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Abstract—Ocean noise has been a topic of research for many
years, for its impact in sonar detection, underwater commu-
nications and ocean acoustic observation in general. Recently,
ocean sound has been designated as an Essential Ocean Variable
(EOV) and is therefore, becoming increasingly recorded and
monitored, along with other oceanic and meteorological variables.
The research projects EMSO-PT and SUBECO aim at deploying
ocean observatories along the coast of Portugal for long term
ocean variables monitoring, among which ocean sound. Unlike
other ocean variables, ocean sound allows for feature detection,
characterisation and possibly identification with known patterns.
This work shows the results obtained with current machine
learning algorithms for feature detection and extraction on a
two days recording of ocean noise obtained on a offshore buoy
deployed under the SUBECO project, on the west coast of
Portugal. Preliminary results show the possibility of improved
event detection, followed by classification and clustering, that
foresee a rapid and accurate analysis of large observatory
acquired acoustic data sets.

Index Terms—ocean sound, MSFD, machine learning, acoustic
detection

I. INTRODUCTION

In underwater acoustics there is a clear distinction between
active acoustics, that encompasses transmitting and receiving
sound, and passive acoustics which involves sound listening
only. Recently, ocean sound has been designated as an Essen-
tial Ocean Variable (EOV) and is, therefore, becoming increas-
ingly recorded and monitored, along with other oceanic and
meteorological variables. Unwanted ocean sound is termed as
noise. Ocean noise has been a topic of research for many years,
for its impact in sonar detection, underwater communications
and ocean acoustic observation in general.

There is significant evidence that the mean ocean noise level
in the ocean has been steadily increasing in the last decades,
mostly due to shipping [1], correlated with economic global-
ization [2]. The noise sources responsible for this increase are
clearly identified: ship traffic, offshore industrial construction
and seismic oil & gas exploration. The European Union was
the first legal body to address the issue of ocean noise and
its role on the Good Environmental Status (GES), through the
Marine Strategic Framework Directive (MSFD) in 2010 [3].

Funded by projects SUBECO and EMSO-PT.

The research projects EMSO-PT1 and SUBECO2 aim at
deploying ocean observatories along the coast of Portugal for
long term ocean variables monitoring, including ocean sound,
and thus for supporting the MSFD. The SUBECO project
includes deploying a network of multi-parametric offshore
buoys which preferred location is within or close by the ship
Traffic Separation System (TSS) along the west and south
coast of Portugal. These buoys have recently been fitted with
arrays of continuously recording broadband acoustic receivers.
It is therefore expected that the received acoustic field will
be dominated by shipping noise as a mixture of both short
and long range ships. The whole data are safeguarded on the
buoy and only downloaded during buoy maintenance which
takes place approximately once every six months. At those
moments data are analyzed for noise level statistics and trends
detection, if any. Besides estimating noise levels, trends and
GES risk, passive acoustics also allows for identifying char-
acteristic acoustic patterns that may be classified according to
their origin that can be either natural (waves, wind, rain, ice
and earthquakes), biological (marine mammals, fish, inverte-
brates,..) or man-made (shipping, industrial acitivity, seismic
exploration, etc). It is therefore of paramount importance to
perform routine identification of various acoustic signatures
present in the data such as marine mammals vocalization
traces, AIS and non AIS correlated shipping, fast surface
vessels possibly associated with smuggling activities, and any
other underwater unknown sounds. This work focuses on the
post processing of the archived data for automatic analysis in-
cluding event detection, identification and classification using
machine learning techniques.

Our main contribution is at the feature extraction level.
Specifically here we propose to use deep autoencoders evolved
with genetic algorithms in order to automatically extract
patterns of interest from the underwater acoustic recordings.

This paper is organized as follows: section II describes the
experimental setup used for real data acquisition; section III
describes the methodology for signal detection and processing
algorithms; section IV describes and discusses the results

1European Multidisciplinary Seafloor Observatories - Portugal, funded by
FCT (contract 022157).

2SUB-ECO Acoustic Surveillance System, funded under contract of PO-
Navy (2015-2019).



obtained on the test data set; finally section V draws some
conclusions of the work done so far.

