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Abstract—Seismic inversion with an AUV-based sensor array
system is an appealing concept that opens up a number of
interesting possibilities but faces also a number of technological
and scientific challenges. Among the technological challenges
there is the fact that sensor arrays are no longer hardwired to
the tow ship and therefore on the fly data monitoring imposes
stringent restrictions on the amount of data that can be sent to the
support ship. One of the scientific challenges is to determine the
optimal sensor array configuration by exploring AUV mobility for
inverting the bottom geophysical structure of interest. In fact, the
industry standard planar array and the associated acoustic data
processing may not be the setup with the highest performance for
each scenario at hand. Generic optimization of sensor distribution
through space has been a long standing problem to which
there are no closed form solutions. Generically speaking, field
diversity maximization is often referred to as a criteria for sensor
positioning. This work explores data incoherence as a possible
criteria to derive performance of distributed sensor arrays. Ad-
ditional technological limitations such as array aperture, number
of sensors and distances between vehicles impose additional
constraints leading to suboptimal configurations. Compressed
sensing array processing is used both to explore data incoherence
and to offer data reduction for alleviating on the fly monitoring.

I. INTRODUCTION

The energetic transition to renewable sources, namely off-
shore wind and wave energy platforms, as well as the appetite
for rare minerals and other exotic substances impose new ope-
rational requirements in geoacoustic challenging environments.
A geoacoustic challenging environment has space/time features
in terms of water depth variability, spatial changing sub-bottom
formations, coastal specific characteristics and environmentally
sensitive habitats, that challenge standard surveying apparatus
such as those currently used in oil-gas seismic surveying which
are based on rigid source-receiver geometries and source firing
protocols.

The Widely Scalable Mobile Underwater Sonar Technol-
ogy (WiMUST) project1 addresses this challenge by propos-
ing to replace the traditional towed receiving array system
by a coordinated fleet of Autonomous Underwater Vehicles
(AUVs). The flexibility provided by a receiving fleet of AUVs
may address the challenges if fitted with i) the appropriate
navigation control for keeping a predetermined formation over
long periods of time, ii) wireless communication of data
and commands between AUVs and the control and command
station and iii) acoustic signal processing to handle on the fly
monitoring of the data being acquired and adapt to the complex

1WiMUST project, funded by the Horizon 2020 European Research Pro-
gram under contract number 645141 (see www.wimust.eu for further details).

surveyed environment. This paper focus on the latter challenge
and devises new possibilities for on the fly data reduction
to be performed on board the vehicles and for determining
optimal spatial sensor array distribution for bottom inversion
and feature extraction.

There is an extensive literature on ocean bottom estimation
by acoustic remote sensing that traces back to the pioneering
work of Yilmaz [1], [2], Frisk [3]–[5] and many others. In the
last two decades with the advent of fast digital data processors
and advanced micro-technology, the scientific community split
into two classes of techniques: 1) seismic arrival-based time
domain and 2) model or matched-field-based. The former is
widely used in the oil-gas seismic industry while the later is
concentrated in the academic and scientific community.

Although very general in principle these two approaches,
target two different types of environment: low resolution
bottom deep targets for the oil-gas industry and high resolution
superficial detailed sediments for the scientific community. The
WiMUST AUV-based system is meant to be flexible so, in
the future, it could encompass one and the other objectives
but, at this stage, it will mostly address the second target of
high resolution sediments in flexible shallow water, variable
bathymetry and complex coastline scenarios [6].

Besides the differences in objectives and target scenarios,
all acoustic based bottom inversion techniques boil down to
one single but complex problem: how to simultaneously match
time-delays, layer thicknesses and sediment velocities to a set
of acoustic bottom returns. The relation between these three
quantities can be geometrically established in a fairly simple
form for some ray paths in given scenarios but, generally, only
the time-delays are directly retrieved so one of the two others
has to be assumed. This creates a multiple fit problem that may
be expressed as a system of equations which entries are related
to acoustic wave propagation in the water column and in the
bottom, while the bottom itself is unknown. It is therefore a
non-linear problem.

