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Abstract—This paper presents a distributed sensor array
optimization algorithm for Autonomous Underwater Vehicles
(AUV)-based seismic surveying. The algorithm is based on a
sparse formulation of bottom layer reflection resulting on a
structured design matrix with the bottom return field. Since the
design matrix structure depends also on the receiving system
characteristics, field coherence is used as optimization criteria
for determining sensor array position. The receiver positions are
constrained by actual array characteristics and AUV relative
position physical constraints. Simulated results based on actual
physical propagation model data are provided for a three AUV
1D geometry case. These results show that a clear improvement
can be reached regarding bottom layer resolution in depth and
range. The developed methodology may be useful for the resource
planning and setup of seismic surveying experiments involving
moving sensing arrays such as those under test in the EU
WiMUST project1.

I. INTRODUCTION

Estimating ocean bottom properties poses a number of
scientific and technological challenges because the media is
largely anisotropic and of difficult or impossible direct access.
The fulfillment of generic requirements of bottom resolution
has led to the development of large survey systems and
associated seismic profiling techniques routinely used in the
oil & gas industry since the 70’s [1], [2]. These systems,
composed of a bank of powerful sound sources and several km
long streamers are costly, to develop, maintain and operate at
sea.

The ongoing European project Widely Scalable Mobile Un-
derwater Sonar Technology (WiMUST) proposes to replace the
traditional ship towed survey system by a fleet of Autonomous
Underwater Vehicles (AUV) towing short arrays of sensors
[3]. This particular hardware setup brings a new dimension
to the problem by physically decoupling the acoustic source
and the receiver system and by allowing the receivers to move
(almost) freely relative to each other and to the source, creating
an effective Distributed Sensor Array (DSA). Whether this
”freedom” allows to reach new gains in terms of performance
and adaptivity for determining the sub-bottom structure is a
challenging question. More specifically, this paper focuses on
determining and testing a suitable criteria for DSA geometry
optimization in realistic ocean bottom survey scenarios.

One of the most popular approach is the Full Waveform
Inversion (FWI) technique, proposed more than 30 years ago (a
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recent state of the art account of FWI can be found in [4] and
a detailed overview in [5]). FWI is a full-field approach that
incorporates many of the details and estimation capabilities
of the method described herein. FWI represents a challenge
for seismic inversion in terms of both the large amount of
data to handle and the complex numerical solving techniques
it involves. Several approaches have been proposed to mitigate
these difficulties among which one that realizes that seismic
data in general allows to integrate sparsity constraints without a
loss on parameter estimation accuracy [6]–[8]. Understanding
sparsity allows to decrease data flow in terms of shot data
and frequency bins according to estimation needs [9], [10]
while keeping a faster convergence to the same or better
solution. Compressive sensing (CS), or the ability to retrieve
sparse information from large data sets, has been handled by
randomizing source firing both in time and in frequency [11]–
[13] with real data examples shown in [14]. To our knowledge
CS has not been applied to the sensor space domain for sub-
bottom inversion purposes.

The approach taken here is based on the minimization of
the acoustic field coherence as calculated through a numerical
model conditioned on a priori environmental information and
system characteristics for any actual experiment and area
at hand. Field coherence is then explored through CS of
structured observation matrices for obtaining a sparse estimate
of bottom layering. The setup is first characterized by a
few performance tests and then results are obtained for the
optimization of a three AUV 8 m towed array system in a
shallow water simulated scenario showing a clear enhancement
relative to the non-optimized array geometry.

This paper is organized as follows: the seismo-acoustic
data model is described in section II; section III introduces
compressive sensing in the sensor space and field coherence
applied to the seismo-acoustic data model for DSA geometry
optimization. Results obtained on synthetic data and conclu-
sions are given in sections IV and V, respectively.

II. SEISMO-ACOUSTIC DATA MODEL

A seismo-acoustic propagation data model allows, in prin-
ciple, to appropriately treat the interaction between bottom and
sub-bottom layers, according to its specific physical properties
(if they are known or assumed). The reflected acoustic field,
observed at location rk due to a unit amplitude monochromatic
point source located at rs may be written using the Green func-
tion G(·), harmonic solution at frequency ω of the Helmholtz(978-1-5386-4304-4/18/$31.00 c©2018 IEEE).



equation between two points in space, as

GR(rk, rs) =

I∑
i=1

aiG(rk, ri)G
I(ri, rs), k = 1, . . . ,K.

