-based framework to correct deviations in
the ToF measurements. The experimental results showed that
a significant number of measurements rejected by the outlier
rejection scheme running in the vehicle could be corrected and
utilized by the state estimation filter in the same mission.
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The novelty of this paper is the integration of empirical mod-
els in the navigation system not only to improve accuracy as
discussed in our previous work, but also to identify outliers in
the ToF measurements, which are strongly related to localization
of AUVs. To this end, the approach here makes use of kernel-
function-based models constructed either offline or online with
recent measurements and residuals previously accepted by a
rejection scheme. These models are continuously updated and
used during navigation to correct or improve the accuracy of
subsequent measurements. We confirm the effectiveness of the
integrated navigation system with the experimental data where
exogenous sources of error were inserted to evaluate the gain
obtained with the new algorithm.

We organized this paper as follows. Section II shows the pro-
posed design describing each block functionality and pointing
out some relevant characteristics regarding the navigation sys-
tem. Section III brings up the algorithm and procedures used
to process the information from acoustic sensing. Section IV
carries out an analysis with respect to model formulation, along
with methods for adjusting the parameters, while Section V
brings some numerical results using real data and the adopted
sound wave propagation model. In Section VI, some alterna-
tives that are to be exploited afterwards and limitations are also
discussed. Section VII is the concluding section where some
future studies are presented.

II. NAVIGATION SYSTEM

A. Proposed Design

The navigation system involves determining the position, ve-
locity, and orientation of a rigid body relative to some coordinate
system [22]. It usually uses the inertial properties of the sensors
embedded in the vehicle to perform navigation functions by
processing the data from the inertial sensors, which provides
information regarding acceleration and angular displacement.
The inertial navigation system (INS) works in the integration of
these quantities to determine the position, velocity, and orienta-
tion of the vehicle [23].

In a scenario where measurements are very noisy, the notion
of aided navigation is fundamental, as it refers to the process
of merging data from the sensors attached to the vehicle that
perform readings of some quantities related to its states. The
architecture for the navigation system analyzed in this work is
detailed in Fig. 1, where the state estimation is performed by a
multirate EKF that propagates and updates the error covariance
along with the system states whenever external measurements
are available. In the figure, the states of the system states are the
vectors p, v, and λ, which represents the position, velocity, and
orientation of the vehicle, respectively.

As depicted in Fig. 1, this study focuses on classifying and
improving the accuracy of the measured sound waves’ ToFs
in the acoustic localization system. The figure shows that the
solution proposed is decoupled from the state estimation fil-
ter, specifically acting in ToF measurements. Thus, whenever a
vector of measurements (z −

k+1) deriving from acoustic emitters
is available, it begins the process of classifying and correcting
of these measurements. The whole process is based on four
fundamentals steps:

Step 1) residuals generation with measured ToFs;

Step 2) residuals analysis with measured ToFs;
Step 3) correction of the measured ToFs;
Step 4) residuals analysis with corrected ToFs.
In our approach, the residuals are first generated using the

measured ToFs (z −
k+1) and the estimated quantities (ẑk+1),

which are calculated using a model of the ToF that takes into
account the estimated vehicle position (p −

k+1). In the subsequent
step, inside the residual analysis block, we aim to obtain infor-
mation on how well the generated residual is represented by the
database that was previously established to set the correction
algorithm properly. In this study, such relation is achieved by
using a data description model that concentrates good samples
from the database inside a boundary region.

The next step is the correction, which is carried out inside
the correction and analysis block, where an autoassociative re-
gression model is used to raise the accuracy of the measured
ToF using a database composed by corrected examples of time
of propagation previously gathered in the navigation area. It
should be emphasized that those examples are the same as those
utilized to provide the residuals that compose the database for
data description. Through the usage of kernel functions, it is
possible to control the generalization capabilities of the regres-
sion model taking into account some statistic of the stored data
provided by the stated residual analysis.

In the last step, the residual generated using the new ToF
is analyzed again by the same data description model to clas-
sify the corrected ToF either as an accepted or as an outlier
measurement. The following sections discuss details about the
mentioned steps, including the adopted strategies.

B. Extended Kalman Filter

The EKF is the fundamental algorithm used for the data fusion
process to dynamically compensate for the effects of noise and
bias usually present in inertial sensors. The system state vector

x = [pT vT λT bT
ac bT

ω ]T

is composed of the vehicle’s position p ∈ R3 and speed v ∈ R3 ,
both in the local reference frame (north–east–down); the rota-
tional vector λ ∈ R3 ; and the three-axis random walk bias val-
ues bac , bω ∈ R3 from accelerometer (ac), and gyroscope (ω)
readings, respectively. The notation T corresponds to the trans-
pose operator. However, the filter formulation used in this work
involves an error state–space model, where the measured resid-
uals are computed from the system’s output that are composed
by inertial sensors/INS and the output of aid sensors. The error
state vector is

δx =
[
δpT δvT δλT δbT

ac δbT
ω

]T
.

In [8], [24], and [25], the formulation using such a model
is properly discussed and uses the following state–space
representation of the dynamic system:

δṗ = δv

δv̇ = −CN
B δbac − [CN

B
basf×]δλ + CN

B nac

δλ̇ = −CN
B δbω + CN

B nω

δḃac = −nba c

δḃω = −nbω
(1)
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Fig. 1. Block diagram of the proposed navigation system. The acoustic localization estimation block acts exclusively in the ToFs measurements with no changes
in the navigation algorithm.

where δ indicates the difference between the actual state and its
estimated value, basf is acceleration due some specific forces
(sf) in body (b) reference frame, [· ×] refers to the skew-
symmetric matrix, and δλ is the error of orientation. The val-
ues δbac and δbω represent the bias compensation error in
the accelerometer and gyro outputs, respectively. The matrix
CN

B ∈ SO(3) is a direction cosine matrix, parameterized by the
vector of rotation angles about three orthogonal axes in body-
fixed frame (B) (roll, pitch, yaw)

λ = [φ θ ψ]T

and referring to a rotation matrix from body to local reference
frame (N). The input vector of additive noise n inserted in the
process model to represent the uncertainties in the prediction
stage is

n =
[
nT

ac nT
ω nT

ba c
nT

bω

]T
, n ∼ N(0, Q(t))

where all quantities are modeled as zero-mean, white, and un-
correlated Gaussian process with error variance matrix Q(t).
The resulting continuous-time error state system is

δẋ = F (t)δx(t) + G(t)u(t). (2)

