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Abstract

The space-time oceanographic mapping of given areas assumes an obvious importance in environmen-
tal and acoustic assessment, from regional to large scales. Since the 70’s, deterministic models for
oceanographic processes have been coupled with statistical interpolation tools, in order to cope with
the inevitable sparsity of oceanographic measurements. These tools treat physical quantities as random,
and assume one from a collection of possible models for their inter-correlation. One of these models, a
modified Gaussin with space-time dependence, is here fitted to temperature data correlations from the
acoustic-oceanographic MREA ’03 sea trial, in order to characterize the temperature space-time distribu-
tion and evolution. The model assumes the temperature shift from the mean as anisotropic, homogeneous
and stationary. The correlation model is parameterized by four correlation lengths and a scaling factor.
The multiple-instrumental sea trial setup allowed the estimation of the unknown parameters, by fitting
the model with two differently originated data correlations. The first is from data measured by a spatially
fixed single instrument or by CTD casts in the area. The second is from stacked data measured by all
temperature monitoring instruments. The results show that the actual temperature perturbation field is
not homogeneous, as expected. Significant differences exist for the parameter estimates, comparing that
obtained with shallower instruments with those obtained by instruments with a deeper covering array
aperture. The question about the usefulness of combining the information coming from several instru-
ments has not a trivial answer. If the objective is to interpolate along depth and time, the information
coming only from instruments localized on the interest area is likely to give better results. Instead, for
horizontal interpolations, it is essential to combine various instruments, considering the data at hand.
This was the unique possibility to obtain a reasonable number of data correlation lags, to be fitted by
the model, and give realistic horizontal correlation lengths.
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Chapter 1

Introduction

In the last decade, the need for rapid environmental assessment has led numerous works aiming at
characterizing the oceanographic field in any littoral area of the world[1]. In summary, rapidly assessing
the environment means determining the distribution and evolution of water temperature, currents, winds,
tides, waves, etc., on a very short notice. The assessing methods consist of combining ocean circulation
models with in situ or remotely sensed oceanographic data. Various research teams concluded that it is
essential to combine heterogeneous data from different sensors, since it is almost impossible to sample
oceanographic processes simultaneously in large areas, and in a continuous fashion. The combined data
can be used in the initialization, updating and verification steps of ocean prediction systems, that play
a fundamental role in providing accurate environmental forecasts[2, 3]. Many naval operational needs
are met resorting to rapid environmental assessment deliverables. Taking into account the significant
influence of temperature on acoustic propagation, one of the assessment by-products can be the sonar
performance prediction, hence the rapid acoustic assessment concept.

From the above, the three-dimensional (3D) temperature mapping of a given area assumes a crucial
importance. Even sampling the area with various instruments, the assessment methods must resort to
interpolation of the measured quantities, due to the inherent sparsity of practical ocean casts. Considering
the significant complexity of ocean processes in coastal areas, it is more realistic to perform a statistical
instead of a deterministic interpolation. The departing point is to treat temperature as a random variable
with statistical second order models. The parameters of these models are estimated from the data acquired
along time and space. Then, it is possible to compute the interpolated 3D temperature field, and predict
its short-time evolution. The interpolation methods have been based on the estimation theory known as
objective analysis[4], first described in an oceanographic context by Bretherton et al.[5], and is now an
important tool in oceanography[6] for both analysis[3] and observational array design[7]. In the past, it
was current practice to assume oceanographic fields as stationary, homogeneous and isotropic. Carter
and Robinson have introduced time dependence and horizontal anisotropy in the fields[8]. Elisseeff and
Schmidt have considered anisotropy also in depth [9].

In 2003, several oceanographic and acoustic teams have participated on a joint sea trial, the MREA ’03,
aiming to provide the end user with environmental and acoustic assessment products. The present work
has the objective of characterizing the temperature field statistics on the MREA ’03 area, departing from
the sparse spatio-temporal temperature measurements taken around the Elba Island. Future environ-
mental assessment work can depart from efficient representations of the temperature 3D field evolution,
by means of 3D empirical orthogonal functions (EOFs). It is expected that the estimates obtained in the
present work serve both to interpolate the temperature field and to construct a model of its correlation
matrix. Then, the possibility of estimating the 3D EOFs coefficients by means of acoustic inversion will
be studied.

