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Chapter 1

Introduction

Dynamic modes are important to describe the motion of a fluid and can be easily derived
in the hydrostatic and non-hydrostatic linear cases from the general equations of fluid
dynamics, neglecting the effects of friction and viscosity. In general the dynamic modes
can be used to describe in detail the fields of pressure, density and currents. However, as
will be shown in the following chapter, dynamic modes can be used to introduce a semi-
orthogonal representation of the temperature, salinity and sound speed fields, which are
the fundamental objects of interest in acoustic tomography. This internal report describes
the theoretical background behind the description of dynamic modes, their relationship
to temperature and sound speed, and also describes the numerical methods that allow to
calculate a particular set of dynamic modes from a single temperature profile.
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Chapter 2

Dynamic modes

2.1 Theoretical background

In general, the motion of a fluid obeys to the set of Navier-Stokes equations [1, 2], which
include the terms of viscosity and friction. These terms play a minor role in the motion
of the oceanic masses of water, allowing one to introduce the following equation for the
motion of a fluid [3]:

ρ
∂U

∂t
+ ρ (U · ∇) U + 2ρΩ×U = −∇p+ ρg , (2.1)

where U = (u, v, w) represents the velocity of the fluid particles, p represents the fluid
pressure, ρ corresponds to its density, t represents the time coordinate, Ω corresponds
to the vector of angular rotation of the Earth and g = −kg, with g representing the
acceleration of free fall in the gravity field of the Earth, (g = 9.8 m/s2). In Eq.(2.1) ∇
represents the “nabla” operator: ∇ = i∂/∂x + j∂/∂y + k∂/∂z. In general the terms to
the left of the equality sign in Eq.(2.1) describe the motion of the fluid particles within
a non-inertial frame of reference and in the absence of viscosity. The terms to the right
of the sign describe the combined action of the external fields of the pressure and gravity
forces. Eq.(2.1) can be simplified further by introducing the Boussinesq approximation
[2], which states that the perturbations in density, ρ′ = ρ − ρ0, play a second order role
in the calculations of the terms to the left of Eq.(2.1). In this way one can substitute in
those terms, without loss of generality, the total density, ρ, by the equilibrium density,
ρ0. However, the same reasoning is not valid for the terms to the right of the equation.
Therefore, according to the Boussinesq approximation, one can rewrite Eq.(2.1) as

ρ0
∂U

∂t
+ 2ρ0Ω×U + ρ0 (U · ∇) U = −∇p+ ρg . (2.2)

Eq.(2.2) is insufficient to develop a complete analysis of the motion of the oceanic
masses. In addition to that equation one can show that the velocity and density of the
fluid particles are related to each other through the Continuity equation [4]:

1

ρ

Dρ

Dt
+∇ ·U = 0 , (2.3)

where the operator of the total derivative is defined as

D

Dt
≡ ∂

∂t
+ U · ∇ . (2.4)

8



2.2. HYDROSTATIC NORMAL MODES 9

Eq.(2.3) can be splitted in two independent equations applying the incompressibility con-
dition:

Dρ

Dt
= 0 , (2.5)

where the first of the equations corresponds to

∇ ·U =
∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 , (2.6)

while the second, in its full form, is given by:

Dρ

Dt
=
∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
= 0 . (2.7)

Neglecting the non-linear terms u∂ρ/∂x and v∂ρ/∂y in Eq.(2.7), taking into account that
ρ = ρ0(z) + ρ′, and considering that w∂ρ/∂z ≈ wdρ0/dz, one can obtain the following
expression:

∂ρ′

∂t
+ w

dρ0

dz
=

∂ρ′

∂t
−N2ρ0

g
w = 0 . (2.8)

where N2 is known as the buoyancy frequency (or the Brunt-Väiasällä frequency) [3]:

N2 = − g

ρ0

dρ0

dz
. (2.9)

The buoyancy frequency corresponds to the frequency of natural oscillations of a fluid
element, when that element is in the state of small amplitude harmonic motion along the
vertical axis. Taking into account that N(z) depends on the gradient of the equilibrium
density, ρ0, the dependency of the buoyancy frequency on depth constitutes a fundamental
indicator of the environment stratification and of its stable equilibrium. Furthermore, the
buoyancy profile imposes an upper limit (known as the cuttoff frequency) to the interval
of natural frequencies of the water column.

