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Abstract— Matched-Field Processing (MFP) is now a ma-
ture technique for source localization and tracking. There
are at least two aspects that emerge, by their relevance,
to the success of MFP: one is the ability of a given MFP
processor to accurately pinpoint the source location while
rejecting sidelobes, and the other is the impact of erroneous
or missing environmental information (known as model mis-
match) in the final source location estimate.

This study addresses the first aspect regarding sidelobe
rejection while considering that the processor is working on
a mismatch free situation. One well known procedure to re-
duce sidelobes is to use a broadband MFP processor (when-
ever a band of frequencies is available). There are a number
of different ways to combine MFP information across fre-
quency that can be classified in two broad groups: the con-
ventional incoherent methods, that are based on the direct
averaging of the auto-frequency inner products and the, say,
less conventional methods, that perform a weighted aver-
age of the cross-frequency inner products where the weights
are the frequency compensation phase-shifts. The later are
generally termed as coherent broadband methods since they
combine complex inner products.

The coherent broadband methods proposed in the liter-
ature are either suboptimal or very computationally inten-
sive, even for a small number of frequencies. An alterna-
tive method is presented that combines cross-frequency in-
formation with the same localization performance than the
standard coherent methods and a computation load similar
to that of the incoherent processor. The performance of
the various broadband processors is compared in simulated
data.

Keywords— Matched-field processing, Bartlett processor,
broadband source localization, coherent and incoherent es-
timators.

I. Introduction

The introduction of physical models in underwater
acoustics signal processing has been one the most signif-
icant advances ever in this field [1],[2]. Defining a physical
model for a given practical scenario allows for a consistent
inclusion of apriori information on the signal estimation
processor. That apriori information consists on the envi-
ronmental characteristics of the given propagation scenario
which, by means of the solution of the wave equation on
that scenario, restricts the received acoustic pressure to a
well defined class of expected signals. Is that reduction of
the class of expected signals that provides the highest gain
in terms of parameter estimation performance.

Since the definition of a physical model requires the
knowledge (or the assumption) of a number of physical
environmentaly measurable quantities, the performance of
the processor becomes dependent on those quantities. Con-
versely, if the emitted and received signals are known (or
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measurable) than it is, in principle, possible to estimate
the environmental characteristics of the media of prop-
agation - that is the base of the various matched-field
(MF) based techniques being developed in the last two
decades: Matched-Field Processing for source localization,
Matched-Field Tomography for ocean acoustic tomography
and Matched-Field Inversion for geoacoustic parameter es-
timation.

There are at least two aspects that emerge by their rel-
evance to the success of MF based techniques: one is the
ability of a given MF processor to accurately pinpoint the
source location while rejecting sidelobes, and the other is
the impact of erroneous or missing environmental informa-
tion (known as model mismatch) in the final parameter
estimate. This study addresses the first aspect regarding
sidelobe rejection while considering that the processor is
working on a mismatch free situation. In that case, the
capacity of separating “closely” spaced acoustic fields (the
so-called discrimination) largely depends on the degree of
complexity of the received acoustic pressure field. As an
example, a single tone will have two parameters for match-
ing: the amplitude and the phase. If a broadband signal
is transmitted, there are as many amplitudes and phases
as frequencies, and the complexity of the received signal is
increased naturally leading to a higher MF discrimination.

There are a number of different ways to combine MF
information across frequency that can be classified in two
broad groups: the conventional incoherent methods [3] that
are based on the direct averaging of the auto-frequency
inner products (average of real numbers) and the, say,
less conventional methods [4]-[10], that perform a weighted
average of the cross-frequency inner products where the
weights are the frequency compensated phase-shifts. The
later are generally called coherent broadband methods
since they combine complex inner products.