This report is organized as follows. The next chapter explains the adopted procedures to estimate the
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parameters of a classic model of the temperature perturbation correlation, first, with the data measured
by each of the temperature monitoring instruments, and then, by merging data from multiple instruments.
The conclusions are drawn in Chap. 3.



Chapter 2

Estimation of temperature
perturbation statistics

2.1 Global estimation

During the MREA ’03 sea trial[10], a large set of temperature, current and wind measurements was
carried out. The temperature field was sampled by instruments of various type –see Fig. 2.1–, namely:

• two fixed thermistor chains, at (latitude 43o0.32’, longitude 10o2.68’) and (latitude 43o1.02’, longi-
tude 10o14.29’), deployed on May 28th and taking measures till June 3rd and 20th, respectively;

• ship-released CTD casts, from May 28th to June 25th;

• one meteorological buoy, at pair (latitude 42o57.62’, longitude 10o0.72’);

• a SEPTR system, at (latitude 42o50.08’, longitude 10o18.59’);

• two ADCP systems, at pairs (latitude 43o00.99’, longitude 12o14.33’) and (43o17.58’, 09o31.61’),
deployed on May 28th and recovered on June 25th.

The locations of the casts are depicted in Fig. 2.2, and the data they provided is displayed on figures
2.3–2.7. The measurements taken in the sea trial area, can be divided into two main types:

• horizontally space-variant (and time-variant, due to ship travel time between stations) measures,
taken by the ship-released CTD casts;

• time-variant and space-invariant measures, taken by all the remaining, moored instruments.

It would be of considerable value for the purposes of acoustic rapid environmental assessment[11], to draw
a map of the four-dimensional (space and time) temperature field on the sea trial area, what would bring
direct advantages in validating inversion results of the environment, or in predicting the four-dimensional
acoustic field in the area. Though the apparent dense sampling of the temperature field during the sea
trial (see figures 2.2–2.7), acoustic propagation is described within much shorter scales [of the order of (2
to 10 km, 2 to 8 s) in space-time], which were not covered. The temperature field variation at these scales
can, even though, be estimated, by the well known Gauss-Markov method, which is a linear least mean
square error estimator. This method is often used as a statistical interpolator (performing a so-called
objective analysis or optimal interpolation), treating each scalar temperature reading at a particular kth

space-time position (xk, yk, zk, tk) as a random variable, given by

T (xk, yk, zk, tk) = T0,k + δTk, (2.1)

13
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(a) (b)

(c) (d)

(e) (f)

Figure 2.1: Pictures and schematics of underwater temperature monitoring equipment: West and East
current meter and thermistor chains, each one with a thermistor string made up of 11 sensors (a) and
(b), respectively; vessel mounted CTD system –Seabird 911plus ‘Real Time’ Pumped systems, Double
Conductivity SBE 4 0-70 mSiemens/cm, Double Temperature SBE 3 -5-35 ◦C, Pressure 0-6000 dbar,
with minimum and maximum sampling points of 0.992 and 727 m, respectively, and 1 m-sampling depth
(c); meteo buoy –Coastal Monitoring Buoy 3280–, with 4 temperature sensors starting at 10 m, with 10
m spacing (d); SEPTR system –a combination of bottom mounted WH600 ADCP and a CTD profiling
system–, measuring from 25 cm to 35 m depth, with 1 m-spacing (f); base of each of the two bottom
mounted ADCP systems –each including 14 RDI Work Horse Acoustic Doppler Current Profilers deployed
in Barny type Trawl safe platforms, and a temperature sensor in the base (e).
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Figure 2.3: Temperature perturbation data supplied by the two thermistor chains –West (a) and East
(b)–, starting on May 28th (Julian times 147.3 and 147.2, respectively) and finishing on June 2nd and
24th (Julian times 153.7 and 175.3), respectively, with an average sampling time period of 2 min. The
perturbation is referenced to the mean profile estimated by each of the chains.
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Figure 2.4: Temperature perturbation data supplied by the ship-released CTD casts, from May (Julian
time 147.6) to June (Julian time 175.2), with an average sampling space period of 6.27 and 3.43 km in
linear longitude and latitude –x and y-coordinates, respectively–, and average sampling time period of 1
h 26 min. The perturbation is referenced to the mean profile estimated with all the CTD data.
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Figure 2.5: Temperature perturbation data supplied by the meteo buoy, from May 28th (Julian time
147.4) to June 27th (Julian time 177.7), with an average sampling time period of 30 s. The perturbation
is referenced to the mean profile estimated with all the buoy data.
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Figure 2.6: Temperature perturbation data supplied by the SEPTR system, from May 29th (Julian
time 148.6) to June 24th (Julian time 174.8), with an average sampling time period of 6 h 7 min. The
perturbation is referenced to the mean profile estimated with all the SEPTR data.
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of 5 min. The perturbation is referenced to the mean profile estimated by each of the ADCPs.
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where T0,k is the expected value of the temperature, and δT (xk, yk, zk, tk) a random zero-mean temper-
ature perturbation. The application of the Gauss-Markov method requires the knowledge of the tem-
perature perturbations spatio-temporal correlation matrix, made up of perturbation inter-correlations
between pairs of points involved in the interpolation. In oceanography, the spatio-temporal dependence
of the temperature perturbations inter-correlation is often modelled by a Gaussian or a modified Gaussian
correlation function –see Carter and Robinson[8]. In this reference, the inter-correlation respecting to
points i and j is given by:

[RδT ]ij(∆x, ∆y, ∆z, ∆t) = E[δTi δTj ] = σ2
δT

[
1−

(
∆t

T

)2
]

e
− 1

2

»
(∆x

Lx
)2

+
“

∆y
Ly

”2
+(∆z

Lz
)2

+(∆t
T )2

–
,(2.2)

where (∆x,∆y, ∆z,∆t) represents their spatial and temporal distances, σ2
δT is a scaling factor, T the

correlation time, and Lx, Ly and Lz, the spatial correlation lengths. This function is a model for the
correlation of an anisotropic (with 3 individual spatial correlation lengths) temperature field perturbation.
The field’s statistics are assumed stationary (constant in time) and homogeneous (constant in space).
Considering the MREA ’03 data, the homogeneous stationary region was defined as the whole area
depicted in Fig. 2.2, covering the period May 28th–June 26th. The water depth of the region was defined
as 160 m, envisaging possible applications to acoustical studies[10]. The next sections illustrate possible
approaches to estimate the correlation parameters in (2.2), from the temperature monitoring data in
figures 2.3–2.7. Considering the experimental setup of each deployment, different slices of (2.2) will be
fitted to data correlations, where the initial problem of estimating the five parameters will be divided
into smaller problems with less unknowns.

2.1.1 Single-instrument data

First, the correlation parameters were estimated with the data measured by each one of the seven instru-
ments.

Estimation of the scaling factor σ2
δT

For K coincident space-time points i, we have, from (2.2), that

RδT (0, 0, 0, 0) = E[δTi δTi] = σ2
δT , (2.3)

what suggests a trivial estimator of σ2
δT :

σ̂2
δT =

1
K

K∑
k=1

(δTk)2. (2.4)

This estimator was applied to the data of every instrument, producing the estimates in table 2.1. For
each instrument, δTi was computed with reference to the mean profile estimated with the instrument
data.

Each array-instrument, e.g. SEPTR or meteo buoy, spanned a particular portion of the water column,
what explains the large differences between the estimates of σ2

δT , in table 2.1. In fact, the actual temper-
ature perturbations are unlikely to be homogeneous and stationary. An inhomogeneity estimate in depth
can be observed in Fig. 2.8, where depth-dependent estimates of σ2

δT are shown, from the whole CTD
data at fixed depths. This explains, for example, that the estimate obtained with the meteo buoy data be
much larger than that with the thermistor chains or ADCPs: the deepest sensor of the meteo buoy, at 40
m, still corresponds to high temperature perturbations, while the deepest sensors of the thermistor chains
observed little perturbations. The CTD estimate, in table 2.1, is midway between the other estimates,
since the CTD casts have spanned both the high- and low-variability water column regions –refer to
Fig. 2.8. In table 2.1, the sensor depth average and array aperture of each instrument is indicated, as a
measure of the water column portion spanned by each instrument.
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Average sensor depth (m) Array aperture (m) Instrument σ̂2
δT [(oC)2]