The system of equations Eq.(2.2), Eq.(2.6) and Eq.(2.8), constitutes the starting point
for the discussion, in sections 2.2 and 2.3 of the two more relevant cases of the propagation
of internal waves.

2.2 Hydrostatic Normal Modes

The simplest case of propagation of internal waves corresponds to the hydrostatic linear
rotationless case. First, let one admit the validity of the hydrostatic approximation [3] for
the density and pressure of the water column:

∂p

∂z
+ ρg = 0 . (2.10)

This approximation implies automatically that ∂w/∂t = 0, which corresponds to making
the vertical component of Eq.(2.2) equal to zero. Furthermore, let one neglect in Eq.(2.2)
the non-linear and rotational terms:

(U · ∇) U ≈ 0 and Ω×U ≈ 0 . (2.11)
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In this way, based on the approximations (2.10) and (2.11), and after rearranging some
of the terms, one can obtain the following components of Eq.(2.2):

∂u

∂t
= − 1

ρ0

∂p

∂x
, and

∂v

∂t
= − 1

ρ0

∂p

∂y
. (2.12)

It can be shown that the fields of currents, density perturbations and pressure, that
satisfy the system of equations Eq.(2.6), Eq.(2.8), and the pair of equations (2.12), can
be represented in terms of expansions on a basis of Hydrostatic Normal Modes (HNMs)
Ψm and φm [5]:

w =
∑
m

wmΨm(z) , (u, v) = D
∑
m

(um, vm)φm(z) ,

ρ′ = ρ0
N2

g

∑
m

ρmΨm(z) , p = ρ0

∑
m

pmφm(z) ,
(2.13)

where D represents the water column depth, and the modal amplitudes um, vm, wm, ρm
and pm depend on the horizontal coordinates (x, y), and on time t. The HNMs are related
through the equation φm = dΨm/dz, where the functions Ψm correspond to the solutions
of a Sturm-Liouville Problem (hereafter, SLP) [6]:

d2Ψm

dz2
+
N2

C2
m

Ψm = 0 (2.14)

+ Boundary Conditions (BCs).

In Eq.(2.14) the coefficients Cm represent the propagation velocity of linear hydrostatic
internal waves in a rotationless environment. ¿From the mathematical point of view the
SLP guarantees the existence of a complete system of eigenfunctions Ψm, with orthogonal
properties:

〈Ψm

∣∣∣N2
∣∣∣Ψn〉 = 0 when m 6= n ; (2.15)

in Eq.(2.15) the “inner product” 〈f1 |f2| f3〉 is defined as

〈f1 |f2| f3〉 =

D∫
0

f1f2f3 dz . (2.16)

Moreover, the coefficients C−2
m correspond to the eigenvalues of the functions Ψm. For an

arbitrary choice of BCs the orthogonality of the eigenfunctions Ψm does not imply the
orthogonality of their derivatives, φm. However, for the particular case of homogeneous
BCs, on bottom and surface:

Ψm(0) = Ψm(D) = 0 , (2.17)

one obtains that
〈φm | φn〉 = 0 , (2.18)

where 〈f1 | f2〉 = 〈f1 |1| f2〉. Furthermore, on the basis of the inner products (2.15) and
(2.18), one can show the validity of the following relationships:

〈Ψm

∣∣∣N2
∣∣∣Ψm〉 = C2

m〈φm | φm〉 ,

〈Ψm

∣∣∣N2
∣∣∣φm〉 =

1

2
C2
m〈φm |φm|φm〉 , (2.19)

〈Ψm

∣∣∣∣∣dφmdz
∣∣∣∣∣φm〉 = −1

2
〈φm |φm|φm〉 ,

〈Ψm

∣∣∣N2
∣∣∣φ2

m〉 = −1

3
C2
m φ3

m

∣∣∣D
0
.
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From the physical point of view one can expect that the modal amplitudes pm, ρm, . . .
wm, will exhibit an oscillating behaviour. It should be remarked that the set of expansions
(2.13) do not constrain in any particular manner the analytic choice of those amplitudes.
However, the consistency of the system of equations (2.6), (2.8), (2.10) and (2.12)1 implies
the following linear interdependency of those amplitudes:

D

(
∂um
∂x

+
∂vm
∂y

)
+ wm = 0 ,

∂ρm
∂t
− wm = 0 ,

D
∂um
∂t

= −∂pm
∂x

, D
∂vm
∂t

= −∂pm
∂y

,

pm
C2
m

− ρm = 0 .