Despite the considerable amount of work on broadband
methods there is a lack of understanding on why and when
a coherent method provides a better detection or localiza-
tion performance than an incoherent method. This is the
main topic addressed in the present study, that starts by
presenting a physical-based linear data model with suitable
random perturbation terms. Under this model it is shown
that the advantage of using the cross-frequency terms re-
sides in its ability to reject noise while its disadvantage is
that the result is limited by the correlation of the random
phase terms across frequency. An efficient algorithm for
combining cross-frequency information is derived that is
shown to have an equivalent localization performance than
the optimal coherent processor with a computation bur-
den similar to that of the incoherent processor. Then, the
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performance of the coherent and incoherent processors are
compared for different number of frequencies using simu-
lated data.

II. Theoretical background

A. The physical-based data model

The normally assumed data model for M farfield point
sources emitting narrowband signals received in a L-sensor
receiving array is given by

x(t) = A(θ)s(t) + u(t), (1)

where x(t) is the L-sensor array received acoustic pressure,
A(θ) is the L ×M steering matrix, which entries are the
appropriate delays for each array sensor and each source m
at (unknown) source bearing θm, s(t) is the M -dimensional
vector with the sources input at time t and u(t) is the obser-
vation additive noise. A common assumption is to consider
that the noise is white, Gaussian, zero mean and uncorre-
lated with the signals s(t), that themselves are zero mean
and uncorrelated stochastic processes. This model is usefull
for describing a field of independent noise sources propa-
gating through a non dispersive unbounded media and re-
ceived on an horizontal array. When dealing with shallow
water dispersive scenarios, deterministic sources and non
horizontal arrays this model is uncapable to account for
the complexity of the received field as a mixture of cor-
related (partially) deterministic signal reflections from sea
bottom and sea surface.

Introducing a realistic physical model description re-
quires considerable modification of data model (1). Under
a physical-based approach, there is a deterministic signal
term that contains all the unknown true parameters θo and
an additive, zero-mean, white noise term, such that the L-
sensor received acoustic pressure due to an harmonic source
at frequency ω is

x(θo) = h(θo)s+ u, (2)

where h(θo) is an L-dimensional vector containing the
channel impulse response structure for the L receivers, s
is the source signal spectrum at frequency ω and u is the
L-dimensional observation noise vector, assumed spatially
white with variance σ2

u. In the case of M > 1 sources,
the signal term would become H(θo)s, where H(θo) is now
an L×M matrix and s is an M -dimensional vector. This
paper addresses the case of a single source, while the mul-
tiple source case can be easily deduced by the appropriate
changes.

In order to obtain a meaningfull observation of the re-
ceived acoustic pressure it is acceptable to introduce some
variability on the physical signal model. Assuming that the
randomness of the propagation media affects equally all re-
ceivers (a secondary effect of the farfield assumption) it is
acceptable to introduce a scalar complex random variable
p = |p| exp(jφ), (see for example [3]) as

x(θo) = ph(θo)s+ u, (3)

where the noise u is assumed to be uncorrelated with the
signal perturbation p. There is some trepidation on the
assumed distribution for the random factor p on (3).

The correlation matrix can be directly written from (3)
as

Cxx = E[xxH ] (4)
= E[|p|2]|s|2h(θo)hH(θo) + σ2

uI, (5)

where all terms have been previously defined and H denotes
conjugate transpose. Equation (3) gives the essential des-
cription of the received field data model in the narrowband
case. When a time-limited signal (impulse) is transmitted
from the source, a significant band of frequencies of the
acoustic channel are excited giving rise to the need for a
broadband formulation. In order to introduce, as much as
possible, a common frame for the narrowband and broad-
band cases we define an extended vector such as

x = [xT (ω1),xT (ω2), . . . ,xT (ωK)]T , (6)

where T denotes matrix transpose and K is the total num-
ber of discrete frequency bins. In that case, the broadband
model can be written as

x = H(θo)s̃ + u, (7)

where s̃ is a K-dimensional random vector which entries are
s(ωk)p(ωk), i.e., the source spectrum multiplied by the ran-
dom perturbation factor at each frequency ωk ∈ [ω1, ωK ];
the matrix H(θo) is

H(θo) =


h(ω1, θo) 0 . . . 0

0 h(ω2, θo) . . . 0
...

...
. . .