(1)
where G(rk, ri) is the Green function between reflector located
at bottom position ri and sensor at rk, GI(ri, rs) is the bottom
incident field at ri from the sound source at location rs, ai is
the complex amplitude coefficient of the i-th reflector assumed
random distributed and finally I is the number of effective
reflectors. Using scattering is unnecessary in our application
and, in any case the Born approximation would allow for
the linearization of the interscatterer excitation field (the so-
called Foldy-Lax system, see details in [15]) so the end result
would be equivalent to (1). At this point our bottom reflected
observation at receiver k, due to source shot sl in noise u is

ŷk(θ; l) = Hkl(θ)sl + uk(l), (2)

where θ is the bottom parameter vector to be determined and
the impulse response in matrix Hkl(θ) is given by the discrete
inverse Fourier transform of the right hand side of (1) with
the appropriate location vectors rk and rl defined for the k-th
sensor and l-th source shot positions

hkl(n) =
1

2π

∫
ω

I∑
i=1

aiG(ω; rk, ri)G
I(ω; ri, rl)e

jωnTsdω,

(3)
where Ts is the sampling interval and the ai are assumed
frequency independent.

III. DSA GEOMETRY OPTIMIZATION

A. Compressed sensing in the sensor space

The importance of (1) is that it establishes a link between
the target and the receiver domain by means of the appropriate
Green functions. A full discretization of the sub-bottom into
M =M1×M2 samples along a depth-range grid, where only a
reduced number of grid points have effective reflectors, allows
to cast the inverse problem into a sparse system of equations
under the form

g = Gx, (4)

where

• g = GR(rk, rs) is a vector J × 1

• matrix G = G(rj , rm)GI(rm, rs) is J × M , where
the vectors rm; i = 1, . . . ,M span the sub-bottom
target domain, rj ; j = 1, . . . , J span the sensor space
domain, rs is the source vector and

• x is a M × 1 vector that is all zeros but for values
ai, i = 1, . . . , I of effective reflectors, so it is I-sparse.

So, for I � M , (4) represents a sparse system. Determining
an accurate estimate x̂ of x would allow to obtain an estimate
Î of the number of effective reflectors I as the non zero values
of x̂ and an estimate âi of its relative reflection.

A tractable solution of (4) using a l1-norm minimization
algorithm will mainly depend on the mutual coherence and/or
on the Restricted Isometry Property (RIP) of matrix G. Since
G is a matrix that depends on the Green functions of the media

between source - bottom - receiver and its physics related, the
achievement of the RIP can not be guaranteed. The proposed
solution allowing to decrease the mutual coherence without
changing the observation matrix is based on the randomization
of the rows of matrix G [16]. This is done by observing vector
g by a channel sampling matrix Φ̃ of dimension K × J , for
K � J , and where each row of Φ̃ will have a single 1 at a
random position among the J columns. Thus we can form the
observation y,

y = Φ̃g,

= Φ̃Gx,

= Ax (5)

where now A = Φ̃G, of dimensions K ×M with K � M
and with ‖x‖0 = I2, and I � K, forming a sparse system of
equations. The mutual coherence µ(A) defined as

µ(A) = max
j,k=1,M

| < aj ,ak > |
‖aj‖‖ak‖

, (6)

should verify the Welch bound [17] given by√
M −K
K(M − 1)

≤ µ(A) ≤ 1. (7)

There is, however, no guarantee that a solution can be reached
through

min
x∈RM

‖x‖1 s.t. Ax = y (8)

although a solution is attainable with high probability when
µ(A) is low. So, coherence plays an important role in CS. An
interesting result mentioned in [18], [19] gives the required
number of measurements K for a given sparsity level I ,
bounded by the coherence µ(A), as

K ≥ cµ2(A)I logM. (9)

where c is some positive constant. It can be easily seen that
for moderate coherence, a low number of K measurements
20 to 40, per resolvable layer I may be used, almost inde-
pendently from the required number of discretization samples.
This is the reason why CS is essentially devoted to low
coherence measurements, where the ”compression gain” is
most prominent. Relation (9) gives a figure and a more exact
meaning to the statement ”small coherence” and therefore to
the degree of ”flatness” required for matrix A. A matrix with
high coherence will have high ”peaks” and deep ”valleys”
and a low probability to succeed in the inversion of a low
I-sparse signal. Conversely, a well distributed matrix with
dispersed small values all over its rows and columns, will
show a low coherence and therefore a high probability for
observing (and then inverting) for a low I-sparse signal. A high
coherence observation would require that the information is
concentrated on a few points, one would say that the diversity
is low, instead, in a low coherence observation the information
is spread out and the diversity is said to be high. The
idea behind DSA geometry optimization is to determine the
sensor placement that minimizes the mutual coherence µ(A),
of course, conditioned on the operational restrictions imposed
by the system constraints and on the a priori knowledge of the
environmental conditions of the test site.