(2.20)

In this way, by imposing a particular set of periodic conditions on a particular ampli-
tude, one will define automatically the particular analytic structure of the other modal
amplitudes.

It should be remarked that the hydrostatic linear rotationless case can be analytically
extended in order to consider the presence of a mean gradient of the velocity components
u and v (see, for instance, [7, 8]). The description of that case, which is of significant
importance from a theoretical point of view, would exceed the objectives of this discussion
and will not be considered.

2.3 Non-hydrostatic Normal Modes

Neglecting non-linear terms in Eq.(2.1)

(U · ∇) U ≈ 0 , (2.21)

considering that p′ = p − p0, and constraining the hydrostatic approximation to the
equilibrium terms (i.e., considering that dp0/dz + ρ0g = 0), one can obtain the following
system of equations: (

∂u

∂t
− fcv

)
= − 1

ρ0

∂p′

∂x
,(

∂v

∂t
+ fcu

)
= − 1

ρ0

∂p′

∂y
, (2.22)(

∂w

∂t

)
= − 1

ρ0

∂p′

∂z
− ρ′

ρ0

g .

In system (2.22) the parameter fc = 2Ω sinϑ is known as the Coriolis frequency [1] and ϑ
corresponds to the geographic latitude; the Coriolis frequency plays an important role in
the study of the motion of a fluid within a rotating system of reference.

The solutions of the system of equations (2.6), (2.8) and (2.22) for the fields of current
components, and perturbations of pressure and density, can be represented again under
the form of orthogonal expansions [1]:

w =
∑
m

wmΨ̃m(z) , (u, v) =
∑
m

(um, vm) φ̃m(z) ,

ρ′ = ρ0N
2
∑
m

ρmφ̃m(z) , p′ = ρ0

∑
m

pmφ̃m(z) ,
(2.23)

1Including the approximation ∂p/∂z ≈ ρ0

∑
m pmdφm/dz.
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where φ̃m = dΨ̃m/dz; the non-hydrostatic normal modes Ψ̃m are, again, eigenfunctions of
a SLP of the following form:

d2Ψ̃m

dz2
+
(
k2
h

)
m

N2 − ω̃2

ω̃2 − f 2
c

Ψ̃m = 0 + BCs , (2.24)

which guarantees the orthogonal properties of the modes Ψ̃m:

〈Ψ̃m

∣∣∣∣∣N2 − ω̃2

ω̃2 − f 2
c

∣∣∣∣∣ Ψ̃n〉 = 0 with m 6= n . (2.25)

In Eq.(2.24) ω̃ corresponds to the frequency of the internal waves, and kh represents
the horizontal component of the wavenumber vector. Denoting as θ the direction of
propagation of internal waves one obtains that

kh = ikx + jky and kx = kh cos θ , ky = kh sin θ . (2.26)

In contrast to the hydrostatic linear case the consistency of the system of equations (2.6),
(2.8) and (2.22) depends on the constraint

( pm , ρm , um , vm , wm ) ∼ exp [i (kxx+ kyy − ω̃t)] , (2.27)

which imposes the particular application of expansions (2.23) to the case of plane-wave
propagation.

2.4 Buoyancy and temperature

As commented previously the vertical stratification of the environment is represented in
the differential equation for Ψm through the buoyancy frequency N2(z), which is normally
related to mean density. For inversion it is better to use the alternative relationship [1]

N2 = g

[
aT
dT0

dz
+ a2

T

gT0

Cps
− as

ds

dz

]
, (2.28)

where aT = 2.41×10−4 (◦C)−1 and Cps = 3994 J(kg◦C)−1. Usually the salinity depends
weakly on depth so we can neglect the salinity term and develop a buoyancy profile that
depends only on temperature.

