
CINTAL - Centro de Investigação Tecnológica do Algarve

Universidade do Algarve

Acoustic pressure and particle motion

power spectrum estimation

with Matlab®

S.M.Jesus

Rep 03/19 - SiPLAB
Date: 31/October/2019
Revised: 28/December/2020

University of Algarve tel: +351-289800131
Campus de Gambelas fax: +351-289864258
8005-139, Faro cintal@ualg.pt
Portugal www.ualg.pt/cintal

Work requested by University of Algarve (under project JONAS)
Laboratory performing SiPLAB - Signal Processing Laboratory
the work FCT, Campus de Gambelas, Universidade do Algarve,

8005-139 Faro, Portugal
tel: +351-289800949
info@siplab.uceh.ualg.pt, www.siplab.fct.ualg.pt

Projects JONAS (EAPA-52/2018) and BIOCOM
Title Acoustic pressure and particle motion power spectrum esti-

mation with Matlab®

Authors S.M.Jesus
Date October 31, 2019 (revised: December 28, 2020)
Reference 03/19 - SiPLAB
Number of pages 35 (thirty five)
Summary This report recalls definitions and makes a brief review on

power spectrum estimation. Various implementations are
compared using Matlab® widely used routines, discrete func-
tions and matched with standard texts. This is then applied
to underwater acoustics for computing received levels at dis-
crete frequencies from measured or modelled data, both for
sound pressure and particle motion.

Clearance level UNCLASSIFIED
Distribution list SiPLAB, CINTAL, UALG, UCC, QO, CEFAS, SHOM, UPC,

MS, IH and PLOCAN
Attached None
Total number of recipients 11 (eleven)

Copyright Cintal@2019

Approved for publication

A.B. Ruano

President Administration Board

III

Foreword and Acknowledgment

This work was performed during the processing of the data and the writing of the BIO-
COM’19 experiment data report [1], while finding difficulties to find clear and practical
well accepted definitions for estimating the power spectral density of underwater acoustic
pressure and particle motion. Thanks are due to several colleagues with which I dis-
cussed this subject, namely Fábio Xavier (from IEAPM, Brasil), Cristiano Soares (from
Marsensing) and Florent Le Courtois (from SHOM, France), which comments are greatly
appreciated and resulted in several improvements.

This version has been revised two times: one (February 2020) to include a justification
for the usage of a slightly different definition for the DFT, where an appendix was added
for that purpose, and also an additional test case with a real data record; the other
(December 2020) was a correction on equations (2.7) to (2.9).

IV

intentionally blank

Contents

List of Figures VI

1 Introduction 9

2 Power Spectrum Estimators and Matlab® 10
2.1 Power and energy . 10
2.2 Classical power estimators . 11

2.2.1 Power Spectral Density . 11
2.2.2 Power Spectrum . 13

2.3 Implementation with Matlab® . 14
2.3.1 Example 1: two sinusoids . 15
2.3.2 Example 2: real data record . 19

3 Ocean acoustic measurements: pressure and particle motion 20
3.1 Pressure and particle motion . 20

3.1.1 Wave equation for sound pressure 21
3.1.2 Wave equation for particle velocity 21
3.1.3 Relation between pressure and particle velocity 21
3.1.4 Particle acceleration, velocity and displacement 22

3.2 Definitions for measurements . 23
3.2.1 Sound pressure . 23
3.2.2 Received level . 23
3.2.3 Particle motion . 24

4 Conclusions 25

A DFT scaling issues 28

B PSD and power spectrum simulation code 30

V

List of Figures

2.1 power spectral density (PSD), in dB // 1W/Hz, obtained in the two sinusoid
deterministic signal case for: N = 10000, fs = 10547 Hz, window=nfft=1024,
Hann windowed and a segment overlap of 50%. 16

2.2 spectrum power estimate, in dB // 1W, obtained in the two sinusoid deter-
ministic signal case for: N = 10000, fs = 10547 Hz, window=nfft=1024,
Hann windowed and a segment overlap of 50%. 17

2.3 zoom of the spectrum power estimate of plot 2.2 close to the peak frequency. 17

2.4 zoom of the power spectrum estimate of the two sinusoid example using the
PAMGuide software package. 18

2.5 real data record spectrum estimates for PSD (a) and PS (b) with nfft=window=4096,
fs=52734, Hann windowed and 50% segment overlap. 19

2.6 zoom of the spectrum power estimate of plot 2.5(b) close to the peak frequency. 19

VI

Abstract

This document briefly describes the background on power spectrum estimation using
well known reference books and texts. Reference definitions are then implemented into
Matlab® using discrete functions and matched to widely used Matlab® routines. Basic
simulations and respective codes are given to illustrate the various cases.

In a second chapter this experience is applied in the underwater acoustics case for
producing received level estimates at discrete frequencies from measured and modeled
data both for acoustic pressure and for particle motion, the latter being in most case not
referred to in current standards.

This report will be useful for those scientists involved in comparing measured noise
fields from place to place or over time and in integrating that knowledge on modeled
sound maps, or in whichever task spectral power amplitude is most important.

7

8 LIST OF FIGURES

intentionally blank

Chapter 1

Introduction

In many situations power spectrum estimation is used to determine the frequency content
of a given data record. For decades the scope of a large body of work has been to
estimate frequencies with enough precision and resolution to discriminate closely spaced
spectral lines. This led to the so-called high resolution methods which, most of them, are
not strictly speaking true spectral estimators since the focus was on spectral resolution
and not on amplitude estimation. The analogy between spectral lines and plane waves,
and between frequency and direction of arrival (DoA), makes this body of work directly
applicable to array signal processing. See classical literature on the subject in the review
paper of Kay and Marple [2], in the book of Marple [3] and for DOA applications on Krim
et al. [4].

The class of true spectral amplitude estimators is restricted to two types: the classical
methods and the minimum-variance based estimators. The classical estimators encompass
the periodogram and the correlogram. The former is based on the principle of conser-
vation of energy (or Parseval theorem) and the latter is based on the Wiener-Khinchin
theorem. The minimum-variance based estimators belong to the so-called high resolution
methods and use the assumption that the data record is formed by one sinusoid embedded
in white noise. The derived estimator (one of which is the Minimum Variance Distortion
Less - MVDR estimator) attempts to minimize all frequencies (respectively directions, in
the DOA case) but that of the sinusoid (plane wave). The assumption behind this class
of methods makes it well suited for estimating sinusoids but not extended background
sources, so we will concentrate in the classical estimators and in particular in the pe-
riodogram. The reason for this is mostly computational since the periodogram (and its
variants) are based on the Fast Fourier Transform (FFT) which makes it much faster than
the correlogram.

This is also the approach followed in Matlab where widely used routines such as
spectrogram and pwelch implement variants of the periodogram algorithm. One of
the issues we address here is to go back to the classical definitions and compare discrete
implementations with those obtained by these “ready-to-use” routines.

In the second chapter of this work we apply the Power Spectral Density (PSD) and
Power Spectrum (PS) estimators’ definitions in the underwater acoustics context, namely
for determining sound pressure level, particle acceleration and pressure equivalent particle
velocity PSD and PS.

