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Abstract

This report describes a simple acoustic energy detector for passive acoustic monitoring
of ocean data. The detector is sufficiently simple, yet efficient, to be implemented on
real time. The detector is presented and its theoretical performance outlined in view of
practical implementation on board the SUBECO buoys. In particular, a strategy based
upon percentiles is proposed for robust noise estimation on noise records contaminated
with high energetic ship noise. The detector is preliminary tested on two days of data
collected during the April - May 2019 bouy deployment off the coast of Portugal.
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Chapter 1

Introduction

In theory and generally speaking, event detection requires the knowledge of the waveform
to be detected or “you can only find if you know what you are looking for”. In practice
the problem is not that simple since random effects create a zone of uncertainty where
detection becomes a statistical problem.

Uncertainty may appear at least at two levels: the emitted signal waveform may not
be completely known or even unknown, or the propagation of the signal between the
emission point and the receiver may introduce randomness on signal arrival, amplitude,
phase, frequency and waveform in general. Other source of uncertainty is, of course,
observation noise that is generally assumed additive and non-correlated with the signal.
This problem was dealt with and demonstrated in a realistic shipping noise field based
on a numerical propagation model derived from real environmental temperature profiles
and Automatic Information System (AIS) data off the coast of Portugal [1].

General theory casts this problem under the class of hypothesis testing where an
observation-based statistic is tested against a given threshold. The statistic is based
on the signal to be detected (or on the a priori knowledge we may have of it) and the
threshold is based on (assumed) noise statistics and a chosen false alarm rate. In other
words: in order to define a detector we have to make assumptions about the signal and
about the noise.

The most basic assumption is: we don’t know anything about the signal nor the noise.
We don’t know which signal we are looking for: its duration, amplitude, frequency content
or time of arrival. We also don’t know when the signal is present and when it is not, so it
becomes difficult to estimate the noise statistics, since it can be corrupted by the signal.

This is a situation often encountered and since the signal is unknown it should be
considered as random. The channel free detector in that case is the so-called energy
detector if the signal is random and white (uncorrelated). If the signal is random but
not white (correlated) and the correlation is known, the correlation can be used in the
so-called estimator-correlator detector setup. The performance of both detectors can be
equated in a very simple manner if the observation noise is assumed uncorrelated and
Gaussian distributed. Another question is how to actually implement the detector, which
requires some knowledge of the noise statistics for deriving a workable threshold.

Of course extensive supervised testing of the detector against real data is the ultimate
step before practical application. In the SUBECO setting this supposes that the detector
is relatively simple and robust to be embedded on the embarked electronics. In this

7



8 CHAPTER 1. INTRODUCTION

report a limited test is performed on two days of data recorded in May 2019, during a
test deployment off the west coast of Portugal.

This report si organized as follows: the developed methods and required background
are recalled in section 2, including the detector statistics and the expected theoretical
performance both for the stationnary noise energy detector in section 2.1.1 and for the
non-wide sense stationnary case in section 2.1.2. The problem of noise variance estimation
is examined in section 2.2, focusing on the percentile method, supported by an example
(section 2.2.2) and implementation suggestion (section 2.2.3). Kurtosis, section 2.2.4, is
also recalled as a possible alternative for noise variance estimation. The testing on the
SUBECO data set is presented in section 3, and conclusions are drawn in section 4.