2.5 Temperature perturbations

¿From the tomography point of view, the system formed by equations (2.2), (2.6) and
(2.8), does not provide a clear physical basis for the analysis of temperature perturba-
tions of the water column. In order to include the temperature within the context of the
propagation problem of internal waves it becomes necessary to add a system of thermody-
namic equations, relating the field of currents, U, to the temperature field, T . By analogy
with the general scheme illustrated in [9], one can consider the following thermodynamic
equation [2]:

D

Dt
(ρcvT ) = ∇ · (kT∇T ) +QT , (2.29)
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where cv represents the specific heat of the water column, kT corresponds to the thermal
fluid conductivity, and QT represents the external sources of heat. In the general case it
is not clear which terms can be neglected and which ones can not. However, considering
both density and specific heat as constants and taking (kT , QT ) = 0 one can easily rewrite
Eq.(2.29) as

DT

Dt
=
∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
= 0 ; (2.30)

by neglecting coupling mechanisms and taking into account that an important feature
of internal waves corresponds to the significant dynamics along the depth axis, one can
neglect the second and third nonlinear terms, and rewrite Eq.(2.30) as:

∂T

∂t
+ w

∂T

∂z
= 0 . (2.31)

Now, let us consider that
T (x, y, z, t) ≈ T0(z) + δT , (2.32)

where
δT =

∑
m

αm(x, y, t)Tm(z)Ψm(z) ; (2.33)

where Tm is an unknown function, and αm is a dimensional coefficient of modal amplitude
for temperature. αm and Tm should be chosen in order to ensure the consistency of Eq.2.31.
Neglecting once more coupling mechanisms between modes one can consider that

w
∂T

∂z
≈ dT0

dz

∑
m

wmΨm ; (2.34)

further, for the first term in Eq.(2.31) one gets that

∂T

∂t
=
∑
m

∂αm
∂t

γm(z)Ψm . (2.35)

Substituting Eq.(2.34) and Eq.(2.35) into Eq.2.31 it follows automatically that

∂αm
∂t

= −wm and γm =
dT0

dz
. (2.36)

The minus sign indicates that the time oscillations of w and T have a phase difference
of π radians. The last pair of equations lead to the following expansion of temperature
perturbations:

T − T0(z) =
dT0

dz

∑
m

αm(x, y, t)Ψm(z) . (2.37)

2.6 Salinity perturbations

In contrast with the temperature field, the salinity distribution, S, is not a common object
of discussion within the context of the tomography problem. However, since the salinity
field obeys to the differential equation [2]:

DS

Dt
= ∇ · (KS∇S) +QS , (2.38)

which has a structure similar to the one of Eq.(2.29), one can admit the following orthog-
onal expansion for salinity:

S − S0(z) =
dS0

dz

∑
m

αm(x, y, t)Ψm(z) . (2.39)
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2.7 Sound speed perturbations

The almost linear relationship between temperature and sound speed is well known. For
instance, in Mackenzie’s expansion [10]:

c = 1448.96 + 4.591× T − 5.304× 10−2T 2 + 2.374× 10−4T 3 +

+1.304× (S − 35) + 1.630× 10−2z + 1.675× 10−7z2 +

+1.025× T (35− S)− 7.139× 10−13Tz3 . (2.40)

it is evident the significant weigth of the linear coefficient on the linear term of temper-
atura. Therefore, one can admit the following orthogonal expansion for sound speed:

c− c0(z) =
dc0

dz

∑
m

αm(x, y, t)Ψm(z) . (2.41)

In this way, calculating the modal amplitudes of sound speed allows to invert for temper-
ature and salinity.



Chapter 3

Application to real data

The previous chapter was dedicated to the theoretical aspects involving the relationships
between dynamic modes and temperature, salinity and sound speed. This chapter illus-
trates a few applications to real data, namely the calculation of the dynamic modes in the
hydrostatic case (hereafter, hydrostatic normal modes or HNMs) from mean temperature.
The hydrographic data described in this section was acquired during the INTIFANTE’00
tomography experiment [11].

3.1 Mean temperature

The mean temperature profile of the INTIFANTE’00 sea trial, T0 (see Fig.3.1), exhibits
a well defined two-layer stratification of the water column, with a thermocline which can
be easily identified. This fact makes it evident the simple stratification of the monitorized
water column. This particularity of the mean temperature profile constitutes an important
indicator of the discrete density variations in depth, which enhance the significance of the
dynamic modes.