17.4 35 SEPTR 1.40
25.0 30 Meteo buoy 4.12
39.0 50 East thermistor chain 5.47×10−2

43.0 50 West thermistor chain 4.89×10−2

107 0 West ADCP 1.33×10−3

114 159 CTD 9.06×10−1

130 0 East ADCP 4.37×10−3

Table 2.1: Scaling factor estimate, as given by the data of each of the seven instruments. The estimates
are sorted by average sensor depth.
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Figure 2.8: Depth-dependent estimates of σ2
δT , from the CTD data at fixed depths. The vertical dashed

line indicates 33.7 m as the depth at which the estimate falls to 10% of the value at the shallowest depth.

Estimation of the temporal length T

Concerning the estimation of T , it may be observed from (2.2) that, for space-coincident points, the
correlation simplifies to

R(0, 0, 0,∆t) = σ2
δT

[
1−

(
∆t

T

)2
]

e−
1
2 (∆t

T )2

. (2.5)

This function, parameterized by T and σ2
δT , is represented in Fig. 2.9. As can be observed, R(0, 0, 0,∆t)

has a single zero precisely at ∆t = T , and the minimum −2σ2
δT e−

3
2 at

√
3 T .

The data provided by the thermistor chains, ADCPs, meteo buoy and SEPTR casts, have been used
to estimate R(0, 0, 0,∆t), with the data correlation estimator

R̂(0, 0, 0,∆t) =
1
K

K∑
k=1

δT (xk, yk, zk, tk)δT (xk, yk, zk, tk −∆t), (2.6)

averaging over all sensors. These estimates are depicted in Fig. 2.10, for each instrument. Of first concern
is the non-monotonic behavior of the estimates, after ≈ 7 h, disagreeing with the model in Fig. 2.9. The
spectra (not shown) of the curves in Fig. 2.10 (b) and (c) reveals significant peaks at 14.7 and 17.3 h, for
periodicity in the East thermistor chain and West ADCP data correlation, respectively, which quantifies
the relationship between the temperature perturbations and the external tide –see table 2.2. This fact is,
however, difficult to observe in the spectra corresponding to the remaining instruments. The oscillatory
nature of the temporal correlation has been observed in previous works[12, 9], and is not included in the
model (2.5). Of second concern is the constant bias of the data correlation functions, which suggests
the need to add a constant to the model (2.5). This fact has not allowed to unambiguously fit (2.5)
to the estimates in Fig. 2.10, with a least-squares estimator. Instead, the minimum of the correlation
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Figure 2.9: Correlation model for space-coincident points, parameterized by T and σ2
δT .

Instrument Temporal correlation estimated period (h)
West thermistor chain 21.3
East thermistor chain 14.7

West ADCP 17.3
East ADCP 23.4
Meteo buoy 23.5

SEPTR 23.6

Table 2.2: Estimated period of the oscillatory temporal data correlations, computed with the whole data
collected during the sea trial, and whose first 40 h are shown in Fig. 2.10, for every instrument except
the CTD. The estimated period, searched in the interval [10 min, 24 h] (with exception for the SEPTR,
where the interval was [12.2, 24] h, due to the large sampling time period), maximizes the spectrum (not
shown) of each temporal data correlation.



20 CHAPTER 2. ESTIMATION OF TEMPERATURE PERTURBATION STATISTICS

(a) (b)

0 5 10 15 20 25 30 35 40

−0.01

0

0.01

0.02

0.03

0.04

0.05

∆ t (h)

R
( 

0
, 

0
, 

0
, 

∆
 t

 )

0 10 20 30 40

0.03

0.04

0.05

0.06

0.07

0.08

∆ t (h)
R

( 
0

, 
0

, 
0

, 
∆

 t
 )

(c) (d)

0 10 20 30 40

0

0.5

1

1.5

2

2.5

3

x 10
−3

∆ t (h)

R
( 

0
, 

0
, 

0
, 

∆
 t

 )

0 10 20 30 40

0

0.5

1

1.5

2

∆ t (h)

R
( 

0
, 

0
, 

0
, 

∆
 t

 )