Chapter 2

Methods and background

2.1 Detector statistics

The observed signal model is given by

y = x + w (2.1)

where yT = [y0, y1, . . . , yN−1] is a vector with the observed time samples yn, obtained at
a given sampling rate Ts ≤ 2/fm s, where fm is the maximum frequency contained in the
signal; x and w contain the samples of the signal and the noise processes, respectively;
N is the discrete observation window size. In this setting the noise vector in the time
window of N samples is assumed to be zero-mean, white and Gaussian distributed so
w : N [0,Cw]. In general if the noise is assumed as wide-sense stationnary (WSS) then
Cw = σ2I, if not Cw = diag(σ2

0, σ
2
1, . . . , σ

2
N−1).

Briefly speaking in the simple binary hypothesis testing case, if the signal is determin-
istic the optimal statistic is given by the Neyman-Pearson (NP) detector that accepts
hypothesis H1 that a signal is present if

Td[y] = ytC−1w x > γ, (2.2)

where γ is some a priori threshold. If the signal x is assumed random, zero-mean, Gaussian
and uncorrelated with the noise, such that x : N [0,Cx], the optimal NP statistic accepts
H1 if

Tr[y] = yt[C−1w (C−1x + C−1w )−1]y > γ. (2.3)

Case (2.2) is known as the correlator-detector, since it picks the output of a matched-
filter correlator with the known signal at sample N − 1. Case (2.3) is known in the
literature as the estimator-correlator, since an estimate x̂ of random signal x is obtained
as

x̂ = [C−1w (C−1x + C−1w )−1]y, (2.4)

before correlating with the observation y. Relation (2.4) is also known as the Wiener
filter output estimate. The simplest case is when the middle matrix in (2.3) is identity or
diagonal which leads to a statistic proportional to |y|2 also known as the energy detector.

9



10 CHAPTER 2. METHODS AND BACKGROUND

2.1.1 The wide-sense stationnary energy detector

The energy detector derives from the case of the random white signal in white noise,
where Cx = σ2

xI and Cw = σ2I. In this trivial case (2.3) reduces to

Tr[y] =
σ2
x/σ

2

σ2
x + σ2

N−1∑
n=0

|y(n)|2 > γ, (2.5)

or equivalently

Tr[y] =
N−1∑
n=0

|y(n)|2 > γ′. (2.6)

Since y(n) is zero mean Gaussian distributed with variance σ2 and σ2 +σ2
x, under H0 and

H1, respectively, we can say that

Tr[y/H0]

σ2
: χ2

N , (2.7)

Tr[y/H1]

σ2
x + σ2

: χ2
N , (2.8)

where the χ2 random distribution with N degrees of freedom results from the summation
of N independent standard χ2 random variables. If the number of samples N is larger
than, say, 30, χ2

N tends to a Gaussian distribution.

In this case, the probabilities of false alarm and detection are

PFA = Prob[Tr(y/H0) > γ],

PD = Prob[Tr(y/H1) > γ],

respectively, or with the Gaussian assumption and using (2.7) and (2.8),

PFA = 1− Prob[Tr(y/H0) ≤ γ],

= 1− Prob

[
Tr(y/H0)

σ2
≤ γ

σ2

]
,

= Qχ2
N

(
γ

σ2

)
, (2.9)

PD = 1− Prob[Tr(y/H1) ≤ γ],

= 1− Prob

[
Tr(y/H0)

σ2
x + σ2

≤ γ

σ2
x + σ2

]
,

= Qχ2
N

(
γ

σ2
x + σ2

)
, (2.10)

where Qχ2
N

is the tail distribution function for the χ2
N variable. From (2.9),

γ

σ2
= Q−1

χ2
N

(PFA), (2.11)

where Q−1
χ2
N

is the Q function inverse. Plugging (2.11) into (2.10) gives

PD = Qχ2
N

Q−1χ2
N

(PFA)

1 + ρ

 , (2.12)
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where ρ is the signal to noise ratio (SNR) defined as ρ = σ2
x/σ

2.

This last equation is represented in figure 2.1 as a function of SNR (in dB) for given
values of PFA (a) and as function of PFA for given values of SNR (b) - the so called
Receiver Operating Caracteristic (ROC). The SNR in dB is defined as

SNRdB = 10 log10

(
σ2
x

σ2

)
,

= 10 log10 ρ. (2.13)

(a) (b)

Figure 2.1: energy detector for the zero mean white Gaussian stationnary noise case:
probability of detection versus SNR (a) and receiver operating characteristic (ROC) (b).