3.2 Mean buoyancy

The calculation of hydrostatic and non-hydrostatic dynamic modes can be accomplished
by calculating the mean buoyancy profile from temperature thermistor data, using the
relationship Eq.(2.28), which reduces the information involved in acoustic tomography. By
eliminating the vertical gradient of salinity, S, (i.e., admitting that the vertical variation of
salinity can be neglected) one obtains an expression that depends only on the temperature,
T0, and that can be used to calculate the dynamic modes referred above. The result is
shown in Fig.3.2.

15
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Figure 3.1: Mean temperature profile T0(z) from thermistor data acquired during Events
IV, V and VI (INTIFANTE’00 experiment).
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Figure 3.2: Mean buoyancy profiles N(z) estimated using mean temperature (IN-
TIFANTE’00 experiment).
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3.3 Hydrostatic Normal Modes

The set of hydrostatic normal modes Ψm is shown in Fig.3.3. The calculation was based
on the buoyancy profile calculated from mean temperature, and was developed through
the usage of M-files in order to calculate the corresponding derivatives and to solve the
associate Sturm-Liouville problem. The numerical solution of the Sturm-Liouville problem
is explained in Appendix A and the M-files used in the calculations are presented in
Appendix B.

0 0.5 1

0

10

20

30

40

50

60

70

80

90

D
ep

th
 (

m
)

Ψ
1

−1 0 1

0

10

20

30

40

50

60

70

80

90

Ψ
2

−1 0 1

0

10

20

30

40

50

60

70

80

90

Ψ
3

−1 0 1

0

10

20

30

40

50

60

70

80

90

Ψ
4

Figure 3.3: Hidrostatic normal modes calculated from mean temperature (IN-
TIFANTE’00 experiment).
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Appendix A

Numerical calculation of dynamic
modes

The particular cases of the Sturm-Liouville Problem discussed in sections 2.2 and 2.3 can
be solved by replacing the respective differential equation, with a linear system of algebraic
equations, leading to a classical (and simpler) problem of finding a set of eigenvectors and
eigenvalues [12]. That substitution is described in this appendix.

First, by introducing the following notation:

x = z , y = Ψm ,

a = 0 , b = D ,
λ =


C−2
m

(k2
h)m

, f(x) =


N2

N2 − ω̃2

ω̃2 − f 2
c

, (A.0-0.1)

one can rewrite any of the equations Eq.(2.14) or Eq.(2.24) in the form:

d2y

dx2
+ λf(x)y = 0 . (A.0-0.2)

Furthermore, the boundary conditions can be written, in a general form, as

α1y(a) + β1
d2y

dx2

∣∣∣∣∣
x=a

= 0 , and α2y(b) + β2
d2y

dx2

∣∣∣∣∣
x=b

= 0 . (A.0-0.3)

By discretizing the values of the independent variable:

xj = jh+ a , h =
b− a
N + 1

, with j = 0, 1, 2, . . . , N + 1 , (A.0-0.4)

approximating the second order derivative, within the grid {xj}, using finite differences:

d2y

dx2

∣∣∣∣∣
x=xj

≈ yj+1 − 2yj + yj−1

h2
, (A.0-0.5)

discretizing the values of the linear term:

λf(x)y|x=xj
= λf(xj)yj = λfjyj , (A.0-0.6)
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and approximating the boundary conditions, Eq.(A.0-0.3), as

α1y0 + β1
y1 − y0

h
= 0 , and α2yN+1 + β2

yN+1 − yN
h

= 0 , (A.0-0.7)

it is possible to obtain the following system of linear equations:

yj−1

(
1

h2

)
+ yj

(
− 2

h2

)
+ yj+1

(
1

h2

)
= −yjλfj . (A.0-0.8)

For the particular cases j = 1 e j = N + 1, and taking into account the pair of equations
Eq.(A.0-0.7) one can obtain that

y1

(
1

h2

)( −β1

α1h− β1

− 2

)
+ y2

(
1

h2

)
= −y1λf1 , (A.0-0.9)

and

yN−1

(
1

h2

)
+ yN

(
1

h2

)(
β2

α2h+ β2

− 2

)
= −yNλfN . (A.0-0.10)

