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Abstract—The vision underlying the Widely scalable Mobile
Underwater Sonar Technology (WiMUST) project is that of
developing advanced cooperative and networked control / naviga-
tion systems to enable a large number (tenths) of marine robots
towing small acoustic arrays to act as a coordinated team for
seismic sub-bottom imaging. The space-time coherent processing
of bottom returns requires the ensemble of short acoustic arrays
to be seen as a single spatially distributed sensor array. Since the
vehicles are free to move along range, cross-range and depth the
resulting distributed sensor array may take, at least conceptually,
any spatial shape. With array shape freedom comes the question
of which is the most suitable (or optimal) array geometry for
sub-bottom imaging and inversion. The answer to this question
hinges, among others, on the definition of performance of a
seismic sub-bottom profiling system. Determining the optimal
sensor array geometry is clearly a ill-posed problem, since the
optimal geometry is itself bottom dependent, and there is no such
environment as “one size fits all”. This work addresses several
criteria for sub-bottom profiling system performance including
gain, resolution and probability of detection. Two physical models
will be tested: one based on acoustic wave reflection used in tra-
ditional seismic imaging, and another normally used in matched-
field bottom properties estimation, that includes propagation and
refraction. Simulations to support the theoretical developments
and algorithms were obtained on a scenario inspired in a real
environment off the coast of Peljesac (Croatia).

I. INTRODUCTION

Estimating ocean bottom properties poses a number of
scientific and technological challenges because the media is
largely anisotropic and of difficult or impossible direct access.
Classical observation techniques, routinely used in the oil
and gas industry since the 70s [1], [2], normally proceed
in two steps: first by determining a seismic reflection image
of a bottom slice or volume and then, in a second step,
by inverting the data for the sub-bottom physical properties
(known as migration). The first step is data massive and highly
automatized, while the second step is, to great extent, user
supervised and incorporates a substantial amount of in situ
measurements and a priori information, when available.

In parallel, the scientific community has been working
on alternative/complementary methods for bottom parameter
estimation that involve seismo-acoustic propagation models
that suitably describe the received data [3]–[5]. There is an
extensive literature on the subject with many variations on
the environmental settings (shallow or deep water), range
independent or range dependent [6], single sensor, vertical or
horizontal arrays [7], model type, that can be numerical or
analytic, etc. The common trend is that these methods tend to

involve the maximization of the match between the received
data and the model output to produce an estimate of the bottom
properties in a single step, although this single step may be
quite computationally intensive. These methods are commonly
known as matched-field inversion (MFI) [8] for the estimation
of environmental parameters using matched-field techniques
(also known as fullfield methods).

The Widely scalable Mobile Underwater Sonar Technology
(WiMUST) project1 proposes a new setup where the receivers
are now short arrays towed by individual Autonomous Under-
water Vehicles (AUVs). The AUVs, and therefore the receiving
arrays, are free to move (almost) freely relative to each other
and to the source. This movement freedom brings a new
dimension to the problem by creating an effective Distributed
Sensor Array (DSA). Whether this ”freedom” allows to reach
new gains in terms of performance and adaptivity for determin-
ing the sub-bottom structure in rapidly changing environments
is a challenging question that is known to be both nonlinear
and ill-conditioned, because it is scenario dependent and under
constrained, with a high number of degrees of freedom.

In this work, this question is approached first by defining
the concept of performance in the field of bottom inversion
and then by applying that performance concept for comparing
the two concurrent data models underlying the methodologies
above: the reflection model normallly used in seismic imaging
and the acoustic propagation model used in MFI. The intention
is to bridge this apparent gap between seismic profiling and
MFI methods by proposing common performance criteria.
These criteria will encompass topics such as processing gain,
separation (resolution) of closely spaced layers and the detec-
tion of low reflectance layers.

This paper is organized as follows: the two data models
are described in section II: a classical weighted sum of
delayed signals and a full-field non-analytic model. Section
III proposes performance criteria definitions where bottom
inference is treated using a conventional power correlator.
Results obtained on synthetic data and conclusions are given
in sections IV and V, respectively.

1funded by the H2020 European Union research programe under contract
ICT-645141.



