Active acoustic time reversal for underwater acoustic barriers

S.M. Jesus and O.C. Rodríguez

ISR - Institute for Systems and Robotics University of Algarve, PT-8005-139, Portugal {sjesus,orodrig}@ualg.pt

June 8, 2007

research funded under projects NUACE and UAB, programs POSI and POCI, FCT Portugal.

ASA June Meeting, Salt Lake City, June 4-8, 2007

Scenario

Active acoustic barrier typical scenario

Acoustic propagation

Ideal waveguide, f=717 Hz, rigid object 2 m \emptyset

Canonical scenario TL

Downward refracting, f=500 Hz, rigid object 1 m \emptyset

Canonical scenario TL: multiple sources

Downward refracting, f=500 Hz, rigid object 1 m \emptyset

Active target detection: binary hypothesis testing

Received signal model:

 $y_k(n) = \mathbf{h}_k(n)\mathbf{s} + w_k(n), \qquad k = 1, \dots, K, \qquad n = 0, \dots, N-1$

deterministic signal, AWGN $w_k(n) : \mathcal{N}(0, \sigma^2)$

Multidimensional data set: (time × space)

$$\mathbf{y}_a = \mathbf{H}_a \mathbf{s} + \mathbf{w}_a$$

Binary hypothesis testing

 H_0 : there is no change in the received signal, $\mathbf{y}_a = \mathbf{H}_a \mathbf{s} + \mathbf{w}_a$

 H_1 : the received signal has changed, $\mathbf{y}_a = \tilde{\mathbf{H}}_a \mathbf{s} + \mathbf{w}_a$

Optimal detector

Likelihood ratio

$$l(\mathbf{y}_a) = \frac{p(\mathbf{y}_a/H_1)}{p(\mathbf{y}_a/H_0)} \ge \gamma$$

Detection statistic

$$L_t(\mathbf{y}_a) = \sum_{n=0}^{N-1} [\mathbf{y}^T(n) \tilde{\mathbf{H}}(n) \mathbf{s} - \mathbf{y}^T(n) \mathbf{H}(n) \mathbf{s}] \ge \gamma'$$
$$L_s(\mathbf{y}_a) = \sum_{k=0}^{K} [\mathbf{y}_k^T \tilde{\mathbf{H}}_k \mathbf{s} - \mathbf{y}_k^T \mathbf{H}_k \mathbf{s}] \ge \gamma'$$

k=1

Optimal detector performance

Probability of detection and false alarm

$$P_D = Q \left[\frac{\gamma' - (\epsilon_{\tilde{x}} - \epsilon_{x\tilde{x}})}{\sqrt{\sigma^2 \epsilon_{x-\tilde{x}}}} \right]$$

$$P_{FA} = Q \left[\frac{\gamma' - (\epsilon_{x\tilde{x}} - \epsilon_x)}{\sqrt{\sigma^2 \epsilon_{x - \tilde{x}}}} \right]$$

$$P_D = Q \left[Q^{-1}(P_{FA}) - \sqrt{\epsilon_{x-\tilde{x}}/\sigma^2} \right]$$

where $\epsilon_x = \sum_{n=0}^{N-1} \mathbf{x}^T(n) \mathbf{x}(n)$, is the energy contained in signal x(n), received on the K-sensor array in the time interval [0, N-1].

Simulation results: optimal detector performance (1)

L=16, K=10, SR=270 m, F=5 kHz, BW=100 Hz, cylinder $1m\emptyset$

Simulation results: optimal detector performance (2)

L=16, K=10, Pfa= 10^{-3} , F=5 kHz, BW=100 Hz, object 1mØ

Detector implementation: MFP / TR based

- **MFP-type:** a) invert for acoustic model parameters when no target present
 - b) use previously inverted parameters for forward search using object at trial locations \rightarrow estimate of object location
- **TR-type:** realize that $L(\mathbf{y}_a)$ is composed of two matched filter outputs, sampled at time N 1.

TR multiple focusing example

L=16, K=10 (#3 & #5), SR=3.8 km, F=500 Hz, BW=100 Hz

TR implementation

Detector performance: TR vs. optimal

L=16, K=10, Pfa= 10^{-3} , F=5 kHz, BW=100 Hz, object 1mØ

Conclusions and perspectives

Conclusions

- TR allows for a near optimal detector implementation
- the forward field has enough structure for detection
- TRACE/TRACEO forward scattering modelling tool

(near) Future work

- test in real conditions: 8 transducers, 16 hydrophones (2-16 Sep 2007, Hopavagen Bay, Trondheim, Norway)
- include backscatter on TRA
- study the target approach to the barrier