Matrices F (t) and G(t) are defined according to

F (t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

03×3 I3×3 03×3 03×3 03×3

03×3 03×3 −
[
CN

B
basf×

]
−CN

B 03×3

03×3 03×3 03×3 03×3 −CN
B

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(3)

G(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

03×3 03×3 03×3 03×3

CN
B 03×3 03×3 03×3

03×3 CN
B 03×3 03×3

03×3 03×3 −I3×3 03×3

03×3 03×3 03×3 −I3×3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4)

where I is the identity matrix.
An equivalent discrete-time model is used to propagate the

navigation state, the error state, and the covariance matrix of
an estimation error through time. The error state δx +

k and the
covariance matrix of estimation error P +

k are propagated from
time k to k + 1, corresponding to the integration period Δt from
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the INS by using the transition matrix Φk according to

δx −
k+1 = Φk δx +

k (5)

P −
k+1 = Φk P +

k ΦT
k + Γk Qk ΓT

k (6)

where the superscripts − and + indicate the a priori and the
a posteriori state estimation. The transition matrices Φk and
ΓkQkΓT

k are given as

Φk = exp(E Δt) (7)

Γk Qk ΓT
k = G Q GT Δt (8)

where the time-varying system matrix E in (7) is the Jacobian
matrix derived from the differential equation (2) evaluated with
the current state x +

k , and the exponential can be computed using
algorithms from [26]. The expected value of the state δxk from
k to k + 1 is zero, which represents the best a priori estimation
of the error state until a new measurement zk becomes available.
Then, both the error state and the covariance matrix are updated
using the following procedure:

Kk+1 = P −
k+1H

T
k+1

(
Hk+1Pk+1 − HT

k+1 + Υk+1
)−1

(9)

δx +
k+1 = δx −

k+1 + Kk+1
(
δzk+1 − Hk+1δx

−
k+1

)
(10)

P +
k+1 = (I − Kk+1Hk+1)P −

k+1 (11)

where Kk+1 is the Kalman gain, Hk+1 is the partial deriva-
tive matrix of the sensor output evaluated at the current state
estimate, and Υk+1 represents the covariance matrix of the
measurement noise. The variable δzk+1 in (10) represents
the residual between the measurement model and the cor-
responding measurement from the sensor. Whenever δx +

k+1

is calculated, the previous output x̂ −
k+1 = [p̂ −

k+1 , v̂
−
k+1 , λ̂

−
k+1 ,

b̂ −
a k+1 , b̂

−
ω k+1]

T from the inertial sensors/INS block regarding
the vehicle state and the bias value is updated using

x̂ +
k+1 = x̂ −

k+1 + δx +
k+1

and the corresponding error state δx +
k+1 returns to zero in the

next iteration [8]. In accordance with [25] and [23], the rota-
tion matrix C −

k+1 , where C ≡ CN
B was used to simplify the

notation, is compensated for by using the rotation error matrix
CT

k+1(δλ̂k+1) parameterized by the vector δλk+1 according to

C +
k+1 = CT

k+1(δλ̂k+1) C −
k+1 . (12)

The rotation error matrix is computed by

Ck+1(δλ̂k+1) = I3×3 +
sin ‖ δλ̂k+1 ‖
‖ δλ̂k+1 ‖

[δλ̂k+1×]

+
1 − cos ‖ δλ̂k+1 ‖

‖ δλ̂k+1 ‖2 (13)

where ‖ · ‖ represents the Euclidean norm. Equations (12) and
(13) confirm that it is a nonlinear system since matrix C +

k+1 is a

function of the state δλ̂k+1 .
The advantage of the state estimation process presented in

this section is its decoupling from the model of the underwater
vehicle and its particular emphasis on the propagation of resid-
uals described by the state variables δx. However, our approach
focuses on the generation of the residual δzk+1 by considering

ToFs measurements. The residual is first analyzed on the basis
of how well it is described by the residual database. The result
is used to assist in the tuning of the regression function in the
correction routine. After correction, a new residual is generated
and reanalyzed by the same data descriptor to qualify the current
ToF as either a valid or an outlier measurement.

C. Generation of Residuals

Consider z −
k ∈ Rn×1 as the ToFs’ measurement vector from

n transponders before correction and z +
k the same vector after

the correction procedure. The expression ẑk = h(x̂ −
k ) is an

estimation of such a quantity using the measurement model as
follows:

ẑk [i, j] =
1

c(t0)
‖Bj − p(t0)‖

+
1

c(tk )
‖Bj − p(tk )‖ (14)

where c(t) corresponds to the speed of sound in water at time
t, Bj is the position of the transponder j, and p(t) is the
transceiver’s position installed in the vehicle. The instants t0
and tk refer to the time stamp of interrogation and receipt of
reply, respectively. It is worth noting that when a sequential
scheme for LBL acoustic localization is used, each transponder
waits for a period of time Tj before replying to the interrogation.
In this case, such a quantity must be added to the measurement
model (14) for each transponder.

In the subsequent analysis, the vector of ToF residuals δzk

is calculated using the measurement model ẑk and the actual
measurement before z −

k and after z +
k correction:

δz −
k = z −

k − ẑk : residuals calculated from incoming ToF
measurements;

δz +
k = z +

k − ẑk : residuals calculated from corrected ToF
measurements.

Such a variable is supposed to bring innovation to the data
fusion process performed by the EKF. However, due to the nu-
merous sources of errors, such as changes in the sound-speed
profile [27], external noise, and multipath reflection at the wave
guide [28]–[30] that are inherent to the underwater acoustic
communication, further analysis of the reliability of that infor-
mation is required.

To provide information about the quality of the measured
ToFs, our design proposes an investigation regarding the sim-
ilarities between δzk and a database of residuals generated
previously in the same area of navigation. For this purpose,
the machine learning theory was exploited to get a description
of the examples in the database and to classify the generated
residual.

D. Analysis of Residuals

As already introduced, the empirical model constructed from
residuals aims to identify some statistic of the data from acous-
tic localization and use that description to qualify subsequent
measurements as carrying accepted or rejected information.
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The strategy adopted here uses a support vector classifier
proposed by Tax in [31] and [32] known as support vector data
description (SVDD), whose theoretical foundations lay on sta-
tistical learning theory [33], [34]. This method is designed to
give a description of a set of objects and can be used for novelty
or outlier detection [35]. The SVDD is also suitable for one-class
classification tasks, when one of the classes is well sampled
while the other is not. The data description is used here for pur-
poses of the analysis of residuals δzk and to work in conjunction
with EKF, which updates the vehicle states continuously.