II. DATA MODEL

The data model assumes a linear source - receiver relation
in additive noise, as

X = HS

Y = X + U,
(1)

where X is the noise free signal matrix of dimension KN ×
LN with K the number of sensors, L the number of source
shots and N the number of time (or frequency) samples; S is
a square LN matrix containing the source shots

S = diag[s1, . . . , sL], (2)

where sl is a N -dimensional vector with the l-th source shot;
the channel matrix H is given by

Ha =


H11 H12 . . . H1L

H21 H22 . . . H2L

...
...

. . .
...

HK1 HK2 . . . HKL

 , (3)

where each block represents the N -sample channel impulse
response (CIR) hkl, for sensor k and source shot l; and
U is the noise component. In general the CIR contains the
superposition of direct, surface and bottom reflected paths,
or combinations of those, as they propagate along the water
column and bounce from the various sub-bottom layers. This
will be termed as the full acoustic field and is described
below as seismo-acoustic propagation model (SPM). Isolate
the reflections of a small bottom portion from the other
acoustic arrivals, that are treated as noise, is generally the
objective pursued in traditional seismic imaging that leads to
the so-called seismic reflection model (SRM).

A. Seismic-reflection model (SRM)

This model assumes near vertical angle P-wave reflection
where the signal travels through each layer suffering attenua-
tion and specific speed variations with (as much as possible)
limited angle of incidence deviations. Thus, according to the
seismic reflection model (SRM), the received signal is a sum
of weighted and time delayed replicas of the emitted signal
reflected in the various bottom layers. Thus for sensor k and
source shot l, the expected CIR is assumed to be

hkl(t) =

M∑
m=1

akl(m)δ[t− τkl(m)], (4)

where the weights akl(m) are expected to be related the
reflection coefficient and the delays τkl(m) to the depth of
the respective reflector m. At near vertical incidence and
under appropriate half hydrophone spacing array movement
per source shot interval2 the classical situation is sketched in
Figure 1. This figure shows the traditional seismic processing
for forming a Common Mid Point (CMP) gather, equivalent

2without loss of generality, sensor arrays are assumed linear equispaced for
simplicity, even if that is not an absolute requirement in practice.

Fig. 1. (not to scale) sketch of trace gathering during typical seismic survey
with a d-meter equispaced streamer advancing at speed v = (d/2)/t0 in the
direction of the red arrow, where t0 is the source firing interval. The black
square represents the sound source and the dots the receivers. The source is
colocated with the first sensor.

to a delay and sum processing of sensor outputs. This corre-
sponds to considering that the diagonal sub-matrices of matrix
(3) are time-delayed replicas of each other. This is true for the
main diagonal, and for all the other diagonals above and below
the main diagonal (that correspond to other bottom locations
before and after location “X”). The number of sub-matrices
taken along each diagonal (gather fold) depend on a number
of environmental and operational parameters. The operation
along matrix (3) may be viewed as what is termed in the
literature as the various gathers (see for example Figure 3.7,
pp.24 of [9]). According to this model the noise matrix term U
contains not only electronic and ambient noise but also all the
other acoustic returns from phenomena not accounted for in
vertical reflection such as reflection multiples, refraction and
S-waves, all characteristic of anysotropic elastic media..

B. Seismo-acoustic propagation model (SPM)

The model described in the previous section relies on
bottom normal incidence of the acoustic wave and is, therefore,
limited to a small number of snapshots within each time
frame overlooking a given bottom bin. The achievable gain
is therefore also limited, as it can be seen by the number
of elements along the diagonals of sensing matrix (3) and
geometric requirements referred to in the previous section.
Increasing the sensor processing gain requires including more
terms of matrix (3) and therefore opening up the observation
angle from vertical to horizontal propagation. The methods
that take into account the full wave field for bottom inversion
are termed in the seismic literature as Full Waveform Inversion
(FWI) (see [10] for recent examples and an excellent review
in [11]).