9

Chapter 2

Power Spectrum Estimators and
Matlab®

2.1 Power and energy

For deterministic signals, the conservation of energy (also called the Parseval theorem)
implies that the total energy is conserved from the time to the frequency domain, i.e.,∫

|h(t)|2dt =

∫
|H(f)|2df, (2.1)

where H(f) is the Fourier Transform (FT) of signal h(t). Since the term on the right
hand side of (2.1) is the total energy integrated over the frequency domain, we may say
that

ESD(f) = |H(f)|2, (2.2)

is the energy per unit of frequency, or the Energy Spectral Density (ESD), which unit
should be [J/Hz]. Since energy is defined as power multiplied by time, we may define the
Power Spectral Density (PSD), by the ratio of ESD divided by time, i.e.,

PSD(f) =
ESD(f)

T
=
|H(f)|2

T
, (2.3)

now in [W/Hz]. Of course the total mean power in a given band B = [f1, f2] is the integral
of the PSD over that band, that is

PB =

∫ −f1
−f2

PSD(f)df +

∫ f2

f1

PSD(f)df, (2.4)

where the negative frequency side of the PSD was included for completeness. The Power
Spectrum (PS) is given as the incremental value of the PSD for a frequency window ∆f
[Hz]

PS(f) = PSD(f)∆f, (2.5)

simply in watts [W].

For random signals the PSD is defined as the FT of the signal autocorrelation function
via the Wiener-Khintchine theorem. It is shown that in order to define the PSD directly

10

2.2. CLASSICAL POWER ESTIMATORS 11

from the signal FT the following relation holds (see e.g. Marple [3])

PSD(f) = lim
T→∞

1

T
E

[∣∣∣∣∫ T

0

x(t)e−j2πftdt

∣∣∣∣2
]
, (2.6)

where mathematical expectation E[] assumes that the mean power of x(t) in the interval
[0, T] is finite, its variance is zero and its mean value is equal to the PSD, when T tends
to ∞. The expectation operator in (2.6) is the most often forgotten / ignored aspect in
classical spectral estimation.

For discrete signals recorded in limited time intervals, the energy theorem (2.1) is
usually written as

N−1∑
n=0

|x(n)|2 =
N−1∑
k=0

|X(k)|2. (2.7)

Marple [3] claims that a better approximation for the discrete summation over time and
frequency is to consider incremental steps weighted by the sampling intervals both, in the
time and frequency domain. This results in a scaling of the DFT which implications are
shown in appendix A. Among others, this claim also holds for the energy theorem since it
means that the energy incremental continuous step |x(t)|2dt is better approximated in the
discrete case by |x(n)|2∆T , where ∆T is the sampling interval. Thus, the energy theorem
becomes, in the discrete case

N−1∑
n=0

|x(n)|2∆T =
N−1∑
k=0

|X(k)|2∆f, (2.8)

where ∆f is the frequency sampling interval. Since ∆f = fs/N and fs = 1/∆T , where
fs is the sampling frequency, we may rewrite (2.8) as

N∆T
N−1∑
n=0

|x(n)|2 =
1

∆T

N−1∑
k=0

|X(k)|2, (2.9)

which will be useful later.

2.2 Classical power estimators

In practice, sound recording, like any other experimental activity, involves random quan-
tities or noise, that may be of acoustic and/or electronic origin, generated in the recorder
itself. The recorded data is then assimilated to a stochastic process and therefore only
estimates of moments (mostly first and second order) are meaningful. This is true both
in time and frequency, which clearly means that the PSD given by (2.3) or the PS by
(2.5) will not be determined exactly and only their estimates will be obtained from finite
data records. As mentioned above the so-called classical spectral PSD estimators are the
periodogram and the correlogram, described in every signal processing text book (see e.g.
Marple [3]).

2.2.1 Power Spectral Density

To make the long story short, the periodogram is basically a time average of the module
squared of the Fourier Transform (FT), or DFT in the discrete case, of a stretch of

12 CHAPTER 2. POWER SPECTRUM ESTIMATORS AND MATLAB®

recorded signal. As mentioned above time average to implement the expectation of (2.6)
is essential to obtain a stable PSD estimate. Adopting a common notation the sample
PSD can be written as (see eq. (5.31) of [3])

PSD(f) =
1

N∆T

∣∣∣∆T N−1∑
n=0

x(n)e−j2πfn∆T
∣∣∣2,

=
∆T

N

∣∣∣N−1∑
n=0

x(n)e−j2πfn∆T
∣∣∣2, (2.10)

where the Discrete Time Fourier Transform (DTFT) was used, ∆T = 1/fs is the sampling
interval and N is the number of samples in the data record. The scaling of the DFT by
the sampling interval ∆T allows to obtain a correctly scaled PSD (see appendix A and
discussion in [3] pp.41-43). So, N∆T is the total record time and (2.10) represents a
PSD, according to definition (2.3), as the total energy divided by record duration, which
unit is therefore [W/Hz]. The reason why this is a sample PSD is because it is based
on a single N -sample data record and, therefore, yields unstable estimates for random
processes, simply because the expectation operator (see (5.30) in [3]) was ignored. It is a
common error to take (2.10) as a PSD estimator, which it is not. For finite ergodic (and
stationnary) data records expectation is replaced by time averaging, for which strategies
abound in the literature but the most used is probably that proposed by Welch: the
Welch periodogram. As in all periodogram-style PSD estimators, the Welch periodogram
divides the data record in, say P , data segments. Then a sample PSD such as (2.10) is
calculated on each p-th segment and the result averaged over the segments. Compared to
other periodogram estimates (e.g. Daniel’s or Bartllet) the Welch periodogram has the
following features: i) by proposing an overlap between data segments within the finite
data record it allows for an increased stability and therefore a reduction of the variance
of the estimator while keeping a constant resolution and ii) it proposes time windowing
in general, and the Hann window in particular, as a mean for attenuating sidelobes at
an expense of a slight loss in resolution. In other words, Welch proposes a well balanced
compromise between resolution and stability, which is known to be the plague of classical
PSD estimators. Moreover, the implementation of the Welch periodogram using the FFT
algorithm greatly contributed to its success and widespread.

So, the Welch periodogram PSD estimate PSDW (f) is given as the average of the P
sample PSD estimated over each data segment as

PSDW (f) =
1

P

P−1∑
p=0

PSD(p)(f), (2.11)

where, using (2.10), the (p)-th segment sample spectrum is given by

PSD(p)(f) =
∆T

UD

∣∣∣D−1∑
n=0

w(n)x(n+ pS)e−j2πfn∆T
∣∣∣2, −fs/2 < f ≤ fs/2, (2.12)

where D plays the role of N of (2.10) and is the number of samples in a data segment,
w(n) is the considered time window function, and U is the time window power, given as
the total energy divided by total time duration, as

U =
1

D∆T

[
∆T

D−1∑
n=0

w2(n)
]
,

=
1

D

D−1∑
n=0

w2(n), (2.13)

2.2. CLASSICAL POWER ESTIMATORS 13

used here for power normalization, and is given by the discrete integration over the D∆T
interval of the window function. Note that a rectangular window {w(i) = 1, i = 1, . . . , D}
leads to a correct power normalization of U = 1. The data record of length N is therefore
segmented into P segments of length D with S samples of overlap between segments. The
number of segments is given as the integer part of (N−D)/S+1. The Welch periodogram
uses a Hann function time window and an overlap of S = D/2, i.e., a 50%, which has
been shown to held optimal results. It is clear from this formulation that the number
of samples taken for the FT has decreased from N to D, which is the price to pay for
increased stability.