So, the method aims to obtain a spherically shaped boundary
around the target set to describe it. In our case, the target set con-
tains m × n vectors of residuals from accepted measurements
obtained before or even during navigation, where m is the total
number of training objects and n is the number of transponders.

1) Theory Formulation: This part of the work is dedicated
to the presentation of a brief overview of the SVDD theory by
Tax. The mentioned boundary around the data set is completely
defined by the center a ∈ Rn of the hypersphere and the radius
R ∈ R where R > 0. First, an error function L is defined to be
minimized

L(R, a) = R2

with the constraints

‖ δzi − a ‖2≤ R2 ∀i.

By minimizing R2 , the method gives a closed boundary con-
taining all training objects δzi , i = 1, . . . ,m. To make the so-
lution more robust allowing outliers, namely examples whose
distance to the center is larger than the radius, in the training set,
a slack variable ξ ≥ 0 is inserted, but large values are penalized
by parameter Ω. Function L is rewritten as

L(R, a) = R2 + Ω
∑

i

ξi (15)

with the constraints

‖ δzi − a ‖2≤ R2 + ξi, ξi ≥ 0 ∀i. (16)

The minimization process is simplified by incorporating con-
straints (16) in (15) through Lagrange multipliers αi ≥ 0, γi ≥ 0

L(R, a, αi, γi , ξi) = R2 + Ω
∑

i

ξi

−
∑

i

αi

{
R2 + ξi − (‖ δzi ‖2 −2a · δzi+ ‖ a ‖2)

}

−
∑

i

γiξi . (17)

In (17), L is minimized with respect to R, a , and ξi and maxi-
mized with respect to αi and γi . By setting partial derivatives of
L with respect to R, a , and ξi to zero, the resulting constraints
are, respectively

∑

i

αi = 1 (18)

a =
∑

i αiδzi∑
i αi

(19)

Ω − αi − γi = 0. (20)

Using (19), the center a of the hypersphere can be calculated,
while (20) results in 0 ≤ αi ≤ Ω, where Ω becomes an upper
boundary for Lagrange multipliers αi . Resubstituting (18)–(20)
into (17) leads to solving the dual problem

L =
∑

i

αi(δzi · δzi) −
∑

i,j

αi, αj (δzi · δzj ) (21)

with the constraints

0 ≤ αi ≤ Ω. (22)

Maximizing (21) gives a set αi where

‖ δzi − a ‖2< R2 → αi = 0, γi = 0 (23)

‖ δzi − a ‖2= R2 → 0 ≤ αi ≤ Ω, γi = 0 (24)

‖ δzi − a ‖2> R2 → αi = Ω, γi > 0. (25)

Those examples with αi > 0 are chosen for data description
and are referred to as support vectors (SVs). To test a general
object δzk regarding its acceptance in the data set, the distance
to the center a of the hypersphere has to be calculated using

‖ δzk − a ‖2 = (δzk · δzk ) − 2
∑

i

αi(δzk · δzi)

+
∑

i,j

αiαj (δzi · δzj ) ≤ R2 . (26)

Examples with distances smaller than the radius are accepted
or classified as belonging to the target class. On the other hand,
SVs with αi = Ω are classified as outliers and fall outside the
hypersphere. Those that have 0 < αi < Ω, henceforth identified
as δzsv , are used to calculate the radius of the hypersphere
because they are on the boundary. Then

R2 = (δzsv · δzsv ) − 2
∑

i

αi(δzi · δzsv )

+
∑

i,j

αiαj (δzi · δzj ). (27)

In (21), (26), and (27), the inner product (δzi · δzj ) can be
replaced by kernel functions to obtain more flexible solutions
[32], [34]. By using kernel functions, it is possible to have a
similar measure corresponding to an inner product in a so-called
higher dimensional feature space where the data characteristics
are more distinguishable [36].

For improvements in data description, negative examples
identified as belonging to an outlier class can be incorporated
into the training set to get a better description of the target data
set. Besides this, when some outliers are expected in the train-
ing set (m × n), the value of Ω can be defined as Ω ≤ (1/(n ·
(fraction outlier))), which gives more flexibility to the sample
acceptance criterion that is an essential idea when the database
is continuously updated.

With the preceding formulation, the ToF measurements that
generate residuals inside the hypersphere are classified as ac-
cepted, while the others are rejected. From this analysis, it is
also possible to conclude the level of acceptance or rejection
made by calculating the distance of the residual to the center of
the hypersphere using (26).
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Fig. 2. Example of data description. Kernel is a Gaussian function with width
s = 5 and Ω = 1 .

2) Example 1: As a simple example, we investigate a 2-D
synthetic data xi,j drawn from a normal distribution with zero
mean (μ = 0) and unit standard deviation (σ = 1). For the data
description algorithm, we used a very intuitive tool [37] along
with a Gaussian kernel according to

K(xi, xj ) = exp(‖xi − xj‖/s2)

where parameter s, in combination with Ω, controls the vol-
ume of the hypersphere and the number of SVs. As discussed
in [32] and [36], for small values of the kernel width s,
K(xi, xj ) = exp((‖xi − xj‖)/s2) 
 0 ∀i �= j, and L in (21)
will be optimized when all N objects become SVs with equal
αi = (1/N). In this case, the solution is identical to the Parzen
density estimation [38]. For larger values of s, the solution ap-
proximates a spherically shaped solution as shown in Fig. 2
where a perfectly circular boundary region was achieved with
s = 5 and Ω = 1. All SVs that fully describe the whole data set
are highlighted.

3) Example 2: The next example’s purpose is to investigate
the mentioned influence of the choice of parameters s and Ω
in the shape of the data descriptor boundary region. Here, the
training process was carried out using two 2-D data sets:A100×2
with μ = 0 and σ = 0.2 defined as the target class and B20×2
with μ = 0 and σ = 0.5 defined as the outlier class, both drawn
from a normal distribution. Fig. 3 shows the results for choices
when s = 5, 0.5 and Ω = 1, 0.1. As was claimed before, we
see that with decreasing the parameter s, the number of SVs
increased, while the choice of Ω = 1 forced all target examples
to be accepted. It is worth noting that the choice of s = 0.5
resulted in a border closer to the target objects, followed by the
exclusion of some outliers. For the intermediate values of s,
a weighted Parzen density estimation is obtained, where both
weights of the kernel as well as the choice of the SVs are
obtained by the optimization procedure.