A full seismo-acoustic propagation model (SPM) would al-
low, in principle, to appropriately treat the interaction between
layers, according to its specific physical properties (if they are
known or assumed). The acoustic received field at observation
location rk due to a unit amplitude monochromatic point
source located at rs may be written using the Green function
G(·), solution of the Helmholtz equation between two points
in space, as

GE(rk, rs) = GI(rk, rs) +GR(rk, rs), (5)



where GE , GI and GR are the excitation, the incident and
the reflected fields, respectively, all taken between the source
located at rs and the receiver location rk. So the bottom
reflected field excluding the direct field, is given as [12]

GR(rk, rs) =

I∑
i=1

aiG(rk, ri)G
I(ri, rs), (6)

where G(rk, ri) is the Green function between reflector lo-
cated at bottom position ri and sensor at rk, GI(ri, rs) is the
bottom incident field at ri from the sound source at location
rs, ai is a complex amplitude coefficient of the i-th reflector
assumed random distributed and finally I is the number of
effective reflectors. The Born approximation allows for the
linearization of the interscatterer excitation field (the so-called
Foldy-Lax system, see details in [13]) so the end result would
be equivalent to (6). At this point our CIR in matrix Hkl is
given by the discrete inverse Fourier transform of the right
hand side of (6) with the appropriate location vectors rk and
rl defined for the k-th sensor and l-th source shot positions

hkl(n) =
1

2π

∫
ω

I∑
i=1

aiG(ω; rk, ri)G
I(ω; ri, rl)e

jωnTsdω,

(7)
where Ts is the sampling interval and the ai are assumed
frequency independent. Under the SPM assumption there is
no implicit relation between the elements of the H matrix,
although the source-bottom-array geometry and the environ-
mental physical parameters are known (or assumed known)
at all times. The source-bottom-array geometry defines the
contributing reflectors of the bottom spatial grid at each time,
as the surveying system moves along.

III. PERFORMANCE AND OPTIMALITY

The criteria for performance comparison of the two data
models above are normalized array gain, signal-to-noise ratio
(SNR) gain, probability of detection and layer resolution,
which are common to various areas of signal array processing
with the difference that, in this case, the objective is the detec-
tion and estimation of layer interfaces into the ocean bottom.
A power correlator (Bartlett) was used as array processor.

A. Normalized array gain

One way of assessing system overall performance is to see
it as a filter adjusted for the assumed signal model. The ratio
between the actual and the optimal SNR performance will give
an indication of the expected performance,

|Λ|2 =
ρ(θ,θo)

ρmax
(8)

where ρ(θ,θo) is the output SNR for parameter vector θ, when
adjusted for θo. In our case θ corresponds to depth z and θo

to actual detph zo. For the SRM model this ratio is given by

|ΛSRM|2 =

|sH
J∑

j=1

HH
jj(zo)Hjj(z)s|2

sH
J∑

j=1

HH
jj(zo)Hjj(zo)ssH

J∑
j=1

HH
jj(z)Hjj(z)s

,

(9)
and for the SPM model by

|ΛSPM|2 =

|sH
L∑

l=1

K∑
k=1

HH
kl(zo)Hkl(z)s|2

sH
L∑

l=1

K∑
k=1

HH
kl(z)Hkl(z)ss

H
L∑

l=1

K∑
k=1

HH
kl(zo)Hkl(zo)s

.

(10)
Note that summation is done over J matrix diagonal terms of
H in (3) for SRM and for all KL matrix terms for SPM.

B. SNR gain

SNR gain is classicaly computed as the ratio between the
output and input (mean) SNR as,

GSNR =
ρ(θ,θo)

ρ̄in
, (11)

where ρ̄in is the mean input SNR over array sensors. For the
SRM and SPM models, respectively

GSRM =



K|ΛSRM|2, J = K,K < L

K|ΛSRM|2
sH

J∑
j=1

HH
jj(zo)Hjj(zo)s

sH

K∑
k=1

HH
k (zo)Hk(zo)s

J = L,L < K,

(12)
with |ΛSRM|2 given by (9) and

GSPM ≈
K|sH

L∑
l=1

K∑
k=1

HH
kl(zo)Hkl(z)s|2

|
L∑

l=1

N−1∑
n=0

|s(n)|2|h̄(n)|2||
N−1∑
n=0

|s(n)|2|h̄(n)|2|

, (13)

where the approximation in (13) consists on assuming that
channel diversity over sensor is sufficient for the matrix
product to become diagonal, where h̄(n) is the “mean” CIR.
Therefore the double summation becomes the product of the
sum of the diagonal terms.