2.1.2 The non-stationnary energy detector

In the case of non-WSS noise (but still zero mean, white and Gaussian) we may have
Cw = diag(σ2(0), σ2(1), . . . , σ2(N − 1)) which indicates that the noise power varies along
the horizon of observation of N samples. In order to determine the performance of the
energy detector, it requires a new definition of SNR where ρ in (2.13) is replaced by the
mean

ρ̄ =
1

N

N−1∑
n=0

ρ(n), (2.14)

where ρ(n) = σ2
x/σ

2(n) is the instantaneous SNR at time sample n.

The test statistic (2.5) for this non-WSS case may be written

Tr[y] =
N−1∑
n=0

σ2
x

σ2(n)[σ2
x + σ2(n)]

|y(n)|2 (2.15)

or under the two hypothesis

Tr[y/H0] =
N−1∑
n=0

σ2
x

σ2
x + σ2(n)

∣∣∣∣∣w(n)

σ(n)

∣∣∣∣∣
2

,
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=
N−1∑
n=0

ρ(n)

1 + ρ(n)

∣∣∣∣∣w(n)

σ(n)

∣∣∣∣∣
2

, (2.16)

Tr[y/H1] =
N−1∑
n=0

σ2
x

σ2(n)

∣∣∣∣∣∣ y(n)√
σ2
x + σ2(n)

∣∣∣∣∣∣
2

=
N−1∑
n=0

ρ(n)

∣∣∣∣∣∣ x(n) + w(n)√
σ2
x + σ2(n)

,

∣∣∣∣∣∣
2

, (2.17)

As above, the two quantities in | | are standard χ2 distributed variables, but they result
in a weighted sum as

Tr[y/H0] =
N−1∑
n=0

ρ(n)

1 + ρ(n)
χ2, (2.18)

Tr[y/H1] =
N−1∑
n=0

ρ(n)χ2, (2.19)

These weighted summations of χ2 variables, give raise to a random variable which dis-
tribution is not known analitically and has to be approached numerically. One way to
do this is by using the qf algorithm proposed by Davies [2] which gives an estimate of
the distribution of a weighted sum of χ2 standard independent variables. So, using the
same procedure as above, we can write the probability of detection PD as a function of
the probability of false alarm PFA as

PD = 1−Hχ2
N

[G−1
χ2
N

(1− PFA)] (2.20)

where Gχ2
N

(ν) and Hχ2
N

(ν) are the cumulative distribution functions numerically evaluated

using the qf algorithm for the variables (2.18) and (2.19), respectively, and G−1
χ2
N

(ν) the

inverse of Gχ2
N

.

In order to derive the performance of the energy detector in this non-WSS case, we
need to define matrix Cw or, the non-stationnary evolution of the noise power along time.
As an example we may consider that the noise power fluctuates between a minimum
and maximum value according to a uniform distribution. Thus, the random variable Z
associated with ρ(n) will be distributed as Z : U [a, b], where a and b are the lower and
upper bounds of the uniform probability density function. For this example we have set
a = ρ̄ − 0.5ρ̄ and b = ρ̄ + 0.5ρ̄, where ρ̄ is the requested SNR. It can be easily seen that
the interval [a, b] narrows as the SNR decreases and that the mean is mZ = (a+ b)/2 = ρ̄
and the standard deviation is σZ = ρ̄/

√
12 = 0.288ρ̄.

The resulting performance curves are shown in figure 2.2 for the same intervals and
within the same bounds as for figure 2.1. The performance is slightly worst than that
of the stationary noise case with small wrinkles due to difficulty to choose the sampling
interval for the numerical evaluation of the qf function and then computing the inverse
of Gχ2(ν).