When some outliers are expected in the target data set, pa-
rameter Ω is decreased, which constrains the values for αi in
accordance with (18) and (22). In this case, more objects are
expected to become SVs, as shown in the case where s = 5 and
Ω = 0.1. As the target examples are more concentrated, a data
descriptor with a smaller boundary is suggested, where some
accepted examples that are less represented in the data set might
be excluded. This was accomplished by using s = 0.5, Ω = 0.1

which showed a better fit for the data set by isolating more re-
lated data and excluding some objects from the target class with
fewer SVs to the data description. In all cases, if the analyzed
sample is further from the center of the hypersphere, it will be
represented less by the target class. It is reasonable to think
that the algorithm has low extrapolation capacity as it calculates
a weighted average of all the values observed. In the extreme
case where there is no similarity between the stored data and
the input vector, a simple average is calculated which is still a
poor estimate of the real value. This result will impact how the
correction will be performed in the next step.

E. Correction

The correction step is intended to improve the accuracy of the
ToF measurements obtained from the acoustic system. Devia-
tions in the measurement due to multipaths, low signal-to-noise
ratio (SNR), or changes in sound-speed profile through the water
column can be corrected by using the autoassociative models,
where the input and output spaces are the same.

The strategy adopted in this step make use of the autoassocia-
tive kernel regression (AAKR) [39], which is a type of model
based on similarities or a nonparameterized modeling technique
that seeks to exploit similarities between an input vector and
training data stored in memory to increase the accuracy of the
sensors. The theoretical basis of the AAKR refers to the concept
of general regression neural networks [40] and has been used
mainly in online sensor monitoring [41].

The idea is to estimate an output vector based on the weighted
sum of the training data, given an input vector. The parameter
of relevance can be measured using metrics, such as distance u
(e.g., Euclidean distance uE ) between the input vector of ToF
z −
k and each vector of the training data stored in a matrix Zm×n

with m and n as defined earlier. The technique’s mathematical
formulation is presented in (28). Let uS

i be

uS
i (Zi×n , z −

k ) =
√

(z −
k − zi)T S−1 (z −

k − zi) (28)

where i ∈ {1, . . . , m}, zT
i is an n × 1 vector with observations

from Zi×n , and S = cov(Z) is the covariance matrix of the data
stored in Z. In the case of S = I (the identity matrix), uS = uE ,
otherwise S can be used to make the estimation process less
sensitive to any input data stored in the matrix.

The values are translated into similarities, expressed by
wm×1 = [w1 , . . . , wm ]T , through the kernel functions such as
the Gaussian function, according to

wi =
1√

2πh2
exp

(
−u2

i

h2

)
(29)

where h corresponds to the kernel width. The processed output
vector of ToF z +

k is obtained through

z +
k = wT Z with w = w/‖w‖1 . (30)

Expression (30) states that estimate z +
k is a weighted aver-

age of all observed values. It is worthwhile to observe that very
small values of h imply higher weights only when ui in (29) is
very close to zero. Conversely, when it is made very large, z +

k
approximates the sample mean of the observed values. Thus, the
value of h reflects a compromise between accuracy and gener-
alization capability of the model based on kernel functions and
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Fig. 3. Data descriptions trained on a normal distribution data set. Kernel is a Gaussian function with different widths s = 5, 0.5, and Ω = 1, 0.1.

has to be optimized. Finally, once δz +
k = z +

k − ẑk is accepted
by the residual analysis block, it is sent to EKF; in all other
cases, it is rejected, as shown in Fig. 1.

1) Cross Validation: The leave-one-out (LOO) cross-vali-
dation algorithm is a useful strategy to assess the performance
of a learning algorithm on a data set [42]. In our case, the
LOO analysis is used to make a better selection of the ker-
nel bandwidth. So, by using the m samples in the data set, at
each iteration, the algorithm takes one different sample zi as a
validation set, leaves Z(m−1)×n samples as a learning set, and
calculates the mean square error e between the real value zi and
the regression output z +

k according to

ei =
1
n

[
z +
k − zi

] [
z +
k − zi

]T
, for i = 1, . . . ,m

where z +
k is the estimation of zi by taking it as unseen in

the learning set. At the end, the best h is the one that gives
the smaller root mean squared error (RMSE) after all zi ∈ Z
have been used as a validation set

h(Z) = arg min
h

√(
1
m

∑
m
i=1ei

)
.

2) Example: In the sequence, we discuss an example in the
context of our work to show how the AAKR can improve the
accuracy of the ToF measurements based on historical data. For
this analysis, we use a hypothetical navigation area with four
acoustic beacons deployed to locate the AUV, as shown in Fig. 4.
The acoustic beacons are l = 200 m apart from each other.

For the composition of the training data set, circular trajec-
tories with different radii r = 50, 100, 150, and 200 m in the
xy-plane were used. In this case, a time matrix Z750×4 was con-
structed with ToFs calculated within the delimited area when
one of the four beacons was in the center of the trajectory. Then,
the training data set is a matrix Z3000×4 of ideal ToFs. These
good samples ware used by AAKR to correct ToFs measure-
ments from acoustic beacon 1 at a distance 50–150 m from it

Fig. 4. LBL deployment in a hypothetical area.

and at different positions within the delimited area with a sound
speed of 1500 m/s. The faulty measurements were obtained with
an artificial linearly increasing drift ending at a magnitude of
0.1 s inserted in ToFs and introduced in the testing data set.

So, in this case, the AAKR has the following input and output
data:

Input =
[
z −
t1

, zt2 , zt3 , zt4

]

Output = z +
t1

where the quantities zt2 , 3 , 4 are ToFs measurements without de-
viation from the corresponding beacon and z −

t1
is the deviated

measurement to be corrected. Again, the superscripts − and
+ indicate the quantity prior and posterior to correction by the
AAKR. Fig. 5 shows the results for 1000 ToF measurements,
where it can be seen that the most significant deviations were
attenuated. Regarding the kernel function (29), the bandwidth
h = 0.5 was chosen for simplicity.
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Fig. 5. Linear deviation in ToFs measurements and the corresponding correc-
tion using AAKR.

III. THE ALGORITHM

The discussion about the algorithm begins with the flowchart
shown in Fig. 6, which seeks to enlighten the whole process of
the analysis of residuals and a correction of measurements.

As expected, the algorithm starts whenever a new vector of
ToFs is available, with which the residual δz −

k is calculated.
Considering a data set with target residuals from past measure-
ments and a boundary region with center a and radius R defined
in advance, it is possible to evaluate the distance of the current
residual to the center of the hypersphere and then compare it
with the radius R using (26).