II. SUBECO BUOY TEST EXPERIMENT

Figure 1 shows an artistic drawing of the SUBECO buoy.
The floating device is provided by Fugro-Oceanor model Sea-
watch3 with its meteorological and environmental sensors. For
the SUBECO project the buoy has been fitted with an acoustic
array formed by 6 broadband hydrophones at the vertices of
a tetrahedron of 1.5 m side (not to scale in the figure). The

Fig. 1: SUBECO buoy artistic drawing (not to scale).

array is deployed at the end of an umbilical electromechanical
cable at 80 m depth by design. The acquired data is locally
stored and processed, while snippets of data and system
status are cabled to the surface buoy allowing for remote
monitoring and data inspection through a remote satellite link.
The design, installation and testing of the acoustic recording
system was provided by Marsensing Lda. (Faro, Portugal).
For testing purposes, a first SUBECO buoy prototype was
deployed off the coast of Portugal between mid April and
mid May, 2019. Figure 2 shows the deployment location on
top of a ship traffic density map using AIS data over one
year back in 2014. As it can be seen the selected location is
close to the ship TSS lanes, running North-South along the
Portuguese coast. The water depth at the deployment location
is approximately 1330 m. Data recordings were performed at
three sampling frequencies and for three different duration:
60 seconds at 10 kHz, 30 seconds at 50 kHz and 10 seconds
at 100 kHz and stored in separate WAV files. This sequence
of 1 minute and 40 s duration is repeated with a duty cycle
of 10 minutes. The data set analyzed in this work covers two

3for buoy model details see https://www.fugro.com/about-fugro/our-
expertise/technology/seawatch-metocean-buoys-and-sensors

Fig. 2: AIS ship density map with SUBECO buoy deployment
location.

days of data from May 5 to 7, 2019, so approximately 280 data
records of 30 seconds at 50 kHz form the target data set. An
overview of the data was obtained through a calibrated power
spectrum density (PSD) spectrogram analysis for all the 280
data blocks. Spectrograms used the Welch periodogram with a
8k block size short time Fourier transform with 50% overlap
and hamming windowing for higher sidelobe supression and
estimate stabilization.

Examples are shown in Fig. 3 for (believed to be) opportu-
nity dolphins’ vocalizations (a) and a slow passing by vessel
(b). Together with ocean sound features of interest to this

(a)

(b)

Fig. 3: spectrograms of selected acoustic data as example bioacous-
tics (a) and ship noise (b).

study, the data sets also contain numerous impulsive sounds,
characterized by a large frequency band and high intensity



(see an example in Fig. 4). These are generated on the buoy
mooring itself due to tension on cables and shackles in relation
to surface waves and ocean currents. It was found that these
interference are correlated with weather conditions (wind and
sea state) on site. Such interference are common in offshore
sound recording systems and are usually termed as self-noise
or pseudo-noise [4]. In this study self-noise was treated as a

Fig. 4: Illustration of mooring noise spectrogram.

category of sounds to be detected and identified, along with
other categories of interest.

III. METHODOLOGY AND SIGNAL ANALYSIS

The architecture used for acoustic data processing is de-
scribed in Fig. 5.

Hydrophone Recordings

Detection

Feature ExtractionClustering

Classification

Information Retrieval

Fig. 5: Passive acoustic monitoring signal analysis methodology.

Each of the various blocks on the diagram of Fig. 5 perform a
specific operation on the data in order to retrieve valuable
information. For instance the goal of the detection stage
is to identify events of interest. At the feature extraction
level various mathematical rules were applied in order to

capture particular signal characteristics. This block is very
important since it controls learning algorithms performance.
The following sections briefly describe each one of these
blocks.

A. Signal detection

Signal detection is a crucial step within a passive acous-
tic monitoring system. The detector should correctly time-
pinpoint relevant signals with a low false alarm rate. For a
time-varying underwater channel, the observation y(n) may
be given as

y(n) =

{
η(n) H0

x(n) + η(n), H1

(1)

where η(n) is the diffuse ocean environmental sound (rain,
waves, bubbles,..) and x(n) represents the signal of interest
which could be of anthropogenic (ships, offshore activity,..),
biological (marine mammals,..) or geological (seismic,..) ori-
gin. H1 denotes the hypothesis under which an event of
interest is present and H0 otherwise.

The adopted detector was based on the energy detector
which decision statistic is given as

TED =

N∑
n=1

|y[n]|2, (2)

where N denotes the window frames within a recording. The
decision statistic is compared against a threshold ζ and the
detection is considered positive if the statistic is larger than
the threshold and negative otherwise. The energy detector is
known to be robust for the detection of random signals in
white noise [5].

B. Feature extraction and dimensionality reduction

Directly feeding raw audio signals in learning algorithms
usually require a long time for processing and the obtained
results are often poor. A practical approach consists in ex-
tracting relevant features before training the algorithms.