(e) (f)

0 10 20 30 40

2.5

3

3.5

4

∆ t (h)

R
( 

0
, 

0
, 

0
, 

∆
 t

 )

0 10 20 30 40

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

∆ t (h)

R
( 

0
, 

0
, 

0
, 

∆
 t

 )

Figure 2.10: Estimates of R(0, 0, 0,∆t), obtained with the data measured by the (a) West and (b) East
thermistor chains, (c) West and (d) East ADCPs, (e) meteo buoy and (f) SEPTR casts.
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Instrument Estimate of the correlation temporal length T (h)
West thermistor chain 8.10
East thermistor chain 3.98

West ADCP 6.35
East ADCP 8.13
Meteo buoy 6.69

SEPTR 10.6

Table 2.3: Estimates of the correlation temporal length T .
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Figure 2.11: Estimate of R(∆x,∆y, 0, 0), obtained with the data measured by the CTD casts. Due to
sparse sampling, only a few lags were estimated, indicated by colored cells.

functions was searched in the lag-interval [0, td] h, where td is the first instant at which the derivative of
the correlation functions has a sign change, and the estimate of T computed as

T̂ =
1√
3

arg min
∆t

R̂(0, 0, 0,∆t). (2.7)

The estimates of T thus obtained are given in table 2.3. The difference between the two thermistor chains
results may be attributed to very different time windows: while the West thermistor chain data spans
6.40 days, the East chain spans 28.1 days. This last larger window corresponds naturally to significant
differences between the first and the last days’ perturbations, thus, a smaller correlation time T . The
difference between the East thermistor chain and the East ADCP results can be explained by a smaller
time variability at deepest depths, as induced from Fig. 2.8. The SEPTR result is the one of least
confidence, due to the sparse sampling time period (6 h 7 min –see Fig. 2.6).

Estimation of the spatial lengths Lx, Ly and Lz

To estimate Lx and Ly, one can observe in (2.2), that, for depth- and time-coincident points,

RδT (∆x, ∆y, 0, 0) = σ2
δT e

− 1
2

»
(∆x

Lx
)2

+
“

∆y
Ly

”2
–
. (2.8)

This function has been estimated with the CTD data, by using the estimator

R̂(∆x,∆y, 0, 0) =
1
K

K∑
k=1

δT (xk, yk, zk, tk)δT (xk −∆x, yk −∆y, zk, tk), (2.9)

averaging over all depths and time, and is shown on Fig. 2.11. Note the scarseness of information about
R(∆x,∆y, 0, 0), allowing the estimation of the correlation value at only a few x− y lags. A fit of model
(2.8) (using σ2

δT = 9.06×10−1 –see table 2.1) to the 3×3 sub-matrix closest to zero lag of the data matrix
in Fig. 2.11, has given the estimates L̂x = 0.5 km and L̂y = 234 km. The value in L̂y is very unrealistic,
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Figure 2.12: Estimates of R(0, 0,∆z, 0), with the CTD (a) and SEPTR (b) data, and the model (2.11)
particularized with the inferred estimates of Lz.

and expected to be ameliorated with the incorporation of the data from other instruments –see Sec. 2.1.2.
To estimate Lz, one can observe in (2.2), that, for points coincident in longitude, latitude and time,

RδT (0, 0,∆z, 0) = σ2
δT e−

1
2 (∆z

Lz
)2

, (2.10)

Two estimates of this function were computed with the CTD data and the SEPTR data, with the
estimator

R̂(0, 0,∆z, 0) =
1
K

K∑
k=1

δT (xk, yk, zk, tk)δT (xk, yk, zk −∆z, tk), (2.11)

averaging over all longitude, latitude and time points, and are shown on Fig. 2.12. Once more, the
smaller correlation length of the SEPTR data is attributed to a smaller depth-observation window by
this instrument –34.8 m–, as opposed to the CTD –159 m– (see figures 2.6 and 2.4).