The algorithm proceeds to perform the correction of any
deviations in ToFs through AAKR. For this task, the autoasso-
ciative model uses a history of the ToF measurements available
in the data set. The kernel width h in (29) can be chosen taking
into account the previous result from the analysis of residuals,
where for accepted measurements we use h1 while h2 is
used for rejected measurements, and h2 > h1 . For accepted
measurements, a smaller value of h is expected since it is very
likely that a similar measurement is in the database. In this case,
a heavier weight should be assigned to observations closer to
the query vector. However, for rejected ones, the kernel width
can be increased to enhance the generalization capacity of the
regression function [40].

After correction, the posterior residuals δz +
k are calculated

using the measurements corrected in z +
k and then reanalyzed by

the data descriptor to confirm or to not confirm the improvements
in the estimated ToFs. It might be noted that the distance to
the center can be evaluated using any dimension of the input
vector, which avoids discarding the entire vector of residuals,
and consequently, the ToFs. In the extreme case, for instance,
the residuals are taken and analyzed individually to identify the
best estimate before sending to EKF. However, in our analysis,
only the full vectors of accepted measurements and residuals
are used to update the data sets. It should be emphasized that a
new boundary region must be found whenever a new residual is
incorporated into the data set.

IV. TUNING OF THE ACOUSTIC LOCALIZATION SYSTEM

This section discusses the process of adjusting the parameters
of the algorithm presented in Section III based on experiments
performed in the field. The proposed design has been evaluated

Fig. 6. Acoustic localization estimation routine. The processes of the genera-
tion of residuals, analysis of residuals, and correction and reanalysis of residuals
are detailed along with the strategies adopted in each step. The kernel band-
widths h1 and h2 are chosen depending on the results of the acceptance test.

with a variety of ToF data acquired with a light autonomous
underwater vehicle (LAUV) [43], developed in LSTS at the
Faculty of Engineering, University of Porto, during missions in
the port area of Leixões in Porto, Portugal. The environmental
conditions were favorable to AUV navigation, with an average
air temperature of 20 ◦C–25 ◦C, no rain and light winds.
Moreover, the navigation area is separated from the open sea
by rocks, where small boats are moored, and the water surface
has small ripples with a light water current. The LBL system is
deployed with two transponders or beacons (Teledyne Benthos
UAT-376) at known positions, and the vehicle is equipped
with a Neptune T257 transducer and a high-quality inertial
measurement unit (Honeywell HG-1700). The transponders
reply to the interrogations from the vehicle simultaneously,
using different frequencies so that the vehicle can differentiate
each one. The sound speed is estimated by an RBR XR620
conductivity–temperature–depth (CTD) sensor installed in the
vehicle. In these missions, the vehicle navigates in regions of
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Fig. 7. Vehicle trajectory used for database composition with ToF measurements from two acoustic beacons. (a) Vehicle trajectory. (b) Vehicle trajectory
(zoomed). (c) Vehicle trajectory (depths). (d) Vehicle trajectory (xy plane).

shallow water where the depth is approximately 10 m and the
distance is not greater than 200 m to any of the transponders.

In the sequence, we use a set of measurements gathered from
a successful mission to construct the empirical models discussed
so far. It is important to emphasize that all ToF measurements, as
well as the estimated quantities of them, were made excluding
the coordinate z or the depth of the vehicle, which was assumed
to be known from the pressure sensor. Thus, we have a greater
number of measurements available at each point in the xy-plane
that can be used in the correction algorithm.

A. Data Collection

The vehicle trajectory used to collect the ToF measurements
that comprise the database is shown in Fig. 7. The course lasted
about one and a half hours with the vehicle developing an aver-
age speed of 1.2 m/s. For the acoustic localization, the LAUV
currently uses the outlier rejection scheme proposed in [44]. In
this approach, the Mahalanobis distance f(δz) = δzT Σ−1δz is
calculated using the ToF residuals δz and its covariance matrix
Σ defined from sample estimates. The result has to be smaller
than a reference value ρ = 4.0 for a particular ToF measurement
z to be considered acceptable. Analytically, we have the follow-
ing classifier based on the assumption of a Gaussian distribution
for the target class:

f(δz) =

{
z is target, if f(δz) ≤ ρ;

z is outlier if f(δz) > ρ;

where the value ρ is defined empirically.
The vehicle was programmed to execute a lawnmower pattern

trajectory while visiting four different depths with variation of

1 m beneath the water’s surface. Regarding performance, the
onboard LBL system provided the following results:

1) the total number of measurements: 721;
2) the total number of accepted measurements: 709 (beacon

0) and 708 (beacon 1);
3) the total number of rejected measurements: 12 (beacon

0); 13 (beacon 1).
As seen, due to favorable navigation conditions at the exper-

imental site, few rejections occurred in an area of reasonable
coverage and at different depths. Considering the conditions
of the experiment, these outliers may come at times from the
shadowing of the transducer caused by the vehicle movement,
from the differences between the range-dependent water col-
umn sound-speed profile and the value measured locally by the
vehicle, or from the local noise. However, there is insufficient
information to prove such a claim. All data will be used in what
follows to guide the choice of parameters in the correction and
residual analysis algorithms.

B. Empirical Models

The process of constructing the empirical models refers
to procedures adopted to set the parameters used in both
algorithms, AAKR and SVDD. Thus, the previous data are used
to adjust quantities such as width s in the Gaussian kernel and
parameter Ω, both used in SVDD. For AAKR, the width h in
the Gaussian kernel will be tuned.

1) SVDD: A very enlightening discussion is presented
about the relation between parameter Ω and s in the SVDD
algorithm with the Gaussian kernel in [32]. Parameter Ω con-
trols the tradeoff between the volume and the errors in the target
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Fig. 8. Data description with residuals (m) from beacon 0 and beacon 1
measurements. SVDD kernel is a Gaussian function with width parameter s =
10 and Ω = 1.

class. Basically, when Ω decreases, the volume of data descrip-
tion decreases and so does the classification error in the target
class. When no errors are expected in the training set, Ω can be
set to 1.0, indicating that all target examples should be accepted.
In this particular analysis, where the referred mission is the only
source of data, parameter Ω is set to 1.0.

Regarding the width parameter s of the Gaussian kernel, it
can be optimized on the basis of the required target acceptance
rate. So, large s implies that the most separate examples be-
come SV, along with a decrease in the expected error in the
target class. With the available data, a well-defined region is
achieved with s ≥ 5 by using the incremental/decremental al-
gorithm proposed in [45] to provide a fast convergence to the
final solution. The next step is to run the algorithm and make
fine adjustments, if necessary, to achieve a performance similar
to that obtained in the original navigation. We start by choosing
a small amount (≈ 20) of the total number of residuals to define
the boundary region (center and radius) before execution. How-
ever, as new measurements are accepted, they are incorporated
into the database to define a new boundary region for the next
analysis. Fig. 8 illustrates how the accepted pairs of residuals
from beacon 0 and beacon 1 are arranged in the boundary region
and highlights the SVs.