A feature could be defined as a particular characteristic or
description of the data. In order to successfully perform the
clustering and classification tasks, a set of relevant features
are required. Specifically, this set captures the hidden patterns
within the data such as harmonic structure, pitch or energy
distribution among others.

We have considered extracting multiple features from the
time domain (RMS, ZCR), frequency domain (MFCC, Cen-
troid, Chroma, Rolloff, Contrast, Tonnetz), as well as the time-
frequency domain (Mel-frequency Spectrogram) in order to
capture different information from the raw data. These are
briefly described below.
∗Tonnetz The harmonic network or Tonnetz [6] detect har-

monic changes by using a mapping from 12-bin chroma
vectors to the interior space of a 6-D polytope. Concretely
the six dimensional tonal centroid vector is given by the
multiplication of the chroma vector with the transforma-
tion matrix Φ.



Tonnetz[d] =
1

|c|

11∑
l=0

Φ(d, l)c(l) (3)

∗Mel-frequency Spectrogram The mel scale was proposed
to describe the non-linearity in pitch perception [7]. The
mapping from the Hertz scale to the Mel scale is based
on the following

Mel[f] =
1000

log 2
log(1 +

f

1000
) (4)

∗ZCR The intuition behind Zero-Crossing Rate features con-
sists in evaluating the frequency content of a signal by
measuring its rate of change from positive to negative [8].
Concretely this is performed using the following formula

ZCR =
1

2

N∑
n=1

|sign(y[n])− sign(y[n− 1])| (5)

∗Rolloff The key insight behind Rolloff features relies on the
measure of spectrum magnitude concentration [9]. They
were at first proposed to detect the presence of speech.

Rolloff =

N∑
n=0

|Yr[n]| (6)

where Yr[n] represents the STFT of frame r.
∗MFCC Mel frequency cepstrum coefficients [10] have been

particularly successful in speech processing and audio
tasks among others. The calculation process of MFCC
starts by computing the logarithm of mel-band energies
then applying the discrete cosine transform (DCT) to
decorrelate the overlapping filter-banks.

∗Contrast Octave-based spectral contrast features [11] have
been proposed to represent the relative spectral charac-
teristics of audio signals. Concretely this is performed by
considering the strength of spectral peaks and spectral
valleys in each sub-band separately.

Contrastk = Peakk − Valleyk (7)

Peakk = log(
1

N

N∑
i=1

yk[i])

Valleyk = log(
1

N

N∑
i=1

yk[N − i+ 1])

∗RMS Root Mean Square represents the time domain enve-
lope within which the signal is contained. It is calculated
by considering the square root of the average power

RMS =

√√√√ 1

N

N∑
n=1

|y[n]|2 (8)

∗Centroid The spectral centroid represents the spectrum cen-
ter of gravity [12]. It is calculated as the following

Centroidr =

∑N/2
n=1 f [n]|Yr[n]|∑N/2
n=1 |Yr[n]|

(9)

where f [n] = nfs
N is the frequency at bin n and Yr[n] is

the STFT of frame r.
∗Chroma The goal of chroma is to capture harmonic informa-

tions [13]. It is calculated by summing the log-frequency
magnitude spectrum over the octaves. The chroma vectors
are given by

Chroma[b] =

Z−1∑
z=0

Ylf |b+ zβ| (10)

where Ylf represents the log-frequency spectrum, b the
pitch class index, z the octave index and β the bins per
octave.

For dimensionality reduction we used both PCA – principal
component analysis – and convolutional autoencoders. These
are briefly described next.

1) Principal Component Analysis: Principal Component
Analysis [14] is a non-parametric technique which has been
successfully applied in numerous applications ranging from
outlier removal to data compression. This particular property
is mostly interesting when the data matrix X lies in a high
dimensional space. To that end PCA could efficiently get
the best low rank approximation of the data. Concretely,
this is performed by a mapping to a subspace in which
the components with highest variance are retained and the
remaining ones discarded. The PCA problem is formulated
as the following

maximize Var(wTx) = wTΣw (11)
subject to ||w|| = 1,

where Σ = E[(x − µ)(x − µ)T ]. Henceforth, the first and
second principal components ||w1|| and ||w2|| are found by
solving

argmin
w1

wT
1 Σw1 − α(wT

1 w1 − 1) (12)

argmin
w2

wT
2 Σw2 − α(wT

2 w2 − 1)− β(wT
2 w1 − 0),

where α and β are Lagrange multipliers. Under the condition
where µ = 0, the covariance matrix reduces to Σ = XTX .