2.1.2 Multiple-instrument data

In the previous section, it was seen that the use of the information of a single instrument at a time,
provided discrepant estimates, and, in the case of Ly, an unrealistic value. Although it is unlikely that
the actual perturbation field be homogeneous and stationary, the purpose of assessing the whole sea trial
area, around the Elba Island, leads naturally to the inclusion of the data provided by several instruments
at a time, in order to give estimates that could be used in the interpolation of a broader area than around a
single instrument. In pursuing this way, the first modification is to define the average temperature profile
with the data provided by all the seven instruments. This profile is depicted in Fig. 2.13 (a). Note the
peaky patterns above 70 m, which indicate the non-homogeneity of the temperature perturbation field.
These patterns originate from the difference between the mean profiles of each instrument, as shown in
Fig. 2.13 (b). In analyzing the differences between the profiles, one should consider two possible causes.
One is the consideration of nominal depths for every instrument, except the CTD and SEPTR. The other
is the possible difference in sensor calibration. The last reason may explain the significant bias between
the meteo buoy average profile and the remaining profiles. As a first study, the average profile in Fig. 2.13
(a) is used as a reference to define the temperature perturbations which serve as input to the estimators
using any combination of multiple-instrument data, in what follows.

Estimation of the scaling factor σ2
δT

By grouping the data acquired by all instruments, the estimate of σ2
δT , given by (2.4), is 2.21 oC2. This

order of magnitude was expected, being an intermediate value between the minimum and maximum
values in table 2.1, and considering that most of the samples were taken above, say 70 m –see Fig. 2.8.
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Figure 2.13: (a) Average temperature profile, computed with the data provided by all instruments. (b)
Average temperature profiles, computed with the data provided by each array-instrument. Only the
depths considered for the CTD and SEPTR data averages are not nominal values.
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Figure 2.14: (a) Estimate of R(0, 0, 0,∆t), given with the data of the thermistor chains, meteo buoy and
ADCPs casts. The function was sub-sampled, for better viewing. (b) Original estimate in (a) processed
with a running 9.50 min average filter.

Estimation of the temporal length T

To estimate T , first, the data of the thermistor chains, meteo buoy and ADCPs were used to estimate
R(0, 0, 0,∆t), according to (2.6). This estimate is shown in Fig. 2.14 (a). Due to the high variability of
the function, a running 9.50 min average filter was applied to the original function, producing the smooth
estimate in Fig. 2.14 (b). The filtered function minimum corresponds to the estimate T̂ = 5.70 h, given
by (2.7).

Estimation of the spatial lengths Lx, Ly and Lz

The horizontal spatial lengths Lx and Ly were estimated with the data supplied by all instruments. The
correlation function estimate (2.8) is shown on Fig. 2.15 (a). Note that considering the information
from all instruments has allowed to increase the number of lags at which the correlation was estimated
–compare with Fig. 2.11. The data correlation in Fig. 2.15 (a) indicates a larger correlation length in
longitude (corresponding to the x-coordinate) than in latitude. A least-squares fit of model (2.8) (using
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Figure 2.15: (a) Estimate of R(∆x,∆y, 0, 0), with the data supplied by all instruments. (b) Model (2.8),
particularized with the inferred estimates L̂x = 9.67 km and L̂y = 8.30 km.
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Figure 2.16: Estimate of R(0, 0,∆z, 0), with both the CTD and SEPTR data, and the model (2.10),
replacing Lz by its least-squares estimate of 1.80 m.

σ2
δT = 2.21) to the data correlation gave L̂x = 9.67 km, and L̂y = 8.30 km, as the correlation length

estimates, corresponding to the model in Fig. 2.15 (b).

The estimate of R(0, 0,∆z, 0), obtained with both the CTD and SEPTR data, is shown on Fig. 2.16.
It could be expected that L̂z be contained in the interval [ 4.6, 16.1 ] m, bounded by the single-instrument
estimates –see Fig. 2.12. The value 1.80 m, obtained by merging the CTD and SEPTR data, can be
attributed to the consideration of the average profile defined with all instruments, in Fig. 2.13 (a), which
highly decorrelates the perturbations at depths above 70 m. Note the even negative values, between lags
45.0 and 78.8 m.

2.2 Iterative estimation

Considering the time scale of the sea trial, comprising about one month of measures, one naturally asks
about the possibility of determining the correlation parameters in (2.2), with data that is being available
every minute or every hour. In other words, it is legitimate to have at hand early estimates of the
correlation parameters, for environment assessment purposes, since the beginning of the sea trial. These
estimates are updated iteratively, with every new measure. This section reports results of the estimates
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obtained in this way, either considering a single instrument at a time, or merging the data of multiple
instruments.