2.2 Determining noise variance

In order to practically implement (2.6) the threshold γ needs to be defined. Using (2.11)
the threshold is given by

γ = σ2Q−1
χ2
N

(PFA) (2.21)
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(a) (b)

Figure 2.2: energy detector for the zero mean white Gaussian non stationnary noise case:
probability of detection versus SNR (a) and receiver operationg characteristic (ROC) (b).

which requires fixing a certain expected probability of false alarm and the knowledge of
the noise variance σ2, which needs to be estimated from the actual data.

Estimating noise variance is not always easy since it requires producing a statistic of
the noise only and also because this needs to be done (or updated) through time in order
to adapt to changing background noise levels (thus the previous performance study for
the non-WSS case).

2.2.1 The percentile method

A well known method for estimating the variance is the p-percentile of the, assumed
known, sample distribution.

The p-percentile is the value under which p percent of the population falls. If the sample
size N is sufficiently large, determining an estimate of the p-percentile is equivalent to
determining the value of the sorted sequence of variables for the p percent of the sample
size. In other words if ui; i = 1, . . . , N is the ensemble of draws of the random variable U
with cumulative distribution function FU(u), and U is a vector with the N sorted draws
such that

U = {u1 ≤ u2 ≤ . . . , uk,≤ . . . , uN} (2.22)

then the p-percentile is u(p) = uI(p;N), where I(p;N) is given by

I(p;N) = 100
(
p− 0.5

N

)
, p = 1, 2, . . . , N (2.23)

and then we can approximate (p/100) = FU [u(p)]. If FU(u) is a known function of
the variance it allows for its estimation. Since the time interval with the N random
samples may contain signal and noise, care should be taken to chose a low percentile p,
say, 10 ≤ p ≤ 20 % so as to avoid the signal part (that is supposed to have a higher
energy than the noise) and take only the noise samples due to the sorting. In practice
the p-percentile is implemented using the Matlab function prctile(X,p), where X is the
ensemble of random samples.
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2.2.2 Example

Let us take the case of a χ2 distributed random variable of order 2. According to appendix
A its cdf is given by

FZ(z) = 1− e−z/σzu(z). (2.24)

making now
p

100
= 1− e−u(p)/σz (2.25)

we get

σz = − u(p)

log(1− p/100)
(2.26)

which then leads to the noise variance σ2
w = σz/2.

Figure 2.3 shows an example for an order k = 2 and σw = 3 where the procedure is as
follows :

1. two N -sample independent Gaussian distributed random variables X1 and X2 with
standard deviation σw are generated;

2. a N -sample χ2
2 random variable Y is calculated as Y = X2

1 +X2
2 ;

3. the standard deviation of Y is estimated using the std routine of Matlab and the
p-percentile method using (2.26)

4. this is repeated for 20 draws and means estimated

As expected the estimated standard deviation of Y tends to 2σ2
w as N increases. For

low N std tends to underestimate the standard deviation while the p-percentile tends to
overestimate it.

Figure 2.3: standard deviation estimate for a χ2
2 with standard deviation of 18 with std

function of Matlab (blue) and using the p-percentile method (green) for a sample size N
from 10 to 1000000. The curves result from 20 independent draws.
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2.2.3 Implementation

For band-pass signals the power is replaced by the power of the envelope. That is

py(t) = y2p(t) + y2q (t) (2.27)

where yp(t) and yq(t) are the in phase and quadrature low pass components of signal y(t)
down heterodined by the center frequency of the frequency band. If signal y(t) is filtered
in the band B : [f1, f2], then fc = (f1 + f2)/2.

So, if the sampled version y(n) of y(t) is a sequence of Normal distributed random
variables, p(n) will be χ2

2 and the previously described p-percentile procedure applies for
k = 2.