2) Convolutional Autoencoders: Convolutional Autoen-
coders (CAE) are composed by different types of layers which
perform specific operations to their input. The first block of a
CAE is called the Convolution Network or Encoder and it in-
cludes Convolutions and Max-Pooling layers while the second
block is denoted the Deconvolution Network or Decoder and
is composed of Deconvolutions and Upsampling layers. Using
Max-Pooling layers allows to reduce the resolution of the
grid space while preserving the most important informations.
The output of a Max-Pooling operation is a layer of lower
dimension. Activation functions such as the ReLU, Tanh or
the logistic function are usually applied at the output for non
linear decision boundaries.

Training of CAE is usually performed using the backprop-
agation algorithm, associated with the following cost function

L(x, x̂) = ||x− x̂||22. (13)



At the encoder the input x is compressed into a lower
representation denoted z = f(We ∗ x + be), where ∗ is the
convolution operation and (We,be) = (W 1, b1, . . . ,W l, bl)
are the parameters associated with the l layers of the encoding
network. During this process irrelevant features disappear and
the dimensionality of the feature vector is reduced. At the
decoder, the output x̂ = g(Wd ∗ z + bd) tries the reconstruct
the input from the bottleneck layer.

Representation learning is performed using filters convolved
with the feature maps, using the following formula

f [x, y] ∗ g[x, y] =
∑
i

∑
j

f [i, j]g[x− i, y − j], (14)

where f represents the input image, g the filter, x and y the
horizontal and vertical axis.

Concretely, the filter is placed at the top left corner of the
image then shifted to the right by one pixel until it reaches
the right corner, afterwards it moves down. This process is
repeated until the filter reaches the bottom right corner of
the image. At each step, the values at each spatial region of
the filter and feature map are multiplied element wise then
summed. The result of this operation produces a new feature
map. In order to learn different kinds of features, the depth of
the feature map is increased by using multiple filters.

C. Clustering

The main goal of clustering it to divide an unlabelled hetero-
geneous data set into a partition of homogeneous subgroups (or
clusters). Although well-known we briefly describe for easy
reference the algorithms employed in this work.

1) Gaussian Mixture Models: Gaussian Mixture Models
(GMM) is a probabilistic method which assumes that the data
x ∈ Rd is drawn from a mixture of gaussian distributions
N (µk,Σk) weighted by πk in order to build predictions
around the number of clusters k.

p(xi) =

K∑
k=1

πkN (xi|µk,Σk) (15)

subject to
K∑
k=1

πk = 1

pk(xi|θk) =
1√

(2π)d|Σk|
exp (−1

2
(xi − µk)TΣ−1

k (xi − µk)).

The learning process of GMM relies on the iterative al-
gorithms Expectation-Maximization (EM) or Maximum A
Posteriori (MAP) in order to find the parameter vector θk =
(πk,µk,Σk).

2) Hierarchical Agglomerative Clustering: Ward based Hi-
erachical Agglomerative Clustering (HAC) [15] is a powerful
tool for analysing and identifying similar groups within large
data sets. Concretely, the clusters are built by iteratively
merging the clusters Gu and Gv with minimal linkage δ.

δ(Gu, Gv) =
|Gu||Gv|
|Gu|+ |Gv|

||xGu − xGv ||2, (16)

where xG = 1
n

∑n
i=1 xi is the center of gravity of G. The

results produced by HAC could be displayed by dendrograms
which have an inverse tree structure. In order to find the num-
ber of clusters using the dendrogram we perform a horizontal
cut at a specific height.

3) k-means: k-means is one of the simplest algorithms for
clustering which has been successfully applied in numerous
fields ranging from computer vision to medical imaging and
speech recognition among others. The underlying principle
behind k-Means consists in finding k clusters centroids µj(j =
1, . . . , k) using an iterative approach which starting from ini-
tial centroids guesses update them until the distance between
the data points and their respective centroid is minimized.