The characteristics of the boundary shown in Fig. 8 are as
follows:

1) radius R = 0.70;
2) center a = (1.18, 2.63);
3) average distance to the center of the boundary region for

accepted objects d = 0.58;
4) average distance to the center of the boundary region for

rejected objects d = 1.23.
The system performance with the SVDD algorithm in the

outlier rejection scheme was very similar to that obtained with
the solution currently available in the vehicle:

1) the total number of accepted measurements: 715;
2) the total number of rejected measurements: 6;
2) AAKR: Considering the analysis of using the empirical

model for correction, the accepted ToFs in a database are the
useful information required. As mentioned, the AAKR is the
strategy used here to correct deviations based on past measure-
ments. The most important parameter in this case is width h,
which controls the accuracy and the generalization capacity of

Fig. 9. Data description with residuals (m) from the AAKR output in the LOO
algorithm. SVDD kernel is a Gaussian function with width parameter s = 10
and Ω = 1.

TABLE I
PERFORMANCE WITH AND WITHOUT AAKR APPLICATION

TO REJECTED VALUES

Source of Data RMSE (m )

Raw Data 10.0
AAKR, h = 0.01 6.0
AAKR, h = 1.0 3.0

the model in the regression process. In general, parameter h
is found on an empirical basis using the LOO cross-validation
algorithm presented in Section II-E. After running the algorithm,
the cross validation, with all accepted measurements from the
mission in Fig. 7, resulted in an RMSE of 0.85 m with the AAKR
kernel bandwidth of 0.01.

3) AAKR/SVDD: Accepted Measurements: In Fig. 9, it is
interesting to visualize the change in the boundary region of the
data descriptor when residuals depicted in Fig. 8, generated from
accepted measurements that passed through LOO algorithm, are
used in the SVDD algorithm all at once. The characteristics of
the new boundary are as follows:

1) radius R = 0.73;
2) center a = (0.39, 0.021);
3) average distance to the center of the boundary region for

accepted objects d = 0.57;
4) average distance to the center of the boundary region for

rejected objects d = 1.21.
It can be noted in the figure that the data arrangement becomes

more concentrated around the center, which is now closer to
point (0, 0). As parameter Ω = 1, we force all accepted data to
remain inside the boundary region.

4) AAKR/SVDD: Outliers Analysis: The last analysis is
about the application of AAKR when the outliers observed in
the mission are not rejected, and therefore, are used in EKF.
This step aims to investigate the influence of the choice of ker-
nel bandwidth on estimating measurements that were classified
as unaccepted during the mission. In this analysis, all accepted
measurements were used as database input so as to improve the
accuracy of the measurements.

Table I summarizes the RMSE of the range in the xy-plane
between the vehicle estimated position for the navigation de-
picted in Fig. 7, when the SVDD is used as the outlier rejection
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scheme, and the estimated position, when no outlier rejection
scheme is used. The analysis was carried out in two situations:
1) when the rejected measurements do not pass through the
correction (raw data); and 2) when the rejected measurements
pass through the correction using AAKR with different kernel
bandwidths h. Given that the outlier is not represented well in
the database composed with acceptable measurements, it is ex-
pected that better corrections occur with larger values of h, to
weigh all available measurements.

The relation between the kernel bandwidth and the corre-
sponding RMSE shown in Table I suggests what was previously
stated about the improvements in the generalization capabilities
of the AAKR for objects poorly represented by the database.
In this analysis, the bandwidth was increased from 0.01 to 1.0.
When small values of h are used, only examples in the database
closed to the incoming data receive high weight while large val-
ues of h make the algorithm give relevant weight to all examples
in the database. In this case, the output becomes a weighted av-
erage of all available examples.

V. PERFORMANCE ANALYSIS OF THE PROPOSED DESIGN

In Section IV, both SVDD and AAKR algorithms were in-
vestigated separately to provide useful information regarding
their performance when changes are made in their parameters.
The SVDD confirms its capacity to fulfill the role of identifying
outliers with a performance similar to the current algorithm run-
ning in the vehicle. Regarding the AAKR, the last results show
how the vehicle position estimation performance is affected by
changes in the kernel bandwidth, especially when we attempt to
incorporate outliers. In the following sections, a new trajectory
will be used to perform the analysis of the proposed complete
scheme, which is shown in Fig. 1. Again, the vehicle developed
an average speed of 1.2 m/s and the course lasted about 1 h.
Some initial measurements are used to compose the database
and construct the empirical models. After that, as navigation
proceeds, these models are continuously updated.

A. Vehicle Trajectory

The vehicle trajectory for this second analysis is shown in
Fig. 10. The beacons were installed close to the positions shown
in Fig. 8. The regions of navigations are the same, and the
environmental conditions are very similar in both missions. Re-
garding performance, the LBL system provided the following
results:

1) the total number of measurements: 907;
2) the total number of accepted measurements: 894 (beacon

0) and 881 (beacon 1);
3) the total number of rejected measurements: 13 (beacon 0)

and 26 (beacon 1).
The trajectory that was held provided a large number of ToF

measurements, and both visual observation and GPS reading
confirmed that the vehicle ended its mission close to the desired
final endpoint, which is the location chosen before the beginning
of the journey.

B. ToFs With Multipaths

To perform a useful analysis of the performance of the pro-
posed solution, we introduce an exogenous source of errors to
degrade the ToF measurements using the ray-tracing propaga-
tion model.

1) Model of Propagation: The propagation model used in
this study is an extension of the scheme presented in [46] as
well as the formulation used for probabilities of events. Fig. 11
shows three possible paths, besides the direct path, used for
performance evaluation. The parameters are the transponder
depth H(m), the relative depth between the vehicle and the
transponder Δd(m), the region depth Z(m), and the range in
the xy-plane between the vehicle’s position and the transponder
Δr(m). All variables are detailed in Fig. 11.