In the discrete case, we use a DFT of length Nf ≥ D, normally chosen as a power of 2
for FFT efficiency, that gives

PSD(p)(k) =
∆T

UD

∣∣∣Nf−1∑
n=0

w(n)x(n+ pS)e−j2πkn/Nf

∣∣∣2, (2.14)

and therefore

PSDW (k) =
1

P

P−1∑
p=0

PSD(p)(k), (2.15)

where now the frequency discrete index k runs as −Nf/2 + 1 ≤ k ≤ Nf/2, which is
equivalent to −fs/2 < f ≤ fs/2. In many cases, for computation efficiency, the FFT
block size Nf is chosen equal to the data window size D if D is a power of 2 and, if not,
Nf is the next power of 2 larger than D and Nf − D zeroes are appended to the data
record, which does not change window or signal energy, and has the effect of performing
frequency interpolation.

When the PSD of real signals is represented as one-sided for f ∈ [0, fs/2], it requires
scaling by a factor of 2 in order to account for the negative half of the spectrum. A remark
should be made for discrete time, in which case the spectrum is periodic and the spectrum
samples P (0) and P (Nf/2) are not repeated and therefore should not be doubled. So,
the final PSD representation should be

PSDreal
W (k) =

PSDW (k) k = 0

2PSDW (k) k ∈ [1, Nf/2− 1]

PSDW (k) k = Nf/2

(2.16)

where PSDW (k) is given by (2.15).

2.2.2 Power Spectrum

The Power Spectrum (PS) is just a scaled version of the PSD so the power estimates at
each discrete frequency represent the true power estimate at that frequency, while for the
PSD that same power is distributed along the frequency bin width centered at the given
discrete frequency. Therefore, in order for the value of the spectrum to reflect the true
power spectrum estimate, as given in (2.5), one needs to integrate the power over the
frequency bin window. In the discrete spectrum case, integration over the frequency bin
width becomes simply as multiplying the mean PSD value in the bin by the bin width,
which is ∆f = fs/Nf which, used in (2.14) gives

PS(p)(k) =
1

UDNf

∣∣∣Nf−1∑
n=0

w(n)x(n+ pS)e−j2πkn/Nf

∣∣∣2, (2.17)

14 CHAPTER 2. POWER SPECTRUM ESTIMATORS AND MATLAB®

since ∆T ×∆f = 1/Nf , and of course

PS(k) =
1

P

P−1∑
p=0

PS(p)(k). (2.18)

2.3 Implementation with Matlab®

For Matlab® implementation we will focus on two widely used routines: spectrogram
and pwelch, both available in release 2017a. Spectrogram is normally used to analyze
the spectral content evolution through time of a given data record: the data is divided
into segments and a sample power spectral density (equivalent to (2.14)) is calculated and
displayed. The basic command line of the spectrogram routine is

[S,T,F,P] = spectrogram(x,hann(window),noverlap,nfft,fs)

with window an integer≤ nfft, allows for calculating two time-frequency matrices S and
P with the complex sample spectrum (also known as Short Time Fourier Transform) and
the sample PSD of data record x, respectively, using data segments of length window, Hann
windowed, and nfft samples for FFT calculation, with noverlap = nfft/2 denoting a
50% overlap between data segments. There is no averaging done in the computation of
matrices S or P so, they can not represent power spectral estimates. If signal x is real,
both S and P are one sided and (2.16) applies to P. T and F are arrays with the time and
frequency center bin values, obtained from the number of samples nfft and the frequency
fs (in Hz). In this implementation, the parallel to the definitions of the previous section
can be made by allowing window = D, nfft=Nf and fs=fs. It is unclear why the online
Matlab manual of spectrogram says that

P = Power spectral density (PSD) or power spectrum, returned as a matrix. If x is
real, then P contains the one-sided modified periodogram estimate of the PSD or power
spectrum of each segment

when P is not a peridogram estimate of the PSD or PS since it has the same dimension
than S and therefore no averaging is performed, whatsoever.

As an alternative, pwelch efectively calculates the Welch periodogram PSD estimate
as

[Pw,Tw,Fw] = pwelch(x,hann(window),noverlap,nfft,fs)

where all variables have the same meaning as for the spectrogram case. Pw is the Welch
periodogram PSD estimate obtained by averaging over the entire record duration x. If x
is real, Pw is one sided. In our quest to understand what is exactly done in spectrogram
and pwelch, we compare them with the plain FFT derived periodogram using (2.14) -
(2.16). So, four alternative algorithms are tested:

1. spectrogram P: the mean PSD matrix P directly calculated by routine spectrogram;

2. spectrogram S: the PSD matrix S calculated by spectrogram is used in (2.14)
and then plugged in (2.15) as

PSDW (k) =
1

UPDfs

P−1∑
p=0

|S(p)(k)|2, (2.19)

2.3. IMPLEMENTATION WITH MATLAB® 15

and then the weighting of (2.16) is used;

3. P Welch: Welch periodogram directly calculated by the pwelch Matlab routine
initialized with the same parameters as spectrogram;

4. FFT: the reference PSD estimate with a direct FFT using (2.14) - (2.16) above.

Matlab routines spectrogram and pwelch also have a switch named ’power’ which,
according to the documentation, allows for computing the true power at each frequency.
The test is re-run for PS estimation, activating the ’power’ switch for options 1 and 3
above. According to (2.17), a PS estimate may be obtained from the PSD by multiplying
by the frequency interval ∆f such that the weighting in (2.19) becomes

∆f × 1

UPDfs
=

1

UPDNf

(2.20)

the same occurring for the FFT based reference PS estimate.

This test is carried out for two examples: one is a simulated signal of known ampli-
tude so that absolute power estimates may be evaluated and compared; the other is an
experimental recording containing a mixture of ocean noise and man made signals.

2.3.1 Example 1: two sinusoids

A simulated N = 10000 sample deterministic signal composed of two sinusoids at fre-
quencies f1 = k1∆f and f2 = k2∆f with ∆f = fs/Nf and k1, k2 the closest integers

to fs/5∆f and 2fs/5∆f 1. The two sinusoids have peak amplitudes
√

2 and 10
√

2 volts,
respectively. The factor

√
2 allows for the two sinusoids to have exact root-mean-square

(rms) amplitudes of 1 and 10 volts, respectively. The sampling rate is fs = 10547 Hz,
window=nfft=1024, i.e., the whole data record.

Fig. 2.1 shows the PSD estimate results for the four algorithms. In all cases the
results are shown in a non-normalized dB scale as 10 log10[P (k)] relative to 1W/Hz. It is
remarkable to notice that the four PSD curves perfectly superimpose for this case. This
result is deemed as correct since the total energy is maintained from time to frequency as
stated in (2.1). In effect the following output is obtained:

...from PSD
Energy in time domain : 50.146213 dB
Energy in freq domain by spectrogram power : 50.146213 dB
Energy in freq domain by STFT from spectrogram : 50.146213 dB
Energy in freq domain by Welch periodogram : 50.146213 dB
Energy in freq domain by discrete FFT : 50.146213 dB

The energy in time domain is calculated as the sum of the module squared of the time
samples in one window. In the frequency domain the energy is the sum of the PSD

1this is not strictly necessary but is done here in order to avoid “scalop loss”, i.e., the power split
between the true signal frequency and the sampled frequency in the frequency domain. Of course, the
“scalop loss” effect decreases with increasing nfft.