D. Classification

1) Support Vector Machines: Support Vector Machines
(SVM), introduced by Vapnik [16], implement a discrimina-
tive classification algorithm which aims to separate the data
instances {(xi, yi) i = 1, . . . ,m; xi ∈ Rd} belonging to
different classes yi ∈ {+1,−1} using a hyperplane wTxi + b
such that the margin which separates the nearest data points is
maximized. The decision boundary could be found by solving
the following constrained optimization problem

minimize
1

2
wTw + C

m∑
i=1

ξi (cost function) (17)

subject to ξi ≥ 0, yi(w
Txi + b) ≥ 1− ξi for i=1,. . . ,m

Introducing the Lagrange multipliers αi, the constrained opti-
mization problem could be formulated as a dual optimization
problem yielding

maximize J (α) =

m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjx
T
i xj

subject to αi ≥ 0,

m∑
i=1

αiyi = 0 for i=1,. . . ,m

If the data points are not linearly separable, the kernel trick
allows to transform the original problem into a linear one
by mapping data into a higher dimensional space. Concretely
this is performed by introducing the kernel k(xi,xj) =
ΦT (xi)Φ(xj) and then solving for

maximize J (α) =

m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjk(xi,xj)

subject to αi ≥ 0,

m∑
i=1

αiyi = 0 for i=1,. . . ,m.

2) k-Nearest Neighbors: k-Nearest Neighbors is among the
simplest algorithms for predicting an unknown target class
label. Its intuitive approach consists in calculating the distance
separating the closest neighbors yi to the unknown target class
xi using for example the Minkowski metric. Afterwards a
voting among the k observations is performed and the class
with the highest number of representatives is selected as the
predicted class. We have adopted the Euclidean metric.



3) Random Forests: In a Decision tree each node corre-
sponds to a decision point. While constructing the Decision
Tree model, the splits at each node could be performed by
minimizing a purity index given by

G =

C∑
i=1

p(i)(1− p(i)) (18)

where G represents the Gini index, C the number of classes
and p(i) the class probability. A similar criterion is the
Information gain, IG, based on Entropy H , i.e.,

IG(y|xi) = H(y)−H(y|xi). (19)

Random Forests [17] is an ensemble method based on Deci-
sion Trees. The latter suffers from over-fitting problems so
this method aims to overcome this limitation by splitting
randomly the data among multiple trees. Concretely, given
the data matrix with m examples and d features, each tree
is constructed by randomly selecting a subset l < d from the
features and a subset k < m from the examples.

E. Hyperparameters setting

The different hyperparameters used for tuning the learning
algorithms are reported in Table. I. For each algorithm we
carried out different tests using a selected list of candidates.
Hyperparameters could be considered as regularizers which
fine tune the model by restricting its freedom. The choice of
a particular candidate has therefore a strong influence on the
performance of the model.

For instance the value of C in support vector machines
controls the points that lie inside the margin. A low value of
C softens the constraints on the allowed points while a large
value of C hardens the constraints.

The Radial Basis Function (RBF) Kernel is given by

k(xi,xj) = exp(−γ||xi − xj ||22) (20)

where the parameter γ = 1
2σ2 controls the euclidian distance

between the data points.

TABLE I: Hyperparameter Settings.

Algorithm Hyperparameters

Hierarchical Agglomerative Clustering Linkage: Ward

k-Nearest Neighbors Number of Neighbors: 1

Random Forests Number of Estimators: 400
Maximum Depth : 5

Support Vector Machines
Kernel: Linear, RBF

Gamma : 0.1,1
C : 10

Principal Component Analysis Kernel: Linear

For hyper-parameter tuning the following methods were
used.

1) k-fold Cross Validation: One of the major objectives of
machine learning is to generalize well on unseen data. For
instance if the model was trained on a particular data-set,
we are not sure whether it will perform well on new data.
For this purpose several approaches were proposed to mitigate
this issue. For instance if the data size is small, k-fold Cross-
Validation has been proven to be very efficient. k-fold cross
validation is a method which consists in dividing randomly the
data instances in k folders. One folder is used for testing and
the remaining ones for training. Then at each evaluation step
a new folder is selected for testing. This process is repeated
k times. In this work we have used 4 fold cross-validation.

2) Genetic Algorithms: The principle of Genetic Algo-
rithms is the following; A randomly initialized population P of
individuals where each element represents a potential solution
is evolved with the aim of producing better individuals at
each new generation. Evolution is carried out by crossover
and mutation thus increasing the likelihood of producing
successful off-springs.

Here we explored GA to optimize the time of design of
Deep Autoencoders. The different individuals in the population
were encoded according to a hexadecimal scheme. Under this
setting every individual is represented as a string made up
of hexadecimal numbers (0-9,A-F). In order to ensure that
better individuals are produced after each breeding, the parents
were selected based on a fitness function which represents
the objective to be maximized. Guess refining was steered
by the classification accuracy which the algorithm aims to
maximize at each iteration. Using this policy we constraint the
algorithm to evolve the hyperparameters (activation functions,
filter size, number of filters) which produce successfull Deep
Autoencoders architecture.