C. Layer detection

Probability of detection is given by the classical expression
PD = Q[Q−1(PFA) −

√
d2], where Q is the Gaussian tail

distribution function, PFA is the probability of false alarm
and d2 = Ex−x̃/σ2

u is a measure of the SNR for the energy
intersection between the received source signal x and the



expected signal x̃ received from the reflector location. For the
SRM model

Ex−x̃ ≈ 2

N−1∑
n=0

|s(n)|2|h̄(n)|2 −

−2sH
J∑

j=1

HH
jj(θ

z
o)Hjj(θ

z)s, (14)

where, J = min(K,L) and the diagonalisation in the first
term was done over J snapshots (or sensors). It is clear that
when the mismatch is maximum, the second term is zero, and
d2 is maximum, and equal to the first term. Conversely, in the
no mismatch case the second term is equal to the first term
and d2 is zero, or close to zero due to the approximations.

Instead, for the SPM model

Ex−x̃ ≈ 2

L∑
l=1

N−1∑
n=0

|s(n)|2|h(n)|2 −

−2sH
L∑

l=1

K∑
k=1

HH
kl(θo)Hkl(θ

r)s, (15)

where now the diagonalisation in the first term was done over
K sensors. When K ≤ L, we have J = K in the SRM
detection expression (14) and for the same degree of mismatch,
ESPM ≈ LESRM, conversely if L ≤ K and J = L, then ESPM

is even higher and ≈ KESRM. A higher cross energy means
a higher SNR equivalent d2 so, the detection probability PD,
as a function of SNR, moves towards lower SNR. Since this
curve is monotonic, for a given SNR, PD increases and the
performance is higher. The conclusion is that, in theory, the
detection probability of the SPM is higher than that of the
SRM, for the same SNR and degree of mismatch.

D. Layer resolution

As explained above, layer resolution may be numerically
deduced from the approximated expression

∆zSRM/SPM = argz∈Z

[
PSRM/SPM(z) =

PSRM/SPM(zo)

2

]
,

(16)
where PSRM/SPM is the Bartlett expression for models
SRM/SPM. Analytical values can not be obtained since the
side-lobe structure will depend on two factors: one is the
bottom reflection structure present in the CIR cross-correlation
and the other is the actual layer depth we are looking at, i.e.,
the value of zo. This is a phenomena similar to that observed
in plane wave beamforming with linear arrays, where the main
lobe width varies with the look direction (in this case the
“look” depth).

IV. SIMULATION RESULTS

A. The Peljesac scenario

The simulation scenario is intended to mimic the environ-
ment of a geophysical survey carried out in June 2015 in
the area of Peljesac (Croatia). The environmental parameters
are shown in table I. In this canonical scenario the source

is considered to be explosive, located at 0.3m depth and
emitting in the band 700 - 2000 Hz. The sensing system is
a towed horizontal array located at the same depth of the
source covering a range (or offset) from 0 to 100m, with 100
sensors at 1m uniform spacing. A stylized representation of the

Layer Depth Cp Cs αp αs ρ
(m) (m/s) (m/s) (dB/λ) (dB/λ) (Kg/cm3)

water 1500 0 0 0 1
sed 1 30 1550 130 0.1 1.7 1.49
sed 2 38 1700 350 0.8 2.0 1.88
half space 48 2500 900 0.01 0.01 2.4

TABLE I
PELJESAC CANONICAL SCENARIO OASES MODEL PARAMETERS:
Cp-COMPRESSIONAL VELOCITY, Cs SHEAR VELOCITY, αp

COMPRESSIONAL ATTENUATION, αs SHEAR ATTENUATION AND ρ
DENSITY .

environmental description of the Peljesac canonical scenario
is shown in Figure 2. The output of a transmission loss (TL)

Fig. 2. OASES style environmental description for the canonical case
scenario based on the Peljesac (Croatia, 2015) geophysical survey.

run at 1350 Hz, computed using OAST, the OASES [14]
transmission loss propagation module, is shown in Figure 3
(a) and the CIR for the whole array length computed using the
OASES pulse module, shown in (b). Several obvious remarks
can be made: i) at high grazing angles (near vertical) bottom
penetration is high and sound covers all the layers down to the
sub-bottom half space; ii) at approximately 50 m range the half
space cut-off angle is reached and the penetration reaches only
the second bottom layer, this happens until approximately 80
m range; iii) beyond that range, most of the energy reaches
only the first sediment layer that has approximately the same
compressional sound speed than the water column, and then
propagates through it, eventually bouncing back to the water
column at longer ranges. In the time-range plot of Figure 3(b),
the curvature of the bottom arrival structure can clearly be
seen for variable offset. At close range the field is dominated
by the direct-surface reflect paths. Due to the close distance to
the surface, a dipole behavior is observed. This signal tends to
attenuate with offset due to the canceling interference between
the two signals when the time of arrival difference becomes



(a)

(b)

Fig. 3. transmission loss run at 1350 Hz using OAST (a) and CIR obtained
for the band 700-2000 Hz using OASP in the Peljesac scenario (b).

of the order of the pulse width. This finite pulse width is, off
course, due to the limited bandwidth.