As one can see from the last pair of equations the particular choice of boundary conditions
α1h−β1 = 0, or α2h+β2 = 0, will apriori make it impossible to find a numerical solution

of Eq.(A.0-0.2). By introducing the vector y = [ y1 y2 y3 . . . yN ]t one can write the
system of linear equations (A.0-0.8) in the following compact form:

Ay = λBy , (A.0-0.11)

where the only non-zero elements of matrices A and B are

a11 =
1

h2

(
−β1

α1h− β1

− 2

)
, a12 =

1

h2
,

aj−1,j =
1

h2
, ajj = − 2

h2
, aj,j+1 =

1

h2
, (A.0-0.12)

aN−1,N =
1

h2
, aNN =

1

h2

(
β2

α2h+ β2

− 2

)
,

and
bjj = −λfj . (A.0-0.13)

The solution of Eq.(A.0-0.11) corresponds to a general case of finding the eigenvectors y,
and eigenvalues, λ, of the matrices A and B. This problem can be efficiently solved using
MATLAB built-in functions.



Appendix B

M-files

This appendix contains the main M-files used in the calculation of function derivatives,
and calculation of hydrostatic normal modes. Each M-file contains a brief description of
the input and output parameters.

%Universidade do Algarve
%INTIMATE Project
%13/10/98 ( 13:00 )
%Written by TORDAR
%
%Locates minimum values and positions from function.
%
%SYNOPSIS: [ xmin , ymin , indexes ] = getmin( x , y )
%
%See also getmax, getpeaks, getzeros and maxfxy

function [ positions , minimae , indexes ] = getmin( x , y )

j = 0 ; k = 0 ;

positions = [ ] ; minimae = [ ] ; indexes = [ ] ;

length_samples = length( y ) ;

for i = 2:length_samples-1

if ( y( i-1 ) > y( i ) )&( y( i ) < y( i + 1 ) ),

j = j + 1 ;
minimae( j ) = y( i ) ;
positions( j ) = x( i ) ;
indexes( j ) = i ;

end % if

end % for i = 2:length_samples-1
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%Universidade do Algarve
%INTIMATE Project
%19/10/98 ( 18:30 )
%Written by TORDAR
%
%Locates maximum values and positions from function.
%
%SYNOPSIS: [ xmax , ymax , indexes ] = getmax( x , y )
%
%See also getmin, getpeaks, getzeros and maxfxy

function [ positions , maximae , indexes ] = getmax( x , y )

j = 0 ; k = 0 ;

positions = [ ] ; maximae = [ ] ; indexes = [ ] ;

length_samples = length( y ) ;

for i = 2:length_samples-1

if ( y( i-1 ) < y( i ) )&( y( i ) > y( i + 1 ) ),

j = j + 1 ;
maximae( j ) = y( i ) ;
positions( j ) = x( i ) ;
indexes( j ) = i ;

end % if

end % for i = 2:length_samples-1
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%Adds point y using point x and using linear interpolation.
%
%SYNOPSIS: [newx,newy,y0] = addp(x,y,x0)
%

function [newx,newy,y0] = addp(x,y,x0)

newx = [ ] ; newy = [ ] ; y0 = [ ] ;

[m,n] = size( y ) ;
lengthy = length( y ) ;

minx = min( x ) ;
maxx = max( x ) ;

if ( x0 < minx(1) )|( x0 > maxx(1) ),
disp( ’Point x0 out of the interval [xmin xmax]! aborting...’ ), break

end

index = find( x == x0 ) ;

if isempty( index ) == 1 ,

index = max( find( x < x0 ) ) ;
deltax = x( index+1 ) - x( index ) ;
deltay = y( index+1 ) - y( index ) ;
tangens_alpha = deltay/deltax ;
yatx0 = y( index ) + ( x0 - x( index ) )*tangens_alpha ;

if m == 1

newx = [x( 1:index ) , x0 , x( index+1:lengthy )] ;
newy = [y( 1:index ) , yatx0 , y( index+1:lengthy )] ;

else

newx = [x( 1:index ) ; x0 ; x( index+1:lengthy )] ;
newy = [y( 1:index ) ; yatx0 ; y( index+1:lengthy )] ;