16 CHAPTER 2. POWER SPECTRUM ESTIMATORS AND MATLAB®

Figure 2.1: power spectral density (PSD), in dB // 1W/Hz, obtained in the two sinusoid
deterministic signal case for: N = 10000, fs = 10547 Hz, window=nfft=1024, Hann
windowed and a segment overlap of 50%.

samples over the frequency band multiplied by the total bandwidth, which is the sampling
frequency fs since, according to (2.9),

n−1∑
n=0

|x(n)|2 =
1

∆T

1

N∆T

N−1∑
k=0

|X(k)|2,

= fs

N−1∑
k=0

1

N∆T
|X(k)|2,

= fs

N−1∑
k=0

PSD(k). (2.21)

However, the amplitudes of the two estimated sinusoids at f1 and f2 do not coincide with
the correct amplitudes which should be 0 dB (1 Vrms) and 20 dB (10 Vrms), respectively.
This is so because the PSD is a “power density” estimator and not a strict power estimator.

Using the ’power’ switch and the definition (2.17) allows to obtain the result of Fig.
2.2. In a first approach, the four algorithms gave very similar results and in coincidence
with the actual amplitudes of the sinusoids of 1 and 10 Vrms, respectively, 0 and 20
dB. However, if we look closely by making a zoom as shown in Fig. 2.3, we see that
the Matlab routines spectrogram and pwelch with the “power” switch (red and black
lines) gave the correct power amplitude estimates while the other two methods for the
discrete S matrix calculated through spectrogram S and the discrete FFT, gave power
estimates short by approximately 1.35 dB at the sinusoid frequency peaks. On the other
hand while making an estimate of the total energy in time and frequency (see output
below) it becomes clear that the spectrogram S and FFT methods mantained the correct

2.3. IMPLEMENTATION WITH MATLAB® 17

Figure 2.2: spectrum power estimate, in dB // 1W, obtained in the two sinusoid determin-
istic signal case for: N = 10000, fs = 10547 Hz, window=nfft=1024, Hann windowed
and a segment overlap of 50%.

Figure 2.3: zoom of the spectrum power estimate of plot 2.2 close to the peak frequency.

value while the P-spectrogram and P-welch algorithms overrated the correct energy by
approximately 1.35 dB. At this stage it is not clear where this difference comes from.

18 CHAPTER 2. POWER SPECTRUM ESTIMATORS AND MATLAB®

...from Power Spectrum
Energy in time domain : 50.146213 dB
Energy in freq domain by spectrogram power : 51.493671 dB
Energy in freq domain by STFT from spectrogram : 50.146213 dB
Energy in freq domain by Welch periodogram : 51.493671 dB
Energy in freq domain by discrete FFT : 50.146213 dB

As it can be see from the code in appendix B, the normalization of the frequency energy
is obtained by multiplying the power sum over frequency bins by nfft, the block size, or
the number of frequency bins, since from (2.21)

n−1∑
n=0

|x(n)|2 =
1

∆T

1

N∆T

N−1∑
k=0

|X(k)|2,

= N
N−1∑
k=0

∆f

N∆T
|X(k)|2,

= N

N−1∑
k=0

PS(k). (2.22)

A further comparison was attempted with the software PAMGuide provided in attach
of [5]. The two sinusoid data set was written on a WAV file (see code in appendix B) and
then read within PAMGuide and processed to obtain the plot in Fig. 2.4. In order to

Figure 2.4: zoom of the power spectrum estimate of the two sinusoid example using the
PAMGuide software package.

make the results compatible with those of the previous figures, a 0 dB // 1V/µPa, and
a gain of -40 dB were used, since the signal was divided by 100 before saving into file in
order to stay within the 1v limit required for the WAV format. The power level of the
two sinusoids approximately corresponds to the expected but falls short by nearly -3 dB.

2.3. IMPLEMENTATION WITH MATLAB® 19

2.3.2 Example 2: real data record

The real data record used in this test was recorded in Ria Formosa in November 2018
during a field experiment of the course on Bioacoustics under the Master of Marine Bi-
ology (MBM). The record contains 120 seconds of data at fs = 52734 Hz. The following
parameters were used nfft=window=4096 and noverlap=2048 (50%). The results are
shown for PSD and PS estimates in figure 2.5(a) and (b), respectively. It can be noticed

(a) (b)

Figure 2.5: real data record spectrum estimates for PSD (a) and PS (b) with
nfft=window=4096, fs=52734, Hann windowed and 50% segment overlap.

that also here the four estimators perfectly coincide for the PSD but there is a slight am-
plitude disagreement for the PS estimates (plot b). The zoom of figure 2.6 shows that the
difference equates to approximately -1.7 dB for the spectrogram S and FFT algorithms
when compared to the spectrogram P and P Welch.

Figure 2.6: zoom of the spectrum power estimate of plot 2.5(b) close to the peak frequency.

Chapter 3

Ocean acoustic measurements:
pressure and particle motion

This section deals with the application of the definitions and tested implementation rou-
tines of the previous chapter to the estimation of ocean acoustic noise and measurements.
Very often, spectrograms of recorded acoustic data are used to analyze time and frequency
variability, as well as relative levels. When absolute values are necessary, then the exact
definition of Power Spectrum (PS) or Power Spectral Density (PSD) is required in order
to be able to compare levels between different times and locations, or obtained by dif-
ferent users / instruments. This problem of portability of definitions becomes even more
stringent when applied to particle motion, much less used than acoustic pressure, and
therefore where standard methods and procedures are not yet well established.

3.1 Pressure and particle motion

It is well known from ocean physics that an acoustic wave (or any other mechanical
wave) propagates through the motion of tiny mass particles. Two types of motion may
be observed: one that is formed by mass particle “in place” oscillation transmitting this
oscillation to the nearby particle, then to the next, etc, and the actual back and forth
movement of particles through a short distance. That short distance is approximately one
wavelength, but may vary close to the sound source or close to hard boundaries, that in
the ocean are rocks, the ocean bottom or the sea surface.

So, there are two effects resulting from acoustic wave propagation: one is due to “in
place” particle oscillation and the other is the actual “back-and-forth” particle motion.
The former gives rise to the acoustic pressure that can be measured at long distance from
the source, and the latter is called particle motion and can only be observed within short
distances from the sound wave origin. Beyond that short distance the two effects merge
into acoustic pressure only. For many years particle motion was disregarded mainly for
two reasons: one was that sensitivity range was too short at practical frequencies and the
other was that there were no easy to use sensors for measuring particle motion.

In order to introduce the topic let us start by giving some useful definitions.

20

3.1. PRESSURE AND PARTICLE MOTION 21

3.1.1 Wave equation for sound pressure

The wave equation in linear regime starts from three equations [6]. The equation for
conservation of mass

∂ρ′

∂t
= −∇ · (ρ0v), (3.1)

Euler’s equation
∂v

∂t
= − 1

ρ0

p′(ρ), (3.2)

and the equation of state
∂p′

∂t
= c2

(
∂ρ′

∂t
+ v · ∇ρ0

)
, (3.3)

where c is the speed of sound in an ideal fluid, ρ is the media density, v is the particle
velocity vector which module is assumed to be much smaller than c, and where p is the
pressure. The time independent quantities are identified with a subscript 0, while the
small perturbations assumption was used for both pressure p = p0 + p′ and for density
ρ = ρ0 + ρ′.