TABLE II: Autoencoder Evolved Hyperparameters

Hyperparameter Range

Activation function ReLu, Elu, Tanh, Logistic
Hard Sigmoid, Softplus, Linear

Number of filters 2,4,8,16

Filter size 1,2,3

IV. RESULTS AND DISCUSSION

A. Detection

Event detection is an important step within a passive acous-
tic monitoring system. In order to extract from the data only
events of interest, we applied the detector to SUBECO data-
set. Fig. 6 shows examples of mooring sound (a) and dolphin
whistles (b) detection. We can notice that the energy detector
performance drops when the noise level is high which suggests
further improvements of the detection process.

B. Feature Selection

Given a training data set denoted with Y = [y1,y2, . . . ,yn]
where the elements of Y are the different waveforms of length



(a)

(b)

Fig. 6: Mooring sound detection on DATB0188.wav recording (a),
Dolphin whistles detection on DATB0075.wav recording (b) .

l, a transformation which captures the hidden patterns within
l is desirable to optimize learning algorithms performance.

The resulting transformation yield a new vector fn of
reduced length, where the different elements of fn are denoted
features. In order to ensure optimal transformation, a set
of requirements arise including feature nature, scaling and
dimension among others. Particularly, the choice should take
into consideration over-fitting problems. We have conducted
feature importance analysis using Random Forests and found
that the best performance is achieved by the frequency domain
feature MFCC.

C. Clustering

A big challenge encountered during this project was related
to the manual labelling of the events. In fact for 2 days of
recording, the detection process generated 770 events. We
can imagine the tremendous time and effort required for 6
months of recording. For this purpose we have considered
using clustering in order to optimize events partitioning into
different classes. Fig. 7 shows labels prediction process using
three different methods corresponding to Hierarchical Ag-
glomerative Clustering (a), k-Means (b) and Gaussian Mixture
Models (c).

In order to get accurate results of clustering, a good choice
of the selected features is required. From the threshold in
Fig. 7(a) we can clearly notice that the hierarchical algorithm
correctly identifies the 4 classes within the data. Labels predic-
tions by GMM reached 74% followed by k-Means with 70%.

(a)

(b)

(c)

Fig. 7: Hierarchical Agglomerative Clustering (a), k-Means Clustering
(b) and Gaussian Mixture Models Clustering.

For external validation purposes we have manually labeled the
data.

D. Classification

The different events were partioned as the following; 89
ship samples, 47 dolphins, 48 mooring noise and 28 blob
(unidentified) samples.

In Table III we present the results from 4 fold cross-
validation. The best accuracy rate was achieved by Random
Forests with 90.87%, followed by Support Vector Machines
87.36% and k-Nearest Neighbors 86.43%. These results could
be explained by the selected features which contributed at a
large extent to the derivation of an efficient learning rule. Al-
though Deep Autoencoders performed well, the noticed lower
rate suggest further investigation of the network optimization
process.



TABLE III: Comparison of performance of different algorithms.

Feature Dimension Algorithm Name Recognition Rate

MFCC :: 8
k-NN 83.42%

RF 90.18%
SVM 86.14%

Autoencoder :: 8
k-NN 82.96%

RF 84.30%
SVM 83.50%

PCA :: 8
k-NN 86.43%

RF 90.87%
SVM 87.36%

In order to get a deep insight of the internals of the
algorithms we decided to draw the constructed decision rules.
In Fig. 8(a) we can visualize how Support Vector Machines
divides the feature space using a set of hyperplanes. Although
the model (a) misclassifies a set of data points (blue circles),
it generalizes better than the model (b) as could be noticed.
The best performance is achieved by the RBF kernel with
gamma=0.1, since it constructs the optimal prediction surface.

V. CONCLUSION

In this work we have studied the problem of identification of
underwater ambient sounds from passive hydrophone record-
ings. This was performed using a system which processes the
gathered data autonomously. We have considered identifying
various sounds through the use of an energy detector. The
different features extracted from the detected events allowed
to partition the large amount of data for further classification
by machine learning algorithms. Our study revealed that deep
autoencoders evolved with genetic algorithms offers promising
accuracy levels. Besides, we have noticed that labels predic-
tions by the clustering algorithms needs to be improved in
order to minimize the penalization of the classification process.

Underwater acoustic signals travelling across large distances
are heavily distorded by the channel medium due to complex
phenomena which adds Doppler effects and multipath to signal
characteristics, consequently we aim as a future work to further
analyse the effect of environmental disturbances.
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