The approach proposed in this paper draws its roots in the
recent field of compressed sensing, also known as compressive
sensing (CS). CS deals with sparse systems of equations where
highly dimensional vectors evolve in low-dimension subspaces
and can, therefore, according to the CS theory, be sampled at
a lower rate than that imposed by Nyquist. CS is attractive for
our problem since bottom sediments’ discrimination may be
modeled as a dense system with often only a few significant
reflectors, therefore as a sparse system. This concept was
already used on the receiver side [7] and for the source firing
system [8]. Another interesting property is that CS deals with
random measurements which are likely to occur in WiMUST



due to navigation inherent inaccuracies of the fleet of AUVs
and clock synchronization issues. Finally, CS techniques are
based on l1 minimization and have therefore low computational
requirements, which is an advantage for embarked systems.

This paper is organized as follows: section II describes CS,
coherence and diversity based techniques as a potential criteria
for distributed array geometry optimization; section III gives
the typical simulation scenario and the bottom observation
model; section IV describes the simulation and shows the
results. Finally, section V gives some conclusions of this work
and hints for next steps.

II. CS, COHERENCE AND DIVERSITY

A. CS basics

Let us assume that a signal s can be written as a finite
linear combination of basis vectors ψ, such that

s =

M∑
m=1

xmψm (1)

where xm are the basis coefficients and M is the number of
degrees of freedom. Equation (1) may also be written in a
compact matrix form as s = Ψx, and where ΨTΨ = MI2.
Assume now the simple case where the observation y of s can
be written as

y = Φs

= Ax, (2)

where y is N × 1 with N � M , A = ΦΨ, with ΦTΦ = I
and therefore ATA = MI. The objective of the ”imaging
problem” is, of course, to uniquely determine x given y and
A, full rank. Since N �M , the rank of A is equal to N and
the problem is under-determined, so x can not be uniquely
”reconstructed” (using the imaging terminology). There is,
however, one way out if x is sparse, i.e., if the number of
its non zero entries K = ‖x‖0 � M 3, in which case (1)
reduces to K terms with K � N � M . In that case, one
solution would be given by

min ‖x‖0, s.t. y = Ax (3)

which is infeasible in practice. Instead the problem

min ‖x‖1, s.t. y = Ax (4)

may be solved using linear or quadratic optimization tech-
niques. The trick that pushed CS into the scene is the seminal
work of Donoho [10] that showed that, under certain conditions
on A and due to the sparsity of x, (3) and (4) have the same
and unique solution. The conditions imposed on A go along
two main alternative avenues: isometry or incoherence. Candès
[11] has shown that a sufficient condition for Donoho’s proof to
hold is that A should verify the Restricted Isometric Property
(RIP) (see [11] for a definition) which is shared, for instance,
by Gaussian random matrices. Incoherence instead refers to
the fact that the inner product of any two different columns
of A should be small, although ”small” is not clearly defined.
In the next section we attempt to quantify this and take the
necessary conclusions of a ”small incoherence” matrix A for
CS to work.

2this unusual normalization follows that proposed in [9], where ‖ψi‖ =√
M contributes to simplification in the sequel.
3here, the number of non-zero components is given by the l0 norm ‖ · ‖0.

B. Coherence and diversity

Coherence plays an important role in physics. In par-
ticular the coherence of the underwater acoustic field in
time and space allows for information extraction in coherent
communications and in array processing (see [12] and [13]
for examples). In general a higher coherence allows, when
properly exploited, a better performance. In sparse systems
such as those mentioned in the previous section, coherence has
a counter intuitive role: the smaller the coherence the better.

Mutual coherence is defined as [9]

µ(A) = max
i=1,N ;j=1,M

|aij |, (5)

which is directly bounded in [1,
√
M ], i.e., it has the same

bounds as the non-normalized plain coherence C(A) given by
[14]

C(A) = max
j,k=1,M

j 6=k

√
1

N
|aT

j ak|, (6)

and bounded in
1 ≤ C(A) ≤

√
M. (7)

Of course, having the same bounds does not mean having the
same value so, in general, C(A) 6= µ(A).