2.2.1 Single-instrument data

Temperature mean profile

The temperature mean profile was estimated iteratively as follows. Having at hand N data points, the
estimate is given by

T̂0,N (z) =
1
N

N∑
n=1

Tn(z) (2.12)

=
N − 1

N
T̂0,(N−1)(z) +

TN (z)
N

(2.13)

The estimates obtained with each instrument are shown in Fig. 2.17. First, it can be noted that, only
after Julian time (JT) 163, the more unstable estimates have converged to within 10% of the final value
–the CTD and meteo buoy estimates–, possibly due to time non-stationarity. Second, it is interesting
that the thermocline depth estimate, on the last iteration, with the CTD and with the SEPTR data, is
nearly the same, the first, being an estimate with data from the whole trial area, and the other, from a
single location (see Fig. 2.2).

Estimation of the scaling factor σ2
δT

The temperature perturbations correlation, as a function of depth z, was iterativelly estimated as follows.
Having at hand P data values, the estimate is given by

σ2
δT ,P =

∑P
p=1(δTp)2

P
(2.14)

=
(P − 1)σ̂2

δT ,(P−1) + (δTP )2

P
. (2.15)

For data that can be considered as taken at the same instant, for all depths, as is the case in the data
from CTD, SEPTR, thermistor chains, meteo buoy, the variance estimate is updated with the ensemble
data, as follows:

σ2
δT ,(P+M) =

∑P+M
p=1 (δTp)2

P + M
(2.16)

=
Pσ̂2

δT ,P +
∑P+M

p=P+1(δTp)2

P + M
. (2.17)

The iterative estimate of σ2
δT is depicted in Fig. 2.18, with the data provided by each instrument. Note

the highly non-stationary behavior of σ̂2
δT , before JT 150, for the data collected by the East thermistor

chain and the ADCPs –Fig. 2.18 (b), (e) and (f).

Estimation of the temporal length T

The iterative estimates of T , with the data from the thermistor chains, meteo buoy and ADCPs is shown
in Fig. 2.19. The step-wise variations of the results (e.g. in the interval JT 151–152, for the West
thermistor chain estimate), are attributed to the estimator of T . It is based, in part on the derivative
of the data correlation, thus being inevitably sensitive to noise. It is likely that, if the correlation was
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Figure 2.17: Mean profile iterative estimate obtained with the (a) West and (b) East thermistor chains,
(c) CTD, (d) meteo buoy, (e) West and (f) East ADCPs, and (g) SEPTR data. At each depth, the
cross indicates the instant in which the estimate converged to within 10% of the final estimate. In (c)
and (g), the thermocline depth of the last profile –7.93 and 7.95 m, respectively– (at Julian time 175), is
represented by the dashed line. In (a), the estimate is always within 10% of the final estimate, possibly
due to the very short temperature sampling window of 6.22 days. In (b), the estimate is always within
10% of the final estimate, with a temperature sampling window of 28.1 days. In (d), for the 3 deepest
sensors, the estimate is always within 10% of the final estimate.
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Figure 2.18: Iterative estimate of σ2
δT , with the data provided by the (a) West and (b) East thermistor

chains, (c) CTD, (d) meteo buoy, (e) West and (f) East ADCPs, and (g) SEPTR casts. The dashed lines
indicate times at which the estimates stabilize to 10% of the final value.
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Figure 2.19: Iterative estimate of T , with the data provided by the (a) West and (b) East thermistor
chains, (c) meteo buoy, and (d) West and (e) East ADCPs casts. The dashed lines indicate times at
which the estimates stabilize to 10% of the final value.
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Figure 2.20: Iterative estimates of Lz, with the data provided by (a) the CTD and (b) the SEPTR casts.
The dashed lines indicate the times at which the estimates stabilized to 10% of the final value.

defined with the data from only say 5–10 days, the data corelation functions would not exhibit a constant
bias, and an estimator of T based on least-squares fitting would be possible. Other tests have shown that
the bias indeed decreases, in some cases, with the reduction of data, and this fact will be studied in the
future, for the definition of a non-stationary temperature perturbation correlation.