2.2.4 Using Kurtosis

Kurtosis has been first proposed by Karl Pearson and is based on a scaled version of the
fourth of a population sample1. The fourth moment is associated with the “tailedness” of
a distribution (in a similar way as “skewness”). Higher kurtosis is the result of infrequent
extreme deviations (or outliers), as opposed to frequent modestly sized deviations. An
univariate Normal distribution has a kurtosis of 3. Sometimes the excess kurtosis η = κ−3
is used.

The definition is then

κ[X] = E

[(
X − µ
σ

)4
]
,

=
µ4

σ4
,

=
E[(X − µ)4]

(E[(X − µ)2])2
, (2.28)

The interpretation of Kurtosis is sometimes controversial, where some authors wrongly
describe kurtosis as a measure of “peakedness” of the distribution while others correctly
relate it to the “tailedness” of the distribution, or to a measure of “outliers”. Kurtosis
has been widely used for detection and classification of non-Gaussian signals in Gaussian
noise. Using Kurtosis as the sole criteria for that purpose may introduce strong flaws,
but used in conjunction with other measures may help in detection purposes.

In particular Kurtosis may be used to detect snapshots strongly contaminated with
signal and thus help adjusting the p-percentile for noise estimation in those snapshots.

For instance one could determine the mean variance estimate over K snapshots as

σ̄(K) =
1

K

K∑
k=1

σ̂(k) (2.29)

that can be obtained sequentially as

σ̄(K) =
σ̂(K)

K
+
K − 1

K
σ̄(K − 1). (2.30)

1see https://en.wikipedia.org/wiki/Kurtosis.
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If a forgetting factor K0 is introduced,

σ̄′(K) =
1

K

K∑
k=1

σ̂(k)e−(K−k)/K0 (2.31)

or again sequentially,

σ̄′(K) =
σ̂(K)

K
+

(K − 1)e−1/K0

K
σ̄′(K − 1). (2.32)

where the value of the forgetting factor K0 may be associated with the Kurtosis κ of the
distribution given by (2.28).



Chapter 3

The SUBECO test data

The SUBECO buoy was deployed on a deep water area off the west coast of Portugal from
mid April to mid May, 2019. Figure 3.1(a) shows an artistic drawing of a SUBECO buoy
(not to scale) with the acoustic array formed by six broadband hydrophones at the vertices
of a tetrahedron of 1.5 m side, deployed at approximately 80 m depth. The acquired data is
cabled to the surface buoy allowing for remote status monitoring, data inspection through
a remote satellite link and storage. Figure 3.1(b) shows the deployment location. The
selected location has a water depth of approximately 1300 m and is in the vicinity of
the shipping Trafic Separation System (TSS) shown in the background as historical ship
density drawn from AIS data[3].

(a) (b)

Figure 3.1: SUBECO buoy experiment and data: artistic drawing (a), AIS ship density
map with buoy deployment location from mid April to mid May, 2019 (b).

17



18 CHAPTER 3. THE SUBECO TEST DATA

3.1 Non-acoustic data

The primary scope of the SUBECO buoy is to acquire meteorological and environmental
data for weather and sea status operational analysis. This data was not made avalilable
for the period at hand.

Another non-acoustic data set concerns the positioning in depth, tilt and rotation of
the acoustic receiving tetrahedron array. This is provided by a set of sensors that allow
to determine depth, heading, pitch and roll but are only needed for the spatial coherent
processing of the hydrophone array as a whole, so they are not described here.

3.2 Acoustic data

3.2.1 Hydrophone setup

The hydrophone used is from Sensor Technology Ltd, model SQ-26. Its main character-
istics are summarized in table 3.1.

Parameter unit value
depth rating m 2000
sensitivity dB//1V/µPa -193
bandwidth kHz 0.001-28

Table 3.1: Sensor Technology Ltd, hydrophone SQ-26 main characteristics.

The frequency response of the hydrophone was not provided, so it was assumed flat
in the useful frequency band (up to fs/2). Gain and sensitivities are known through a
csv file written by the data acquisition firmware so, an approximate calibration of sound
pressure level at the hydrophone input is possible.