An interesting result mentioned in [9], [15] gives the
required number of measurements N for a given sparsity level,
bounded by the coherence µ(A), as

N ≥ cµ2(A)K logM. (8)

where c is some positive constant, and where all other terms
have been defined. Interestingly, if the coherence µ(A) is
close to one, K logM observation samples, instead of M , are
sufficient for solving (2), an extraordinary difference for large
M . Figure 1 illustrates (8) where the number of samples per
resolvable layer (N/cK, for c = 1) have been translated into
bottom depth using a constant sampling rate of 5 cm4. It can

Fig. 1. Minimum number of required measurement samples per resolvable
layer as a function of bottom depth and mutual coherence for a constant and
fixed bottom resolution of 5 cm.

be easily seen that for moderate coherence, say between 1

4as an example, a bottom penetration of 50 m requires M = 50/0.05 =
1000 samples.



and 2, a low number of 20 to 40 measurements per resolvable
layer may be used, almost independently from the required
bottom penetration. This is the reason why CS is essentially
devoted to low coherence measurements, where the gain is
most prominent. It can be shown that the mutual coherence
µ(A) in (8), can be replaced by the non-normalized plain
coherence C(A) (6) and the relation still holds.

Relation (8) gives a figure and a more exact meaning to
the statement ”small coherence” and therefore to the degree of
”flatness” required for matrix A. A matrix with high coherence
will have high ”peaks” and deep ”valleys” and will have a
low probability to succeed in the inversion of a low K-sparse
signal. Conversely, a well distributed matrix with dispersed
small values all over its rows and columns, will show a
low coherence and therefore a high probability for observing
(and then inverting) a low K-sparse signal. A high coherence
observation would require that the information is concentrated
on a few points, one would say that the diversity is low,
instead, in a low coherence observation the information is
spread out and the diversity is said to be high. In other words
diversity and coherence are associated and should be the key
for determining optimal sensing structures.

III. SIMULATION SCENARIO AND OBSERVATION MODEL

A. Simulation scenario

Acoustic propagation through the water-bottom interface
and then through subsequent interfaces beneath can be accu-
rately handled with the Ocean Acoustics and Seismic Explo-
ration Synthesis (OASES) model [16]. A typical environmental
scenario to be used in the simulations is shown in figure 2. The

Fig. 2. Canonical case 1d environmental scenario.

equipment used for bottom exploration assumes an explosive
point source located near the surface at 5 m depth, emitting
broadband pulses. The sensing system is a towed horizontal
array located at the same depth of the source and at a distance
of 200 m for the simulation scenario.

As a first step the OASES transmission loss module
(OAST) was used to give a generic overview of the attenuation
field over the water column and through bottom layers. This
is shown in figure 3 for the frequency of 500 Hz and source
depth of 5m. Several obvious remarks can be made: i) at
high grazing angles (near vertical) bottom penetration is very

Fig. 3. Transmission loss for the canonical scenario case 1d of figure 2 at 500
Hz and for a source depth of 5m.

high and the sound covers all the layers down to the half
space; ii) at approximately 100 m range the half space cut-off
angle of ≈ 47◦ is reached and beyond that grazing angle the
penetration reaches only the second bottom layer, this happens
until approximately 250 m range; iii) beyond that range, for
a grazing angle of ≈ 24◦, most of the energy reaches only
the first sediment layer until ≈ 15◦, at 450 m range, beyond
which it almost completely reflects at the water - bottom
interface and then bounces back to the surface generating the
usual interference pattern with the direct and surface reflected
paths; iv) it is interesting to note that for the first and second
cutoff angles almost no energy propagates horizontally in the
sediments while for the third cutoff angle between 250 and
450 m part of the energy is horizontally transmitted into the
sediment, eventually crossing back into the water at longer
ranges.

B. Observation model

There are at least two mechanisms for representing the
interaction of the acoustic wave with the bottom layers. One
is reflection and the other is scattering. Generally speaking it is
normally admitted that if the acoustic wave is simply diverted
by the density variable layers without particle interaction the
wave is said to be reflected; in the opposite, if particle inter-
action actually occurs resulting in a path change, scattering is
said to be at play.