end

y0 = yatx0 ;

else

%disp( ’Requested point already included in vector x!’ ),
newx = x ;
newy = y ;
index = find( x == x0 ) ;
y0 = y( index(1) ) ;

end
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%DYDX: Calculates approximated derivative
%
%SYNOPSIS: yprime = dydx( x , y )
%
%

function dydx = dydx( x , y ) ;

lengthx = length( x ) ;

diffx = diff( x ) ;
diffy = diff( y ) ;

diffy_over_diffx = diffy./diffx ;

for i = 2:lengthx-1
[dummy1,dummy2,dydx(i)] = addp(x(1:lengthx-1)+diffx/2,diffy_over_diffx,x(i)) ;

end

x1 = x(1) + diffx(1)/2 ; x2 = x(2) + diffx(2)/2 ;
y1 = diffy_over_diffx(1) ; y2 = diffy_over_diffx(2) ;

tangens = ( y2 - y1 )/( x2 - x1 ) ;

dydx(1) = dydx(2) - ( x1 - x(1) )*tangens ;

x1 = x(lengthx-2) + diffx(lengthx-2)/2 ; x2 = x(lengthx-1) + diffx(lengthx-1)/2 ;
y1 = diffy_over_diffx( lengthx-2) ; y2 = diffy_over_diffx( lengthx-1) ;

tangens = ( y2 - y1 )/( x2 - x1 ) ;

dydx(lengthx) = dydx(lengthx-1) + ( x(lengthx) - x2 )*tangens ;

[m,n] = size( y ) ;

if n == 1 , dydx = dydx’ ; end
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%Universidade do Algarve
%INTIMATE Project
%20/01/2000 ( 23:00 )
%Written by TORDAR
%
%Calculates Hydrostatic Normal Modes.
%
%SYNOPSIS: [ Modes , Cm ] = gethnms( N , z , nm , topbc , bottombc )
%
% Where z and N are the column vectors of depths and buoyancy,
% nm is the requested number of hnms ( nm < length( z ) ) and
% topbc/bottombc is a two-element vector containing the
% coefficients of the boundary conditions (BC) at top/bottom,
% i.e.,
%
% topbc = [ alpha1 beta1 ], bottombc = [ alpha2 beta2 ]
%
% where
%
% alpha1*hnm(0) + beta1*dhnm/dz(0) = 0 and
% alpha2*hnm(D) + beta2*dhnm/dz(D) = 0 .
%
% For instance, topbc = bottombc = [ 1 0 ] corresponds to
%
% hnm(0) = hnm(D) = 0 .
%
% Be careful with the choice of BC: the existence of the
% numerical solution depends on them!
% Each of the nm columns of the matrix Modes corresponds to
% a requested hnm.
% The modes are sorted by the number of zero crossings.
% Cm is the column vector of phase velocities.
% Use equally spaced depths.

function [ Modes , Cm ] = gethnms( N , z , nm , tbc , bbc )

Modes = [ ] ;
Cm = [ ] ;

%Check for zero depth:

if z(1) ~= 0 , disp( ’First depth should be zero!’ ) , break , end

%Calculate depth step:

h = z(2) ;

%Get top and bottom BC:

alpha1 = tbc(1) ;
beta1 = tbc(2) ;
alpha2 = bbc(1) ;
beta2 = bbc(2) ;
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%Don’t borrow me with null BC:

if ( alpha1 == 0 )&( beta1 == 0 ),
disp( ’Ill top BC, hasta la vista baby...’ ), break,
end

if ( alpha2 == 0 )&( beta2 == 0 ),
disp( ’Ill bottom BC, hasta la vista baby...’ ), break,
end

%Avoid paranoic cases:

if ( beta1 == alpha1*h ),
disp( ’Ooops! alpha1*h = beta1, try again...’ ), break,
end

if ( beta2 == - alpha2*h ),
disp( ’Ooops! alpha2*h = -beta2, try again...’ ), break,
end

%Everything is O.K.? let’s go andando:

%We need squared buoyancy:

N2 = N.*N ;

lengthz = length( z ) ;
lengthA = lengthz - 2 ;

%Vectors and Matrices allocation:

y = zeros( lengthz , 1 ) ;
A = zeros( lengthA ) ;
B = zeros( lengthA ) ;