It can be shown that the manipulation of (3.1)-(3.3) leads to the typical wave equation

∇2ν − 1

c2

∂2ν

∂t2
= 0, (3.4)

where ν is a generic variable that may be replaced by the pressure perturbations p′ or
density perturbations ρ′.

3.1.2 Wave equation for particle velocity

Alternatively, taking the divergence of (3.1) and the time derivative of (3.2) and combine
the two using (3.3) leads to the wave equation for the particle velocity v

1

ρ
∇(ρc2∇ · v)− ∂2v

∂t2
= 0, (3.5)

which is a vectorial equation with three components. It is common to define the velocity
potential field φ as

v = ∇φ, (3.6)

so that another wave-equation similar to (3.4) on φ may be defined.

3.1.3 Relation between pressure and particle velocity

The acoustic field supports plane-wave solutions for the wave equation and therefore, for
frequencies above the cut-off frequency

fcut−off =
c(π − ρsed/ρwater)

2πH sin(arccos(c/csed))
, (3.7)

where ρsed and ρwater are the densities in the sediment and in the water, respectively, c and
csed are the sound speed in the water and in the sediment, respectively and H is the water

22
CHAPTER 3. OCEAN ACOUSTIC MEASUREMENTS: PRESSURE AND

PARTICLE MOTION

depth, one may assume that the velocity potential along, say, the x-axis, φ = f(x − ct),
is some travelling wave, function of x and t. According to the Euler’s equation (3.2), and
using definition (3.6), we have that

∂p

∂x
= −ρ∂vx

∂t
= −ρ ∂

2φ

∂x∂t
(3.8)

so that integrating for p along x, gives

p = −ρ∂φ
∂t

= ρcf ′(x− ct) (3.9)

and therefore using the fact that according to (3.6), vx = f ′(x − ct) we can write an
essential relation between sound pressure and particle velocity for plane waves

p = ρcv (3.10)

where velocity v is a scalar, v = |v|. At short range r from the sound source the following
approximate relation is used

p = ρcv

(
1 +

λ

2πr

)−1/2

(3.11)

where λ = c/f is the wavelength. The acoustic pressure obtained by either (3.10) or
(3.11) are sometime called the pressure equivalent particle velocity and noted pv in order
to avoid confusion with the plain pressure field.

Another way to see this equivalence between pressure and particle velocity is to remark
that (3.8) may be written for a narrow band signal, in the frequency domain as

∂P (ω)

∂x
= −ρjωVx(ω) (3.12)

which simply states that the particle velocity at a given frequency ω and along a given axis
is proportional to the pressure gradient (pressure difference) along the same axis. This is
why one practical technique for measuring particle velocity is by doing the difference of
the output of closely spaced pressure sensors.

Including the particle velocity equivalent Vpx = ρcVx, in (3.12) allows to write the
relation between plain pressure and pressure equivalent particle velocity as

Vpx(ω) =
1

jk

∂Px(ω)

∂x
(3.13)

where k = ω/c is the wavenumber. It is easy to note that the unit of pressure equivalent
particle velocity is conveniently [Kg][m−1][s−2] which is also equivalent to [N][m−2] or
Pascal [Pa].

3.1.4 Particle acceleration, velocity and displacement

Since particle displacement, velocity and acceleration are related by successive time deriva-
tives, we may write in the frequency domain, and for each spatial component i = (x, y, z),
that

Ai(ω) = jωVi(ω) Vi(ω) = jωΞi(ω) (3.14)

where Ai, Vi and Ξi are the i-th axis acceleration, velocity and displacement, as frequency
domain representations of ai, vi and ξi, respectively. These three quantities are measured
in ms−2, ms−1 and simply m, respectively.

3.2. DEFINITIONS FOR MEASUREMENTS 23

3.2 Definitions for measurements

3.2.1 Sound pressure

The commonly accepted definition of Sound Pressure Level (SPL), usually in dB, is that
given by Urick [7]

SPLdB = 10 log10

I

Iref

, (3.15)

where I is not the true “intensity” but the sound field intensity of a plane wave defined
by

I =
p2

rms

ρc
, (3.16)

where prms is the root mean square pressure field of the plane wave taken over a time
interval T , i.e.,

prms =

√
1

T

∫ T

0

p2(t)dt, (3.17)

where p(t) is the instantaneous acoustic pressure at time t. Most often T is taken equal
to 1s. In (3.15) Iref is the reference sound field intensity for calculating the SPL in dB.
According to (3.16), Iref should depend on a rms reference sound pressure pref and on
the media impedance ρc that would cancel out of (3.15) if constant in time and space.
Otherwise, the intensity ratio in (3.15) depends on the impedence ratio Zref/Z, where Z is
the actual media impedance calculated at the time and location where the measurement
is taking place. This requires the definition of Zref . Strangely enough, as pref has been
clearly defined to be 1µPa in the water both by ANSI and IEC since 1969, the reference
value for the impedance is not mentioned in any standard posterior to 1960 [8]. So, while
before 1960 the standard for impedance in the US was set to Zref = 1.53507 106 Pa s/m
due to a reference sound speed of c = 1500 m/s and a water density ρ=1.02338 g/cm3,
after that date Zref was left undefined. Despite this lack of definition, the community
continued to use the reference pressure of 1µPa and has dismissed the conversion to
intensity, implicitely admitting that impedance was cancelling out in (3.15). Nowadays
it is common usage to refer simply to SPL in units of dB // 1µPa which, justifies for the
name of “sound pressure level” and not “sound intensity level” as it should have been:
it is indeed a ratio of squared pressures. Assuming a space-time invariant impedance we
can write (3.15) as

SPLdB = 20 log10

p

pref

, (3.18)

in [dB // 1µPa]. In the frequency domain definitions (2.14) - (2.16) for PSD and (2.17)
- (2.18) for PS, apply with the signal equal to the pressure field, i.e., x(n) = p(n). The
units will become [dB // µPa2/Hz] for the PSD and [dB // µPa2] for the power spectrum.
Some authors define SPL in spectral amplitude, in which case the units become [dB //

µPa/
√

Hz] for the PSD amplitude and [dB // µPa] for the PS amplitude.

3.2.2 Received level

Very often, when attempting to produce SPL maps using modeled data, one is bound to
determine the received level (RL) as a combination of contributions of the various sound
sources on a given field at a given time. Assuming in a first approximation - often made

24
CHAPTER 3. OCEAN ACOUSTIC MEASUREMENTS: PRESSURE AND

PARTICLE MOTION

- that the field is composed of I discrete sources and that the media behaves as a linear
system, i.e., that the system output is the sum of the contributions of each input taken
individually, one may write

RLm = 10 log10

I∑
i=1

10(SLi−TLim)/10, (3.19)

where RLm is the received level at location m, SLi is the level of discrete source i and
TLim is the transmission loss between location of source i to location of receiver m.
All quantities are expressed in dB. Note, that the summation in (3.19) is performed
over individual source received power in a linear scale, not in dB. This is due to the
assumed linear system property referred to above, and is essential for the calculation of
the estimated received level RL.

3.2.3 Particle motion

The focus of interest on particle motion is the now widely spread understanding that
many marine species are sensitive to the particle motion field. The most common quan-
tities under use have been pressure equivalent particle velocity and particle acceleration.
The pressure equivalent notation is normally used when particle velocity is to be com-
bined or compared with acoustic pressure, while particle acceleration is meaningful when
determining acoustic noise effects on aquatic life.