The question posed in this section is whether the sub-
bottom layers should be considered as scatterers or as reflectors
of the acoustic field. In general reflection is well adapted for
the water column that, in the useful frequency range, may
be considered as homogeneous and where the compressional
sound speed is smoothly variable. Instead, the water - bottom
interface can seldom be considered as smooth in practice and
the sediment itself is often an inhomogeneous propagation
media with upward refracting sound speed gradients due to
sediment consolidation and increased density as depth into the
bottom increases. In what concerns the bottom, the reflection
mechanism can be seen as a simplification of the actual
propagation mechanism which is actually closer to scattering.

The received field at observation location ξn due to a



unit amplitude monochromatic point source located at νs may
be written using the Green function G(·), solution of the
Helmholtz equation, between two points in space, as

GE(ξn, νs) = G(ξn, νs) +GR(ξn, νs), n = 1, . . . , N (9)

where

• the sensor array locations (assumed horizontal without
loss of generality) are determined by vector ξ(r, zr)
so that {ξn(rn, zr);n = 1, . . . , N} is called the sensor
domain,

• the sub-bottom layers are the targets - the target
domain - for inversion and are designated by position
vector {νm(rm, zm);m = 1, . . . ,M},

• source S is at r = 0 and depth zs, so its position
vector is νs(0, zs) - the source domain,

• GE(ξn, νs) is the total excitation field measured at ξn
due to the source at position νs,

• G(ξn, νs) represents the incident field received at ξn
due to a source located at νs,

• GR(ξn, νs) is the Green function solution of the wave
equation in a stratified media for a source at position
νs and array sensor at position ξn.

so the reflected field is given as

GE(ξn, νs)−G(ξn, νs) = GR(ξn, νs), n = 1, . . . , N
(10)

The bottom reflected field only, i.e., the field assuming
smooth interfaces and perfectly homogeneous propagation
media obtained with the pulse option module OASP of the
OASES package, in the canonical scenario of figure 2 is shown
in figure 4, which is basically the total field minus the direct
and surface reflected fields, for various receiver ranges.

Fig. 4. OASP calculated bottom reflected field in the band 200-800 Hz for
canonical environmental scenario case 1d of figure 2 with source and horizontal
receiving array both at 5m depth.

The monochromatic scattered field observed at location ξn
for n = 1, . . . , N receivers, may be written as [14]

GE(ξn, νs) = G(ξn, νs) +

K∑
k=1

akG
E(νk, νs)G(ξn, νk), (11)

where

• ak is the complex amplitude coefficient of the k-th
scatterer assumed random distributed,

• K is the number of effective scatterers,

• GE(νk, νs) is the excitation field of k-th scatterer
located at νk due to the source at position νs,

• G(ξn, νk) is the Green function between scatterer at
position νk and array sensor at position ξn.

and where all the other quantities have been previously de-
fined. Effectively, the k-th scatterer excitation field GE(νk, νs)
should encompass not only the source incident field but also
the field due to all the other K − 1 scatterers. In that setting
the problem becomes nonlinear and requires the inversion
of the inter-scatterer excitation matrix for determining the
actual excitation at each scatterer, the so-called Foldy-Lax
system (see details in [17]). Approximating the excitation field
GE(νk, νs) by the incident field G(νk, νs), known as the Born
approximation, is widely used in various fields such as in
radar imaging and optics. The great advantage of the Born
approximation is to allow for problem linearization and thus
to write the bottom scattered field at receivers n = 1, . . . , N
as

GE(ξn, νs)−G(ξn, νs) =
K∑

k=1

akG(νk, νs)G(ξn, νk). (12)

Equation (12) was used to compute the bottom scattered
field assuming that the bottom can be represented by an
ensemble of point virtual sources excited with the bottom
incident field due to the explosive water column point source.
These are the M = 5000 point scatterers distributed along
a vertical grid of 100 × 50 points in depth and range,
respectively. The aperture is 60 m in depth (into the bottom)
and for the canonical example 700 m in range. This range
covers the distance between the acoustic source and the whole
horizontal array aperture.