3.2.2 Acoustic recording

The data acquisition duty cycle is 1/6, corresponding to 100 s worth of data every 10 min:
60 s where obtained at a sampling rate of 10 kHz, 30 s at 50 kHz and 10 s at 100 kHz.

Approximately two days worth of data, from May 5, 15:25 to May 7, 07:15 (UTC), were
handed to us for testing purpose on two sampling frequency sets: 10 and 50 kHz, termed
as LF and HF, respectively. The PSD estimates over 60 s for the LF set and 30 s for the
HF set, are shown in figures 3.2(a) and (b), respectively. Averaging over each data ping
destroys most of the short term signal structure but reveals long trend features such as
numerous broadband spikes reaching, in many occasions, the whole 25 kHz band. The
low frequency band noise has a notoriously high level with long traces of tonal frequencies
below 500 Hz (a). These tones may be difficult to detect by algorithms designed for
impulsive noise. Although no traces of biological noise can be seen in these figures, a
closer look reveals several files with (most certainly) dolphin vocalizations, an example of
which is shown in Fig. 3.3(a) while a possible ship component is shown in (b).



3.2. ACOUSTIC DATA 19

(a)

(b)

Figure 3.2: sample PSD of received signal on hydrophone 1 for sampling frequency fs
10 kHz (a) and 50 kHz (b).

(a) (b)

Figure 3.3: examples of marine mammals vocalization (a) and a possible ship tonal com-
ponent (b).

3.2.3 Event detection

The (mostly) ambient noise periods of each record over the two days of recording were
used to test (and train) an automatic event detector / analyser. The recordings were
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filtered through three frequency bands: [100 Hz - 1.5 kHz] believed to be dominated
mostly by shipping noise, [1.5 - 8 Khz] mostly associated with biological and surface noise
and [≥ 8 kHz] a decreasing noise level region where biological and bubble noise prevails
(according to Wenz). The detector was run separately on each band.

Then, the p-percentile strategy described in section 2.2 was applied to estimate the
noise variance and set as an event detector to be run independently on each time record
and frequency band. A percentile p = 20% and a PFA = 0.001 were selected throughout
the data set and for the three bands. Figure 3.4 shows the results obtained for the
percentage of detections (a) and for the estimated detection duration (in seconds) (b).

(a) (b)

Figure 3.4: event detection results from May 5 15:25 to May 7 07:15, 2019 per 30 s
time record at 50 kHz sampling rate: raw detection percentage (a) and detected interval
duration (in s) (b).

(a) (b)

Figure 3.5: event detection results from May 5 15:25 to May 7 07:15, 2019 per 30 s time
record at 50 kHz sampling rate: background noise level (a) and detection energy (b).

As expected the base detections’ count on Figure 3.4(a) varies between 5 and 8% of the
total number of samples on each record (which is set to 1.5 106) for the lower and mid
band while it largely exceeds those numbers reaching up to 30% for the high-frequency
band, with a somewhat larger % in the second half of the observation period. Of course
the detection duration, which is the mean duration of all detected signals over a record
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of 30 s, is anti-proportional to the frequency band, reaching as low as one sample for the
band above 8 kHz, and much larger values for the band below 1.5 kHz.

The noise level background and detected energy are shown in Figure 3.5(a) and (b),
respectively.

The noise background level corresponds to the mean estimated noise variance (in dB)
over each 30 s interval, and varies also anti-proportional to the frequency band. Instead,
the total detected energy which is the total power summed between two up and down
crossings of the detection threshold multiplied by the interval duration showed, in figure
3.5(b), some correlation with the background noise level curve of figure 3.5(a) with highly
variable energies in the low-frequency band and a low variability for the mid and high
bands.