2the l0-norm is used as the number of non-zero values of vector x.



IV. RESULTS ON SIMULATED DATA

A. Simulation scenario

The simulation scenario is intended to mimic the environ-
ment of the geophysical survey carried out in June 2015 in
the area of Peljesac (Croatia). The environmental parameters
are shown in table ??. In this canonical scenario the source
is considered to be explosive, located at 0.3m depth and
emitting in the band 700 - 2000 Hz. Figure 1 shows a OASES

TABLE I: Peljesac canonical scenario OASES model pa-
rameters: Cp-compressional velocity, Cs shear velocity, αp
compressional attenuation, αs shear attenuation and ρ density.

Layer Depth Cp Cs αp αs ρ
(m) (m/s) (m/s) (dB/λ) (dB/λ) (g/cm3)

water 1500 0 0 0 1
sed 1 30 1550 130 0.1 1.7 1.49
sed 2 38 1700 350 0.8 2.0 1.88
bottom 48 2500 900 0.01 0.01 2.4

model generated transmission loss (TL) at 1350 Hz (a) and
the channel impulse response (CIR) in the band 700-2000 Hz
for the full array aperture (b), in the canonical conditions
of table ??. Several remarks can be made for plot (a): i)

(a) (b)

Fig. 1: Peljesac canonical scenario: OASES transmission loss
at 1350 Hz (a) and CIR for the full array aperture in the band
700-2000 Hz (b).

at high grazing angles (near vertical) bottom penetration is
high and sound covers all the layers down to the sub-bottom
half space; ii) at approximately 50 m range the half space
cut-off angle is attained and the penetration reaches only the
second bottom layer, this happens until approximately 80 m
horizontal range; iii) beyond that range, most of the energy
reaches only the first sediment layer that has approximately
the same compressional sound speed than the water column,
and then propagates through it, eventually bouncing back to
the water column at longer range. In the time-range plot of
Figure 1(b), the curvature of the bottom arrival structure can
clearly be seen for variable offset. At close range the field is
dominated by the direct-surface reflect paths. Due to the close
distance to the surface, a dipole behavior is observed canceling
out with time/range. The packs of bottom returns can be clearly
seen fading out as the number of bounces increases.

B. DSA geometry optimization

The solution of model (5) for obtaining an estimate x̂ of
layer reflectance x requires

x̂ = arg min
x∈RM

‖x‖1 s.t. ‖Ax− y‖2 ≤ δ (10)

with δ = 0.1 for the l2 constrained part, which was shown
to provide a good compromise between speed and stability3.
Other minimization alternatives could be possible, including
those with regularizers such as OSCAR [20] or OWL [21],
known to better handle correlated design matrices. The coher-
ence µ(A) of matrix A will be watched closely since it will
be determinant for the solver to provide a stable solution.

Based on the stylized Peljesac environment, a 2D range-
depth-dependent sub-bottom scenario was generated by setting
the values of coefficients ai along a stretch of 80×60 m with
a sub-bottom discretization of 1m. The number of effective
sensors used for the inversion was 40. This number was chosen
to represent a deployment of 5 AUVs with a 8 sensors streamer
at 1m spacing each. The 40 sensors were randomly chosen
among the 100 positions initially calculated. The result for this
canonical environment for a monochromatic wave at 1350 Hz,
is shown in Figure 2(a) and for a signal-to-noise ratio (SNR)
of 0 dB (b). The estimated coherence of the 40×80 matrix
is in the range [0.90,0.95] and, of course, varies with each
realization. The clutter seen in the sparse vector estimate for 0

(a) (b)

Fig. 2: sub-bottom l1-norm estimate with BP algorithm in
the Peljesac environment for the range dependent canonical
scenario (a) and with a SNR of 0 dB (b).

dB SNR is sufficient to shadow some of the deeper reflectors
and/or significantly change its contrast.