The result obtained with OASP propagation model for a
200-800 Hz bandwidth, is shown in figure 5: for the bottom
received pulses at zero range (a) and for the horizontal array
receivers at various ranges (b). Both source and horizontal
array are at 5m depth. One can note the resemblance of the
scattered field with the overall time arrival structure of the
bottom reflected field with, however, a few more scatterers
leading to a several low amplitude late arrivals.

IV. CS BOTTOM INVERSION RESULTS

The array received field was simulated using OASP at a
single monochromatic frequency of 500 Hz. A bottom grid of
50×10 (M=500) points for 60×2500m was selected to scatter
the array acoustic source received signal and received in a
N =100 sensor array with 2.5 km aperture. A signal-to-noise
ratio (SNR) of 10 dB was used. The environmental scenario
is that of Fig. 2. A number of K=30 bottom scatterers were
simulated at variable bottom depths placed along equispaced
range intervals according to (12) and decreasing values of
ak with depth. So, vector x has dimension M = 500 with
K = 30 values different from zero. Channel matrix Ψ



(a) (b)

Fig. 5. Bottom scattered field computed with OASP in the environmental scenario case 1d of figure 2: bottom incident field, term G(νk, νs) at source range (a)
and horizontal receiving array bottom scattered field at depth 5 m and various ranges using (12) (b).

contains the Green functions, solutions of the wave equation
and observation matrix Φ selects N = 100 observation sensors
at random (uniformly distributed) positions along the line array
at 5m depth (equal to source depth). This random selection
allows to obtain a low coherence of µ(A) = 1.3 (see figure 1
and associated discussion about coherence).

Fig. 6. sparse vector x amplitude estimate at 500 Hz: true values (solid blue),
Basis Pursuit (red asterisks), L1/L2 (green +) and L1/L2 constrained (solid
black squares).

Three algorithms from the YALL package5 were used: the
Basis Pursuit minimum l0 (BP), the l1 norm l2 unconstrained
(L1/L2) and the l1 minimization - l2 constrained (L1/L2c).
The CS inversion results are shown in figure 6 for vector
x: true values (solid blue), BP (red asterisks), L1/L2 (green
+) and L1/L2c (black squares). It is clear that the estimated
closely follows the true values with however a few amplitude
errors that are higher at greater depths (lower amplitudes) and
a few background clutter that is higher for the BP estimate
(red *). Figure 7 shows the reconstructed bottom reflecting
field associated with the L1/L2 constrained estimate which
provides the lowest estimation error. This result is due to the

5from Yin Zhang, Junfeng Yang and Wotao Yin, Rice University,
yall1.blogs.rice.edu.

Fig. 7. bottom localized reflector estimates using the L1/L2 constrained
algorithm at 500 Hz.

better handling of the observation noise through the norm 1
minimization and square error constrained such as (see YALL
package documentation for details)

min
x
‖x‖1, s.t. ‖Ax− y‖2 ≤ δ (13)

where δ is some positive constant.

V. CONCLUSION AND PERSPECTIVES

This paper presents a preliminary assessment on the usage
of CS techniques for geoacoustic inversion in the context of the
WiMUST project scenario. This scenario encompasses a sensor
array formed by a series of free to move small arrays towed
by AUV’s along predetermined paths, effectively forming
a distributed sensor array. One of the questions associated
with this distributed sensor array is where should its sensors
be located for optimal solution of the problem at hand of
determining bottom properties. It appears clear from the results
that low observation coherence plays an important role in
the optimal sampling of the bottom return field. This low



coherence requirement may be viewed as a quest for higher
diversity and therefore a richer observation.

CS inversion of bottom returns of a monochromatic wave
at 500 Hz in a simulated environment show the potential
of the technique for a mismatch free benign bottom and an
SNR of 10 dB. Further study is necessary for testing the
array distribution criteria for 2D and 3D arrays as well as its
behavior relative to broadband signals and various practical
constraints on limitations imposed by AUV navigation for
keeping close formations during long periods of time. Bottom
inversion testing in mismatch situations and in more challeng-
ing environments is also necessary.
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