Chapter 4

Conclusions

This report aimed at deriving, implementing and testing a simple acoustic event detector
adapted to ocean data recovered from an offshore surveillance buoy. The buoy is serviced
approximately every six month so the recovered data set may be very large and the
detector is expected to relatively quickly cope with such amount of data. Eventually, the
detector may be adapted to be embedded on the buoy acquisition software and run on
the fly directly on the online data.

In the first section the energy detector is proposed and its theoretical performance
described both for the stationary and non-stationary noise cases. A simple procedure for
determining noise variance is proposed and its performance tested on simulation.

Finally, the detector is run on a data sample of two days worth of data obtained by the
SUBECO buoy off the west coast of Portugal on May 6-7, 2019. These are preliminary
results that due to lack of time could not be detailed for individual data intervals and
linked with meaningful signals such as ships or marine mammal calls. Further investiga-
tion would be needed in that case.
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Appendices

A Generalized χ2 variables of order 1 and 2

A.1 The standard case

Let us consider the standard Gaussian variable X : N [0, 1]. The χ2
1 variable Y = X2 of

order k = 1 has the following probability density function (pdf)

fY (y) =
1√
2πy

e−y/2u(y), (A.1)

where u(y) is the unit step function. The corresponding cumulative distribution function
(cdf) is therefore given by

FY (y) =
∫ y

0

1√
2πt

e−t/2dt, (A.2)

which has no closed form solution.

If now we have two standard and independent Gaussian variables X1 and X2 the χ2
2

variable Y = X2
1 +X2

2 of order k = 2 will have the following pdf

fY (y) =
1

2
e−y/2u(y), (A.3)

that allows for a closed form cdf (always available when the order k is even)

FY (y) = 1− e−y/2u(y). (A.4)

For all k we will have the mean µ = k and the variance σ2 = 2k.

A.2 The generalized case

Let us now turn to the generalized case where the random Gaussian variables are still
zero mean, but have a variance σ2

x different from one. Thus, in the case of order one
X̃ : N [0, σx], the question is what are the pdf and cdf for the variable Z = X̃2 ?

Obviously, if we make the change of variable X = X̃/σx, then X will be standard
Gaussian and what was said before will apply. So, by making the change of variable in Z,
let’s find out the distribution of Z = σ2

xX
2 = σ2

xY where Y is the standard χ2
1 variable.
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Let’s start with the cdf of Z

FZ(z) = Prob[Z ≤ z] = Prob[σ2
xY ≤ z] = Prob[Y ≤ z

σ2
x

] = FY

(
z

σ2
x

)
, (A.5)

and therefore by using (A.2)

FZ(z) =
∫ z/σ2

x

0

σx√
2πt

e−t/(2σ
2
x)dt, (A.6)

which, again, has no closed form solution.

Its pdf is obtained either be differentiating FZ(z) or by knowing that the change of
variable on the pdf produces

fZ(z) =
1

σ2
x

1√
2πz/σ2

x

e−z/2σ
2
xu(z),

=
1

σx
√

2πz
e−z/(2σ

2
x)u(z). (A.7)

If we turn to the order 2, we will consider two non standard Gaussian variables X̃1 and
X̃2 with same variance σ2

x 6= 1, thus the generalized χ2
2 variable Z = X2

1 + X2
2 may be

written through the change of variable Z = σ2
xY where the pdf and cdf of Y are given by

(A.3) and (A.4), respectiely. Making the change of variable for the cdf as in (A.5) using
(A.4) one can write

FZ(z) = 1− e−z/2σ2
xu(z). (A.8)

and for the pdf

fZ(z) =
1

2σ2
x

e−z/2σ
2
xu(z). (A.9)

It is easy to demonstrate that for k = 2, the mean is µZ = 2σ2
x and the variance is

σ2
Z = 4σ4

x. Using this expression of the variance of Z we can write the pdf and cdf of Z as

FZ(z) = 1− e−z/σzu(z). (A.10)

and

fZ(z) =
1

σz
e−z/σzu(z), (A.11)

respectively.