%You will need this also:

Au = A ;
Al = A ;

ncdiag = 1/h^2 * ones( 1 , lengthA-1 ) ;
cdiag = -2/h^2 * ones( 1 , lengthA ) ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%This is standard allocation:

%for i = 1:lengthA
%
% B(i,i) = -N2(i+1) ;
%
%end
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%for i = 2:lengthA-1
%
% A( i , i ) = -2/h^2 ;
% A( i , i-1 ) = 1/h^2 ;
% A( i , i+1 ) = 1/h^2 ;
%
%end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%This is valid for tbc = bbc = [ 1 0 ]:
%A(1,1) = -2/h^2 ;
%A(1,2) = 1/h^2 ;
%A(lengthA,lengthA-1) = 1/h^2 ;
%A(lengthA,lengthA ) = -2/h^2 ;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%This is allocation a la Matlab:

B = diag( -N2( 2:lengthz-1 ) ) ;

A = diag( cdiag ) ; % central diagonal
Au = diag( ncdiag , 1 ) ; % Upper diagonal with 1/h^2
Al = diag( ncdiag , -1 ) ; % Lower diagonal with 1/h^2

A = A + Au + Al ;

%Update first and last diagonal elements according to top and bottom BC:

A( 1 , 1 ) = 1/h^2 * ( ( -beta1/h )/( alpha1 - beta1/h ) - 2 ) ;
A(lengthA,lengthA) = 1/h^2 * ( ( beta2/h )/( alpha2 + beta2/h ) - 2 ) ;

rankA = rank( A ) ;

if rankA < lengthA ,
disp( ’There is no numerical solution for these BC...’ ), break,
end

%O.K., go and get the modes:

[ Modes , D ] = eig(A,B) ;

d = diag( D ) ;
Cm = 1 ./sqrt( d ) ;

Modes_at_top = Modes( 1 , : )*( -beta1/h )/( alpha1 - beta1/h ) ;
Modes_at_bottom = Modes( lengthA , : )*( beta2/h )/( alpha2 + beta2/h ) ;

Modes = [ Modes_at_top ; Modes ; Modes_at_bottom ] ;

%Arrange Cms from max to min:

[ Cms , indexes ] = sort( Cm ) ;
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Cms = Cm( indexes ) ;
Cm = flipud( Cms ) ;
Cm = Cm( 1:nm ) ;
Cm = real( Cm ) ;

Modes = Modes( : , indexes ) ;
Modes = fliplr( Modes ) ;
Modes = real( Modes( : , 1:nm ) ) ;

%Check for polarity:

%Verify if 1st mode has more than one extremum:

first_mode = Modes( : , 1 ) ;

[posmax,maxvalues] = getmax(z,first_mode) ;
[posmin,minvalues] = getmin(z,first_mode) ;

% (1) 1st. mode has one positive extremum
% (2) 1st. mode has one negative extremum

% (a) 1st. mode has two or more (?) extrema
% (b) Positive extremum goes first.
% (c) Negative extremum goes first.

if ( isempty( posmax ) ~= 1 )&( isempty( posmin ) == 1 ) % (1)
Modes( : , 1 ) = first_mode ;

elseif ( isempty( posmin ) ~= 1 )&( isempty( posmax ) == 1 ) % (2)
Modes( : , 1 ) = -first_mode ;

else z1 = posmax(1) ; z2 = posmin(1) ; % (a)
if z1 < z2 , Modes( : , 1 ) = first_mode ; % (b)
elseif z1 > z2 , Modes( : , 1 ) = -first_mode ; % (c)
else disp(’Abnormal situation with zmin(1) = zmax(1)!!!!’), break
end

end

if nm > 1
for i = 2:nm

selected_mode = Modes( : , i ) ;
[posmax,maxvalues] = getmax(z,selected_mode) ;
[posmin,minvalues] = getmin(z,selected_mode) ;
z1 = posmax(1) ; z2 = posmin(1) ;
if z1 < z2 , Modes( : , i ) = selected_mode ;
elseif z1 > z2 , Modes( : , i ) = -selected_mode ;
end

end
end

%Do not forget to normalize your modes and
%be careful with the units of N!
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