Since, most common particle motion sensors nowadays use accelerometers, the measured
field is ai(t), particle acceleration in units [m/s2], where i = (x, y, z)-axis. The next step
is to equate the sample FT Ai(f), as

Ai(f) =
N−1∑
n=0

ai(n)e−j2πnf∆T , (3.20)

to get the PSD or power spectrum estimates using similar expressions to those in section
2 using, for example, for the sample spectrum

P̃Ai(f) =
∆T

N
|Ai(f)|2, (3.21)

and the subsequent relations for the Welch periodogram PSD and PS estimates, conve-
niently expressed in units of [dB // (m/s2)2/Hz] or [dB // (m/s2)2], respectively.

Alternatively, using (3.13) and (3.14), one may get the particle velocity pressure equiv-
alent along axis i,

Vpi(f) =
ρc

j2πf
Ai(f). (3.22)

In this case and since Vpi is pressure equivalent, unit [Pa] applies, and therefore equivalent
PSD and power spectrum definitions as for the pressure field are used.

Chapter 4

Conclusions

It is common for researchers to present results of power spectrum estimates at conferences,
workshops and other events. Often, spectral power levels are compared among various
experiments taken with a variety of instruments, many of which have embedded software
for automatically determining those levels. Power spectrum estimation is a well estab-
lished discipline that has lead to implementations in commonly used software packages
such as Matlab®. However, there are underlying assumptions and associated definitions
that are not always taken into account and sometimes misused.

It is therefore important to draw a reference procedure by comparing the fundamental
definitions with common used software so that every researcher will be able to tune their
own processing in order to be able to compare results up to, say, the level of 1 dB.

So, the comparison of the results obtained with reference methods and ready-to-use
routines in a simple example allowed to draw the following conclusions:

1. the PSD calculated by Matlab’s spectrogram and pwelch routines exactly coin-
cided;

2. the PSD obtained by the STFT matrix S exactly coincided with that of the plain
FFT and are consistent with definitions; in order to make those two definitions
fit among them, an appropriate and sensible scaling using the Welch periodogram
definitions in [3], namely by dividing by the time window energy, the number of
samples in the data segment and the sampling frequency, allowed to obtain the
same results as those of Matlab;

3. the rms amplitudes of the sinusoids could be obtained through Matlab spectrogram
and pwelch by using the ’power’ switch, but could not be replicated exactly by
integrating the discrete PSD implementations using S from spectrogram and direct
FFT, over the frequency bin interval;

4. conservation of energy between time and frequency domains could only be achieved
by the discrete S-spectrogram and FFT implementations;

5. definitions of particle motion are given for measuring and displaying PSD and power
spectrum of pressure equivalent particle velocity and particle acceleration quantities,
as an attempt to provide a consistent set for representing noise fields.

This work is a contribution to the implementation of standard definitions for comparative
purposes of sound pressure level, power spectral densities and power spectra, within task

25

26 CHAPTER 4. CONCLUSIONS

4.3 of project JONAS (EAPA 52/2018) and for the analysis of the particle motion data set
acquired during experiment BIOCOM’19 (see report [1], under project BIOCOM funded
by program “Science without Borders” (Ciência sem Fronteiras) 2015 - 2019, Brasil.

Bibliography

[1] S.M. Jesus, L. Maia, F. Xavier, R. Vio, and E. Vale. Biocom’19 experiment data
report: particle motion measurements. Report 02/19 - SiPLAB, CINTAL, University
of Algarve, 8005-139 Faro (Portugal), August 2019.

[2] S.M. Kay and S.L. Marple Jr. Spectrum analysis - a modern perspective. Proceedings
IEEE, 69(1):1380–1419, 1981.

[3] S.L. Marple. Digital Spectral Analysis with Applications. Prentice-Hall, New Jersey,
USA, 1987.

[4] H. Krim and M. Viberg. Two decades of array signal processing research. IEEE Signal
Processing Magazine, 96:67–94, July 1996.

[5] N.D. Merchant, K.M Fristrup, M.P. Johnson, P.L. Tyack, M.J. Witt, P. Blondel, and
S.E. Parks. Measuring acoustic habitats. Methods in Ecology and Evolution, 6:257–
265, 2015.

[6] F. Jensen, W. Kuperman, M. Porter, and H. Schmidt. Computational Ocean Acoustics.
AIP Series in Modern Acoustics and Signal Processing, New York, 1994.

[7] R.J. Urick. Principles of Underwater Sound. McGraw-Hill, New York, 1983.

[8] M.A. Ainslie. A century of sonar: planetary oceanography, underwater noise monitor-
ing, and the terminology of underwater sound. Acoustics Today, 11(1):12–19, Winter
2015.

[9] M. Frigo and S.G. Johnson. Fftw: An adaptive software architecture for the fft. In
Proc. of Int. Conf. on Acoustics, Speech and Signal Proc., volume 3, pages 1381–1384,
1998.

27

Appendix A

DFT scaling issues

Let us recall that the usual definition DFT pair of a discrete time signal x(n) of N samples,
is

X(k) =
N−1∑
n=0

x(n)e−j2πnk/N , (A.1)

x(n) =
1

N

N−1∑
n=0

X(k)ej2πnk/N , (A.2)

The Matlab manual refers that the definition of [9] is adopted, that states in www.fftw.org
that the DFT pair is given by

X(k) =
N−1∑
n=0

x(n)e−j2πnk/N , (A.3)

x(n) =
N−1∑
n=0

X(k)ej2πnk/N , (A.4)

the only difference being an amplitude factor of 1/N . Instead in the reference text of
Marple [3] (pp.37) it is stated that the following definition is adopted

X(k) = ∆T
N−1∑
n=0

x(n)e−j2πnk/N , (A.5)

x(n) =
1

N∆T

N−1∑
n=0

X(k)ej2πnk/N , (A.6)

where now the sampling interval ∆T multiplies the direct transform and divides in the
inverse transform. The question is why those differences and what is their impact on the
final PSD estimate ?

Estimating PSD or PS through the periodogram mainly deals with the direct DFT so we
will concentrate on that one. We need to show whether (A.5) provides a more consistent
and better calibrated energy (or power) expression than that provided by (A.1) (or (A.3)).

The first remark is that the sampling interval factor ∆T of (A.5) and (A.6) has no
influence in the forward-backward transform pair.

28

29

The second remark holds on the justification given in [3] (eq. 2.57, pp.42), that the
factor ∆T gives a better discrete approximation of the FT integral, that is

N−1∑
n=0

x(n)e−j2πnf∆T∆T ≈
∫ N∆T

0

x(t)e−j2πftdt, (A.7)

simply because the discrete version of the incremental factor x(t)dt is given by x(n)∆T .

This change has, of course, impact on the expression of the energy theorem in the
discrete case. So, we now prove (2.9) with the help of the elaborated explanation given
in [3] pp. 40-43.