Based on this model, one can assume that in the propagation
of sound waves, three hypotheses (Y ) have a probability (P ) of
occurrence at instant k: direct path (DP), multiple paths (MP),
and outliers (OL). In all three cases, the arrival time zk for each
emitter is modeled by the following relations:

zk [i, j] =

⎧
⎪⎨

⎪⎩

1
c ‖Bj − p(tk )‖, Yk = DP

fmp
(
p(tk ), Bj

)
, Yk = MP

nol, Yk = OL

(31)

where nol ∼ uniform.
In (31), B is the transponder position, p is the current vehi-

cle position, and c refers to the underwater sound speed. Due
to the shallow region and small ranges between the vehicle
and transponders, the sound-speed profile can be considered
constant throughout the water column, which simplifies the ex-
pressions. Then, the distance traveled by the sound wave in the
ray tracing 1 (dMP1 ) can be calculated by

dM P1 =
Δr

sin(θ)

θ = arctan
(

Δr

2H − Δd

)
. (32)

A similar expression can be easily found for the distance
traveled by the sound wave in the ray tracing 2 (dMP2 ). For the
ray tracing 3, the distance is expressed by

dMP3 =
Δr

sin(α)

α = arctan
(

Δr

2Z − Δd

)
. (33)

The idea to be exploited in the validation step is to establish a
probability of occurrence for each hypothesis and then replace
the real measurements, under the assumption that they are ob-
tained via the direct path, with quantities assumed obtained via
multipaths or outliers within a range of ± 10 m. For purposes
of comparison, considering a multipath propagation, the error
is about 1.5 m per 100 m in distance.

It is also important to emphasize that all transponders were
assumed to be operating in normal conditions at a fixed position
as were all sensors installed in the vehicle. Thus, all accepted
measurements in the mission shown in Fig. 10 were consid-
ered to be obtained from the direct path with no considerable
deviations. At the occurrence of a multipath, one of the three
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Fig. 10. Vehicle trajectory used for validation with ToF measurements from two acoustic beacons. (a) Vehicle trajectory. (b) Vehicle trajectory (depths).
(c) Vehicle trajectory (xy-plane).

Fig. 11. Ray-tracing propagation model. Three possible paths for acoustic
waves besides the direct path used for performance evaluation.

rays in Fig. 11 would be used to add such deviation to the real
ToF. Fig. 12 illustrates an example of how the vehicle trajectory
would be estimated due to presence of multipaths with 50%
probability for propagation in the direct path. In this case, the
vehicle was using its current outlier rejection scheme, and some
ToF measurements from reflected waves were considered as
accepted.

The result shows that, when using the propagation model
presented in Fig. 11, the path followed by the vehicle shows a
slight deviation of the original trajectory with a RMSE on the
order of 5–15 m.

C. Metrics of Performance

The proposed scheme shown in Fig. 1 is supposed to reduce
the error in the estimation of the vehicle position when the ToFs
are determined from waves propagating in a multipath. The
real vehicle position is supposed to be the estimated position
shown in Fig. 10, and the performance of the acoustic local-

ization estimation block is analyzed by the root mean squared
error (RMSE) of the range in the xy-plane. The RMSE will
be calculated by comparing the position estimation vector from
the original navigation, taken as the real position, with the es-
timations using our strategy for acoustic localization when the
model of propagation is used. Besides this quantity, the mean
error in xy position will be shown to accompany the estimation
behavior throughout. Section V-D is dedicated to discussing the
numerical results accounting for what was discovered so far.

D. Numerical Results

In this section, the hypothesis of the propagation of rays
presented in Section V-B1 takes place during vehicle navigation,
and the proposed design is set to run in two parts. First, only the
outlier rejection scheme with SVDD is evaluated. Then, in the
second part, the performance of the whole system is analyzed.

As the first step, we have to define the probabilities for
each hypothesis Yk happening. The following configuration was
assumed:

1) Yk = DP: 30%;
2) Yk = MP: 20% to each ray (1, 2, and 3);
3) Yk = OL: 10%.
The historical measurements for AAKR database composi-

tion were gathered from the past mission depicted in Fig. 13,
which was conducted near the area of navigation shown in
Fig. 10.

Using the measurements from this mission, we could com-
pose a database with 260 accepted ToF measurements before
starting current navigation.

In the next analysis, the navigation system makes use of the
whole algorithm in Fig. 6 where the SVDD is used for outlier re-
jection, whereas AAKR is used for corrections of measurement
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Fig. 12. Vehicle trajectories for validation. The probability for propagation in the direct path is 50%. (a) Estimated vehicle trajectory in occurrence of multipaths.
(b) Estimated vehicle trajectory in occurrence of multipaths (zoomed).

Fig. 13. Vehicle trajectory for database composition. Mission accomplished
on a different day of previous missions shown.

TABLE II
KERNEL BANDWIDTH ADJUSTMENT BASED ON RESIDUAL ANALYSIS

Distance to the Center of the Hypersphere (d) Kernel Bandwidth (h)

d ≤ R h = 0.01
R < d ≤ 1.5R h = 0.05
1.5R < d ≤ 2R h = 0.1
2R < d h = 1.0

deviations. The measurements gathered from the mission de-
picted in Fig. 13 were initially used to perform corrections to the
coming ToFs, and the residuals were used to define a boundary
region for data classification, which, at this time, provides useful
information for the correction algorithm so that it can choose
the kernel bandwidth according to the rule shown in Table II.

The values of the kernel bandwidth h were chosen after
several simulations to obtain the best results, taking into
account the distance that the residual is located at from the
center of the hypersphere and the tuning procedure discussed in
Sections IV–B2 and IV-B4. The idea here is to adapt the AAKR
algorithm for measurements that generated residuals that were
poorly represented by the database. To exploit the flexibility of
the proposed solution, we decided to increase the tolerance for
acceptance of measurements by setting the kernel parameter
at a large value (s = 20). However, to limit the hypersphere
coverage, we assume the presence of outliers in the training
database and then set parameter Ω < 1 for reasons discussed
in Section II-D. The assumption of the presence of outliers in

TABLE III
RMSE WITH THE PROPOSED ACOUSTIC LOCALIZATION ESTIMATION

Algorithm RMSE (m )

No outlier rejection algorithm 7.3 8.2 8.6 8.8 10.0
Current onboard outlier rejection algorithm 1.93 2.10 2.16 2.42 2.58
SVDD/AAKR aided navigation 1.30 1.31 1.68 1.15 1.41

the training set will force the algorithm to keep the more likely
sort of data inside the hypersphere.

Table III shows a comparison of the localization system per-
formance when the proposed approach replaces the current on-
board outlier rejection algorithm. The errors are clearly reduced
when the combination of algorithms for correction (AAKR) and
for classification (SVDD) are used. Again, the presented metric
is the RMSE of the range in the xy-plane between the original
vehicle trajectory and the estimated one when exogenous syn-
thetic errors are inserted.