1) The effect of the number of sensors and array aperture:
Varying the number of sensors and the array aperture are
related but not equivalent. In linear array processing the spatial
sampling rate relates to the maximum reachable frequency
before aliasing, while array aperture, or the physical array
length, defines the maximum attainable resolution, or the
ability to discriminate closely spaced targets. In our case, array
aperture relates more to diversity and observability of bottom
features. In this test the number of sensors was kept constant
at K=40, and the aperture was progressively increased in the
following steps: 50, 100, 200, 400 and 500m. The coherence
of the observation matrix decreases with increasing aperture as
shown in Figure 3(a). This effect is equivalent to and agrees
with that reported in [22]. Although in the 500m aperture
the coherence is low, the bottom bearing information signal
received in sensors placed 500m away from the estimation
point have very low information of the deeper layers as seen
in the transmission loss Figure 1(b). This justifies the poor
identification of the deeper layer in Figure 3(b).

2) Geometry optimization: The objective of the DSA ge-
ometry optimization procedure is to maximize diversity by

3using YALL1 package from Yin Zhang, Junfeng Yang and Wotao Yin from
Rice University, yall1.blogs.rice.edu.



(a) (b)

Fig. 3: observation matrix coherence for 40 sensors at 1350
Hz and variable array aperture (a) sub-bottom l1-norm estimate
for the range dependent Peljesac environment with 40 sensors
in 500m aperture array (b).

changing sensor position and therefore attain a lower coher-
ence within given constraints. This optimization was carried
with Genetic Algorithm (GA) for minimizing the mutual co-
herence of a given design matrix according to (6). The various
GA configuration parameters are given in the table of Figure
4(a). The GA convergence results for this case are shown in
Figure 4(b) for the cost function evolution through iteration
of the best individual and for the population mean (upper
plot) and the final best individual (lower plot). Distributed

(a) (b)
Elite survival 0.05
Migration prob. 0.2
Crossover prob. 0.8
Search interval [0,300]
Population size 80
No. populations 2
Max no. gen. 500
Migrat. interval 5

(c) (d)

Fig. 4: DSA optimization for 1350 Hz, L=300 and K=40: with
GA parameters given in (a), GA convergence shown in (b) and
obtaining the sub-bottom l1-norm estimate with constrained
l1 norm minimization in the Peljesac environment without
optimization (c) and after optimization (d).

array case: we will assume that the linear array is formed by
K=40 sensors distributed in a possible horizontal line of 300m
at 1m spacing slots (L=300). A monochromatic frequency
of 1350 Hz was used. The sub-bottom reflectors estimate
obtained for the RD case is shown in Figure 4 for the case
without optimization (c) and with GA optimization (d). The
coherence was decreased from 0.78 to 0.43 which brought a
better definition for the deeper reflectors.

AUV-based array case: let us now get a little bit closer
to the problem at hand, that is to place a given number of
AUVs in the terrain so as to optimize the sub-bottom inversion.
Let us assume in this example that we have Nauv=3, each
equipped with a streamer of 8 hydrophones at 1m spacing. For
the time being the placement of the AUVs will be restricted
to the 1D array case. The comparison of the reflector estimate
results with a random placement of the AUVs and an optimized
placement is shown in Figure 5. During the optimization the
coherence was reduced from 0.88 to 0.73 and, as in the
previous case, a better definition in the second and third
line of reflectors at the deeper locations was obtained. After
optimization the AUVs were located at 28, 73 and 185 m from
the sound source.

(a) (b)

Fig. 5: DSA optimization for 1350 Hz, L=300 and Nauv=3
equipped with a 8 hydrophone streamer each (K=24): sub-
bottom l1-norm estimate in the Peljesac environment without
optimization (a) and after GA optimization (b).

V. CONCLUSION AND NEXT DEVELOPMENTS

The problem of determining sensor position for observing
a set of physical properties in a unknown scenario is, in
general, ill-posed. Closed form solutions are possible only for
very particular cases of analytically resolvable scenarios or
for highly constrained geometries which, in most cases, are
not interesting for practical applications. Optimal positioning
of AUVs in the WiMUST scenario is a typical example of
such an ill-posed problem.

The proposed cost function for geometry optimization is
based on the acoustic field coherence to be minimized for the
constrained array sensor geometry. In this setting the problem
is viewed as determining an estimate of a sparse vector whose
most significant entries are the location of the relevant bottom
reflectors. This falls into the area of compressed sensing
applied, in this case, in the sensor array space. Minimizing the
coherence of the acoustic field for a simulated scenario based
on a priori information is demonstrated for a linear (1D) array
both for scattered sensors and for groups of small linear arrays,
aiming to represent the streamers carried by the AUVs. In both
cases the results show that sensor array optimization leads to
a better detection of deeper reflectors.
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