Let us calculate the signal power in the frequency domain using (A.5),

N−1∑
k=0

|X(k)|2 =
N−1∑
k=0

∆T 2

∣∣∣∣∣
N−1∑
n=0

x(n)e−j2πnk/N

∣∣∣∣∣
2

,

=
N−1∑
k=0

∆T 2

N−1∑
n=0

|x(n)|2 +
N−1∑
n=0

N−1∑
m=0
m 6=n

x(n)x∗(m)e−j2πk(n−m)/N

 ,

= N∆T 2

N−1∑
n=0

|x(n)|2 + ∆T 2

N−1∑
n=0

N−1∑
m=0
m 6=n

x(n)x∗(m)
N−1∑
k=0

e−j2πk(n−m)/N ,(A.8)

The latter summation on k in the second term of (A.8) appears as the DFT, of a signal
equal to 1 in the interval [0, N − 1]. Therefore it results on a Dirac δ(n−m). Since this
Dirac will only be different from zero at n = m, the double summation in the second term
of (A.8) will always be zero. Therefore,

N−1∑
k=0

|X(k)|2 = N∆T 2

N−1∑
n=0

|x(n)|2, (A.9)

or in a more stricking equivalent form

1

∆T

N−1∑
k=0

|X(k)|2 = N∆T
N−1∑
n=0

|x(n)|2, (A.10)

that simply states the energy theorem for a time discrete finite signal, where in each
domain the power summation should be multiplied by the extent of time and frequency
intervals, N∆T and 1/∆T = fs, respectively. If the ∆T scaling factor was not used in
(A.5), the right scaling could only be obtained for ∆T = 1, which somehow is assumed in
the current DFT definitions.

Appendix B

PSD and power spectrum simulation
code

% test_spectrogram.m: test spectrogram and pwelch for PSD and Power
% 19jul2019
%
% last update: 08ago19
% 21ago19 - including Cristiano’s remarks
% 30ago19 - with energy calculation
% 02feb20 - test with N > Nfft
% 04feb20 - change to Hann window (default in Welch)
%==

clear
close all

% window = actual # time samples taken from the signal
% nfft = FFT length, if nfft > window zeros are appended to signal
% overlap = segment overlap in %
% noverlap = # of samples of overlap
% fs = sampling frequency [Hz]
% dt = sampling interval in time [s]
% df = sampling interval in frequency [Hz]
window = 1024;
nfft = 2^nextpow2(window);
overlap = 50; % percentage of segment overlap
noverlap= floor(overlap * window /100);
fs = 10547;
dt = 1/fs;
df = fs/nfft;

% test signal: sum of two sinusoids at f0 with amplitude 1Vrms and 2*f0
% with amplitude 10 Vrms; f0 is approx fs/5, where approx means the nearest
% integer frequency bin in order to avoid "scalop loss"
N = 100000;
n = 0:N-1;
% make sinusoide frequency coincide exactly with a discrete frequency bin
f0 = round((fs/5)/df)*df;

30

31

w0 = 2*pi*f0;
x = sqrt(2)*sin(w0*n*dt) + sqrt(2)*10*sin(2*w0*n*dt);

% pick hann window and calculate energy U
% note that energy should equate to 1 for rectangular window
w = hann(window);
U = (1/window)*sum(w.^2);

%
% PSD estimates
%
%===
figure(1)
% mean PSD calculated by spectrogram
[S,F,T,P] = spectrogram(x,hann(window),noverlap,nfft,fs);
Pp = mean(P,2);
plot(F/1000,10*log10(Pp),’k-’,’Linewidth’,2)
hold on

% mean PSD calculated with S given by spectrogram
Ps = (mean(abs(S).^2,2))/(U*window*fs);
Ps(2:end-1) = 2*Ps(2:end-1);
plot(F/1000,10*log10(Ps),’g--’,’Linewidth’,2)

% Welch periodogram PSD
[Pw,Fw,Tw] = pwelch(x,hann(window),noverlap,nfft,fs);
plot(Fw/1000,10*log10(Pw),’r-.’,’Linewidth’,2);

% emulate Pw, Pp, Ps with FFT estimated periodogram
Nseg = floor((N-window)/(noverlap)) + 1; % number of segments
k2 = 0;
Pxmean = zeros(1,nfft/2+1);
y = zeros(1,nfft);
for pseg = 1:Nseg,

k1 = k2 - (window-noverlap);
if k1 < 0, k1 = 0; end
k2 = k1 + window;
y(1:window) = x(k1+1:k2).*w’;
X = fft(y,nfft);
Px = (abs(X(1:nfft/2+1)).^2)/(U*window*fs);
Px(2:end-1) = 2*Px(2:end-1);
Pxmean = ((pseg-1)/pseg)*Pxmean + Px/pseg;

end
Fx = linspace(0,fs/2,nfft/2+1);
plot(Fx/1000,10*log10(Pxmean),’b:’,’Linewidth’,2)
axis tight
grid on
legend(’spectrogram P’,’spectrogram S’,’P Welch’,’FFT’,’Location’,’NorthWest’)
xlabel(’Frequency (kHz)’,’Fontsize’,15);
ylabel(’PSD [dB// 1W/Hz]’,’Fontsize’,15)
set(gca,’Fontweight’,’bold’,’Fontsize’,12);

% calculate time and frequency energy

32 APPENDIX B. PSD AND POWER SPECTRUM SIMULATION CODE

Et = 10*log10(sum(abs(x(1:window)).^2)); % time
Ep = 10*log10(sum(fs*Pp)); % PSD calculated by spectrogram
Es = 10*log10(sum(fs*Ps)); % PSD calculated with S from spectrogram
Ew = 10*log10(sum(fs*Pw)); % PSD calculated by pwelch
Ex = 10*log10(sum(fs*Pxmean)); % PSD calculated from discrete fft
disp (’...from PSD ’);
fprintf(’Energy in time domain : %f dB\n’, Et);
fprintf(’Energy in freq domain by spectrogram power : %f dB\n’, Ep);
fprintf(’Energy in freq domain by STFT from spectrogram : %f dB\n’, Es);
fprintf(’Energy in freq domain by Welch periodogram : %f dB\n’, Ew);
fprintf(’Energy in freq domain by discrete FFT : %f dB\n’, Ex);

%
% Power spectrum
%
%===
clear Pp Ps Pw Fw Tw Px S F T P Pxmean
figure(2)
% power per bin calculated by spectrogram
% power key allows for calculating the noise/signal present on each
% frequency bin
[S,F,T,P] = spectrogram(x,hann(window),noverlap,nfft,fs,’power’);
Pp = mean(P,2);
plot(F/1000,10*log10(Pp),’k-’,’Linewidth’,2)
hold on

% power per bin calculated with S by spectrogram
Ps = (mean(abs(S).^2,2))/(U*window*nfft);
Ps(2:end-1) = 2*Ps(2:end-1);
plot(F/1000,10*log10(Ps),’g--’,’Linewidth’,2)

% Welch periodogram PSD
[Pw,Fw,Tw] = pwelch(x,hann(window),noverlap,nfft,fs,’power’);
plot(Fw/1000,10*log10(Pw),’r-.’,’Linewidth’,2);

% emulate Pw, Pp, Ps with FFT estimated periodogram
Nseg = floor((N-window)/(noverlap)) + 1; % number of segments
k2 = 0;
Pxmean = zeros(1,nfft/2+1);
y = zeros(1,nfft);
for pseg = 1:Nseg,

k1 = k2 - (window-noverlap);
if k1 < 0, k1 = 0; end
k2 = k1 + window;
y(1:window) = x(k1+1:k2).*w’;
X = fft(y,nfft);
Px = (abs(X(1:nfft/2+1)).^2)/(U*window*nfft);
Px(2:end-1) = 2*Px(2:end-1);
Pxmean = ((pseg-1)/pseg)*Pxmean + Px/pseg;

end
Fx = linspace(0,fs/2,nfft/2+1);
plot(Fx/1000,10*log10(Pxmean),’b:’,’Linewidth’,2)
axis tight