It is important to emphasize that the comparative results
shown in Table III between the two approaches are directly
related to the assumed values for the probabilities of occurrence
of ray propagation by the direct path, multiple paths, and out-
liers. Situations where the occurrence of ray propagation by
multiple paths or outliers is low led to similar performance for
both strategies. On the other hand, an excessive occurrence of in-
correct measurements makes both solutions unable to judge the
validity of such data and the vehicle loses its orientation com-
pletely. However, what the results testify about the proposed
architecture is its ability to learn to classify the measurements
based on historical data with the relevant role of the correction
algorithm to sustain an accurate judgment during navigation.

Fig. 14 shows the mean error in the xy positions for the case
previously mentioned. The result behaves as expected once the
outlier rejection scheme avoids large deviation from the real
trajectory. The proposed solution was capable of reducing the
error between the real and estimated positions of the vehicle.

The large error in the first part of the mission seen in Fig. 14
is related to the beginning of the navigation, which is always a
difficult period for navigation because the vehicle is too close to
the water’s surface. Moreover, at the start, the vehicle performs
various calibration procedures, including adjusting the speed of
sound in water. All these aspects result in a large number of out-
liers being accepted or, in the case of discarding measurements,
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Fig. 14. The mean error in xy positions of both strategies for underwater
acoustic localization. (a) The mean error in x position (δx). The mean error in
y position (δy).

make the vehicle navigate a long time without any correction
from the LBL system.

Regarding the proposed solution, the AAKR failed to make
significant corrections to improve the accuracy of the navigation
because initially the algorithm had only measurements from
other missions, which may not be satisfactory. As navigation
proceeds, we can discard the database with measurements from
other missions and use values obtained on the spot.

An example of the hypersphere obtained in this analysis that
considered the presence of outliers in the training set is shown in
Fig. 15. It is possible to identify some examples from the training
set that stayed outside the boundary region. These examples
correspond to SVs with αi = Ω from (25) and, along with those
residuals on the boundary, define the data descriptor.

It is worth remarking that in all cases analyzed, the real po-
sition of the vehicle is actually unknown, and all measurements
from previous missions that were considered valid to compose
the database could have some unavoidable deviations.

VI. ANALYSIS AND COMMENTS

In view of what has been discussed so far, some topics in the
proposed solution should be emphasized to be exploited after-
ward. First, the proposed solution provides flexibility regarding
the choices of its parameters aiming for better adaptation to the
navigation environment.

Fig. 15. Data description with residuals (m) from beacon 0 and beacon 1
measurements. SVDD kernel is a Gaussian function with kernel width parameter
s = 20 and with the assumption of a percentage of outliers in the target set
Ω = 0.2. Examples outside and on the boundary are SVs that define the data
descriptor.

1) Optimize parameter Ω for both negative and positive ex-
amples once it reflects the percentage of negative exam-
ples in the target and outlier set [32].

2) Increase the feature dimension to improve the data de-
scription.

3) Establish a rule to remove elements in the target set as its
distance to the center of the hypersphere increases with
time.

4) Weigh each ToF measurement differently according to its
distance to the center of the hypersphere so they can be
used in other regression functions by using SVMs [47],
for instance, or directly in EKF by giving more relevance
to some measurement than others.

However, troublesome issues in the solution need to be high-
lighted. One of the limitations comes from the poor extrapola-
tion of AAKR, which presents satisfactory results when recent
measurements are made in the navigation area and when the
query data are well represented in the model. Nevertheless, by
using ToF only in the xy-plane, we could have more measure-
ments available in the correction process associated to each
position. Still regarding the AAKR, the algorithm must be well
tuned with respect to its parameters to return satisfactory results.
Moreover, in our analysis, all measurements that are considered
accepted and used for correction were gathered on the basis
of estimated vehicle position during its navigation, but a set of
training data collected from the vehicle position determined by
a global positioning system would make the presented analysis
more accurate.

Regarding the SVDD, the usage of residuals for one-class
classification also requires a careful choice of samples for data
description due to rapid changes in the stochastic properties of
the acoustic channel. Thus, the usage of all target examples from
past missions is quite difficult, but it was exploited here to show
some possibilities of the proposed solution.

As stated in the work, the SV data description basically finds
the smallest hypersphere around the target class but it requires
a difficult optimization. However, many solutions have been
proposed to perform online optimization processes as new data
arrive [45], [48], [49], i.e., incrementally, which reduces the
computational cost. Regarding the execution time, by using a
2.1-GHz processor, our algorithm took from a few milliseconds,
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for a small training set, to 50–80 ms, for a large amount of data,
to find the center and the radius of the hypersphere when a new
ToF measurement became available. An important aspect that
limits the analysis of the proposed solution is the use of only
two acoustic beacons in our experiment and the processing of
only ToF information. We expect that, when more correlated
information is extracted from the acoustic signal coming from
various acoustic beacons, more accurate the classification of
measurements will be. It is an open area of research and certainly
deserves further investigation.

VII. CONCLUSION

The underwater navigation system in environments that ex-
hibit unpredictable behavior regarding changes in noise statistics
and dynamics requires a certain level of adaptability in the mea-
surement system, mainly for acoustic sensing. Manufacturers
of acoustic equipment emphasize the importance of calibration
in LBL systems to identify underwater channel characteristics,
such as the temperature and sound-speed profiles. The EKF,
aided by external sensors, is made sufficiently robust to short
oscillations in the acoustic sensing quality, but can be degraded
by continuous deviations. To deal with these issues, this pa-
per exploits algorithms based on historical measurements for
underwater acoustic localization using LBL configuration. The
proposed algorithm takes advantage of more accurate measure-
ments to make better decisions about the acceptance and esti-
mation of ToF measurements.

An SVDD looks at the generated residuals to keep similar
examples inside a boundary region and to detect outliers. It
should be noted that no assumption about the statistics of the
data was made, leaving the system to record the behavioral data
as navigation proceeds. At the same time, an AAKR function
makes corrections in the ToFs measurements based on previous
measurements. The interaction between both algorithms results
in a better description of the data and a better ability to correct
deviations.

The presented design seems to be very appropriate for low-
cost vehicles once it provides a good solution without com-
putation overload and can also be attached to any data fusion
algorithm for navigation. With the use of real data, the proposed
localization system is validated, and some of its potentialities are
investigated. As a future work, we recommend the implementa-
tion of the algorithm on a vehicle and its validation in the field.
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