B. Performance

Performance results are shown in Fig. 4 and table II for
a K = 8 hydrophone array and L = 8 source shots, using
the theoretical expressions of section III. Although a linear
horizontal array was used, the same expressions may be used
for any array geometry. At very close range (small offset),
without mismatch and at vertical incidence the two models
should follow very closely for the normalized criteria |Λ|2.
Since the acoustic model used in the SRM is, for this test, the
same as that used in the SPM, the performance results end
up being very similar with only a gain difference. In fact Fig
4 shows superimposed curves for the normalized array gain
(a), where three peaks can be clearly identified for the three
bottom interfaces at 30, 38 and 48 m depth, and a decay for
deeper layers. A constant SNR gain difference of 20 log 8=18
dB is therefore observed in (b) with, also, a gain decrease
for layers below 50 m depth. Probability of detection also
slightly varies for each layer, in the correct order from L1

(a)

(b)

(c)

Fig. 4. performance indicators in the Peljesac scenario, 900-1400 Hz, K = 8
hydrophones, L = 8 source shots, without mismatch: normalized ratio |Λ|2
(a), SNR gain (b) and probability of detection vs SNR for PFA = 0.01 (c).

(shallower), L2 (intermediate) and L3 (deeper) with a clear
performance difference of approximately 8 dB for a constant
detection probability and a PFA = 0.01, between the two
models.

In terms of resolution, and as shown in table II the two



models provide very similar results with beamwidths of about
0.75, 3 and 4 meter for layers one (30m), two (38m) and three
(48m), respectively, that, as expected, resolution decreases as
depth increases.

Layer depth Beam-width (-3 dB)
(m) (m)

sed 1 30 0.75
sed 2 38 ∼ 3

bottom 48 ∼ 4

TABLE II
RESOLUTION PERFORMANCE FOR THE SPM AND SRM MODELS IN THE

PELJESAC CANONICAL SCENARIO USING OASES MODEL.

V. CONCLUSION

This work shows comparative performance results for two
classical models used for bottom layering estimation. The two
models correspond to the travel-time based direct reflection
model (named here as SRM) traditionally used in seismic
imaging and the fullfield propagation model used in matched-
field inversion (dubed SPM in this paper). The fullfield model
attempts to match not only directly bottom reflected waves but
also reflected multiples, refracted and S-waves.

The assumptions made under each model lead to different
processing techniques where for the SPM, the full ensemble
of sensor - shot data is used whereas for the SRM, only
the sensor-shots overlooking a given bottom bin within a
given aperture are selected for processing. These restrictions
are inherent to the delay-and-sum processing done in seismic
imaging and are scenario dependent (bathymetry, array move-
ment, sensor spacing, etc).

Four criteria have been used: normalized array gain, SNR
gain, layer detection and layer resolution. These criteria are
normally associated with the ability for each given model and
setup to detect parameter changes, to provide SNR gain (and
thus overall performance), to detect thin differences in bottom
density and to resolve thin bottom layers. The results are
illustrated for a scenario obtained from the area of Peljesac
(Croatia) where a seismic survey took place in 2015. The
results show that the normalized performance is identical
for the two models in terms of layer identification and, as
expected, sensitivity decreases with depth into the bottom.
SNR gain will be normally higher for the SPM model since,
in absence of mismatch, the number of data bins is also higher
than for the SRM model. This gain difference reflects itself
directly in a detection probability difference between the two
models whereas the resolution is approximately the same.

The methodologies developed in this work are expected to
provide operational tools for evaluating system performance
in given scenarios and with variable array geometries prior to
system deployment, thus based solely in apriori knowledge one
may have about the area. This prediction will help in adapting
system resources to a given desired performance/scenario,
particularly useful for modular and scalable systems as those
proposed under project WiMUST.
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