Estimation of the spatial length Lz

Due to the unrealistic value of the Ly estimate obtained in Sec. 2.1.1, the iterative estimation of Lx

and Ly was considered superfluous. The iterative estimates of Lz, obtained with the CTD and with the
SEPTR data, are shown on Fig. 2.20. The initial unstability of the CTD estimates are attributed to
inhomogeneity.

2.2.2 Multiple-instrument data

This section describes the estimation of σ2
δT , Lx, Ly and Lz, by merging the data provided by multiple

instruments. The time length T was not considered, due to the non-coincident locations of the instru-
ments, thus not allowing to fit the model (2.5) to the data correlation. The temperature perturbations
were defined with reference to the multiple-instrument average profile in Fig. 2.13 (a).

Estimation of the scaling factor σ2
δT

The iterative estimate σ̂2
δT [n], obtained with the data from all instruments, is displayed on Fig. 2.21.

The estimate has rapidly converged to values of the order of magnitude of the final value, due to the
majority of sampling near the sea surface, as already mentioned –see table 2.1 and Fig. 2.8.

Estimation of the spatial lengths Lx, Ly and Lz

The iterative estimates of Lx and Ly, with the data from all instruments, are shown in Fig. 2.22. We
note, in Fig. 2.22, that the transitions in the Lx and Ly estimates are correlated. This can be explained
by either of three arguments: 1) there are significant inhomogeneities between the small regions sampled
by each CTD cast, and the iterative estimate in time reflects that space-inhomogeneity; 2) there are
in fact non-stationary phenomena, which affects the horizontal correlation lengths; 3) the estimates of
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Figure 2.22: Iterative estimates L̂x[n] and L̂y[n], with the data provided by all instruments. The dashed
line indicates the time at which both estimates stabilized to 10% of the final value –JT 171.9.
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Figure 2.23: Iterative estimate L̂z[n], with the data provided by the CTD, thermistor chains, meteo buoy
and SEPTR casts. The dashed line indicates the time at which both estimates stabilized to 10% of the
final value –JT 167.5.

Lx and Ly are very inaccurate, and highly-dependent on the coarse sampling-lag, whose average value,
considering all instruments, has allowed the computation of the data correlation at x- and y-lags not
larger than 5.85 and 3.82 km, respectively.

The iterative estimate of Lz is shown in Fig. 2.23.



Chapter 3

Conclusions

This report focused on the estimation of the parameters of a temperature perturbation statistical cor-
relation modified-Gaussian model. The estimators consisted of least-squares fits and determination of
important points in data correlation functions. The data consisted of temperature measures from the
MREA ’03 sea trial. Two approaches have been considered: one, by processing the data measured by a
single instrument; the other, by merging the data observed by multiple instruments. Only the last allowed
to obtain realistic estimates of the horizontal correlation lengths. The whole temperature coverage of the
area was considered in the estimation of the correlation parameters. Since the sea trial area is contained
in a large 142×87.9 km (in linear longitude and latitude, respectively) rectangle, it is not surprising that
the estimates obtained with single instruments are, sometimes, significantly different. Iterative estimates
of the correlation parameters have also been considered, revealing a possibly non-stationary field.

The issue of modeling the temperature perturbation as a stationary and homogeneous field still re-
mains an open question, as evidenced by the strong depth-dependence of the estimates, and the space-
-dependence of the average temperature profile. The stationarity assumption of the perturbation field
should probably be limited to very few weeks or days, instead of the assumed one-month period, con-
sidering the non-stationarity observed by single-instrument parameter estimates. The inclusion of the
information from multiple instruments has conduced to smoother estimates along time.

Considering the possible application of these results in the interpolation of the measured field, and the
consecutive use in validating acoustic inversions or in forecasting the acoustic field in the whole trial area,
different estimates of the same correlation parameter may be used, according to the desired scale: small
oceanic areas can be described by the parameter estimates given by a single instrument localized in the
area of interest, while larger areas, by those obtained with various intruments. In order to deal with the
field non-stationarity, successive data correlation functions can be computed, with a time window data
no larger than, for example, one week.
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