33

grid on
legend(’spectrogram P’,’spectrogram S’,’P Welch’,’FFT’,’Location’,’NorthWest’)
xlabel(’Frequency (kHz)’,’Fontsize’,15);
ylabel(’Power [dB// 1W]’,’Fontsize’,15)
set(gca,’Fontweight’,’bold’,’Fontsize’,12);

% calculate time and frequency energy
disp (’...from Power Spectrum ’);
Et = 10*log10(sum(abs(x(1:window)).^2)); % time
Ep = 10*log10(window*sum(Pp)); % PSD calculated by spectrogram
Es = 10*log10(window*sum(Ps)); % PSD calculated with S from spectrogram
Ew = 10*log10(window*sum(Pw)); % PSD calculated by pwelch
Ex = 10*log10(window*sum(Pxmean)); % PSD calculated from discrete fft
fprintf(’Energy in time domain : %f dB\n’, Et);
fprintf(’Energy in freq domain by spectrogram power : %f dB\n’, Ep);
fprintf(’Energy in freq domain by STFT from spectrogram : %f dB\n’, Es);
fprintf(’Energy in freq domain by Welch periodogram : %f dB\n’, Ew);
fprintf(’Energy in freq domain by discrete FFT : %f dB\n’, Ex);

% save 10 seconds of data into wav file
T = 10;
Nsamp = T * fs;
nt = 0:Nsamp-1;
X = sqrt(2)*sin(w0*nt*dt) + sqrt(2)*10*sin(2*w0*nt*dt);
% apply a gain so, as if the signal was recorded with a gain = 10 (20dB)
X = X/10;
% apply a 2.5 V peak max excursion at ADC input and 24 bit coding
Xint = int32(X * 2^23/2.5);
audiowrite(’two_sinewaves.wav’,Xint,fs,’BitsPerSample’,24);
clear X nt Nsamp T

%===============================
% real data example
%===============================
% reading in WAV file
clear
[Y,fs] = audioread(’DATA_TP1_0218_333110007.WAV’);
x = double(Y(:,1));
clear Y

% set parameters
window = 4096;
nfft = 2^nextpow2(window);
overlap = 50; % percentage of segment overlap
noverlap = floor(overlap * window /100);
dt = 1/fs;
df = fs/nfft;
N = floor(length(x));

% pick hann window and calculate energy U
% note that energy should equate to 1 for rectangular window
w = hann(window);
U = (1/window)*sum(w.^2);

34 APPENDIX B. PSD AND POWER SPECTRUM SIMULATION CODE

%
% PSD estimates
%
%===
figure(3)
% mean PSD calculated by spectrogram
[S,F,T,P] = spectrogram(x(1:N),hann(window),noverlap,nfft,fs);
Pp = mean(P,2);
plot(F/1000,10*log10(Pp),’k-’,’Linewidth’,2)
disp(’ PSD P spectrogram - done’);
hold on

% mean PSD calculated with S given by spectrogram
Ps = (mean(abs(S).^2,2))/(U*window*fs);
Ps(2:end-1) = 2*Ps(2:end-1);
plot(F/1000,10*log10(Ps),’g--’,’Linewidth’,2)
disp(’ PSD S spectrogram - done’);

% Welch periodogram PSD
[Pw,Fw,Tw] = pwelch(x(1:N),hann(window),noverlap,nfft,fs);
plot(Fw/1000,10*log10(Pw),’r-.’,’Linewidth’,2);
disp(’ PSD Welch - done’);

% emulate Pw, Pp, Ps with FFT estimated periodogram
% missing the case where nfft > window
Nseg = floor((N-window)/(noverlap)) + 1; % number of segments
k2 = 0;
Pxmean = zeros(1,nfft/2+1);
for pseg = 1:Nseg,

k1 = k2 - (window-noverlap);
if k1 < 0, k1 = 0; end
k2 = k1 + window;
X = fft(x(k1+1:k2).*w,nfft);
Px = (abs(X(1:nfft/2+1)).^2)/(U*window*fs);
Px(2:end-1) = 2*Px(2:end-1);
Pxmean = ((pseg-1)/pseg)*Pxmean + Px/pseg;

end
Fx = linspace(0,fs/2,nfft/2+1);
plot(Fx/1000,10*log10(Pxmean),’b:’,’Linewidth’,2)
disp(’ PSD FFT - done’);
axis tight
grid on
legend(’spectrogram P’,’spectrogram S’,’P Welch’,’FFT’,’Location’,’NorthEast’)
xlabel(’Frequency (kHz)’,’Fontsize’,15);
ylabel(’PSD [dB// 1W/Hz]’,’Fontsize’,15)
set(gca,’Fontweight’,’bold’,’Fontsize’,12);

%
% Power spectrum
%
%===
clear Pp Ps Pw Fw Tw Px S F T P Pxmean

35

figure(4)
% power per bin calculated by spectrogram
% power key allows for calculating the noise/signal present on each
% frequency bin
[S,F,T,P] = spectrogram(x,hann(window),noverlap,nfft,fs,’power’);
Pp = mean(P,2);
plot(F/1000,10*log10(Pp),’k-’,’Linewidth’,2)
disp(’ PS P spectrogram - done’);
hold on

% power per bin calculated with S by spectrogram
Ps = (mean(abs(S).^2,2))/(U*window*nfft);
Ps(2:end-1) = 2*Ps(2:end-1);
plot(F/1000,10*log10(Ps),’g--’,’Linewidth’,2)
disp(’ PS S spectrogram - done’);

% Welch periodogram PSD
[Pw,Fw,Tw] = pwelch(x,hann(window),noverlap,nfft,fs,’power’);
plot(Fw/1000,10*log10(Pw),’r-.’,’Linewidth’,2);
disp(’ PS Welch - done’);

% emulate Pw, Pp, Ps with FFT estimated periodogram
% missing the case where nfft > window
Nseg = floor((N-window)/(noverlap)) + 1; % number of segments
k2 = 0;
Pxmean = zeros(1,nfft/2+1);
for pseg = 1:Nseg,

k1 = k2 - (window-noverlap);
if k1 < 0, k1 = 0; end
k2 = k1 + window;
X = fft(x(k1+1:k2).*w,nfft);
Px = (abs(X(1:nfft/2+1)).^2)/(U*window*nfft);
Px(2:end-1) = 2*Px(2:end-1);
Pxmean = ((pseg-1)/pseg)*Pxmean + Px/pseg;

end
Fx = linspace(0,fs/2,nfft/2+1);
plot(Fx/1000,10*log10(Pxmean),’b:’,’Linewidth’,2)
disp(’ PS FFT - done’);
axis tight
grid on
legend(’spectrogram P’,’spectrogram S’,’P Welch’,’FFT’,’Location’,’NorthEast’)
xlabel(’Frequency (kHz)’,’Fontsize’,15);
ylabel(’Power [dB// 1W]’,’Fontsize’,15)
set(gca,’Fontweight’,’bold’,’Fontsize’,12);