...
0 0 . . . h(ωK , θo)

 , (8)

where the explicit frequency dependency of h(ω, θo) has
been included and the noise extended vector u has an obvi-
ous notation similar to (6). It is interesting to write the cor-
relation matrix for model (7), which cross-frequency block
matrix is given by

Cxx(ωi, ωj) ={
s(ωi)s∗(ωj)h(ωi, θo)hH(ωj , θo)E[p(ωi)p∗(ωj)] i 6= j
|s(ωi)|2h(ωi, θo)h(ωi, θo)HE[|p(ωi)|2] + σ2

uI i = j,
(9)

where the term E[p(ωi)p∗(ωj)] denotes the correlation of
the perturbation factor across frequency. Note that un-
like the auto-frequency entries (i = j) the cross-frequency
terms (i 6= j) are noise free. This is due to the well
known property of the Fourier transform for time station-
nary processes that gives uncorrelated cross-frequency bins.
In practice, with finite time observation that property is
only assymptotically verified, which is sufficient for practi-
cal purpose.
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B. The Bartlett processor

The Bartlett processor is possibly the most widely used
estimator in MF parameter identification. The parameter
estimate θ̂o is given as the argument of the maximum of
the functional

P (θ) = E[ŵH(θ)x(θo)xH(θo)ŵ(θ)], (10)

where the replica vector estimator is determined as the
vector w(θ) that maximizes the mean quadratic power,

ŵ(θ) = arg max
w

E[wH(θ)x(θo)xH(θo)w(θ)], (11)

subject to wH(θ)w(θ) = 1. In the narrowband case, using
model (3) gives the well known non-trivial solution

ŵNB(θ) =
h(θ)√

hH(θ)h(θ)
, (12)

where the denominator is a normalization scalar and the
numerator contains the signal structure as “seen” at the
receiving array. This is simply the classical matched-filter
for the particular parameter location θ. If the search is
made over θ and the maximum is selected, then an opti-
mum mean least-squares estimate θ̂o of θo is obtained.

In the broadband case, the estimator of the replica vector
is given in terms of frequency extended vectors using model
(7), thus

ŵBB = arg max
w
{wHH(θo)E[s̃s̃H ]HH(θo)w}, (13)

where the expectation of the signal matrix relates to the
correlation of the perturbation factor p across frequency,
weighted by the source power cross-spectrum s(ωi)s(ωj).
No closed form for the replica vector can be given in this
case without explicit knowledge of that matrix. There are
a number of possible implementations that represent sub-
optimal versions of (13) with different assumptions for the
structure of the signal matrix.

C. Broadband incoherent processor

The so-called incoherent broadband Bartlett processor
assumes that the random factor is simply E[p(ωi)p∗(ωj)] =
σ2
pδij , i.e., uncorrelated across frequency with a flat spec-

trum, which gives

ŵinc(θ) =
H(θ)s̃
|H(θ)s̃|

(14)

thus, by replacement into (10), gives the processor expres-
sion

Pinc(θ) =
∑K
k=1 |s(ωk)|2hH(ωk, θ)Cxx(ωk, ωk)h(ωk, θ)∑K

k=1 |h(ωk, θ)s(ωk)|2
(15)

which is nothing more than a source power weighted sum
of the diagonal matched-filtered auto-frequency block ma-
trices of the extended correlation matrix Cxx. When
the source power weights are unknown, the currently un-
weighted incoherent processor is a suboptimal estimator for
non flat source power spectrum.

D. Broadband coherent processor

Although there is good evidence that for many of the un-
derwater propagation channels most of the energy is con-
centrated along the main diagonal of the cross-spectrum
correlation matrix (the auto-frequency terms) it is also
clear that the same auto-frequency terms would carry most
of the noise power as it can be seen in expression (9). One
of the motivations when performing coherent processing is
to take advantage of the noiseless cross-frequency terms of
(9). This explains why in most studies concernned with
coherent processing only the cross-frequency terms were
used, excluding the diagonal auto-frequency information.
There actually several broadband coherent processors de-
pending on the assumptions made for approximating the
cross-frequency perturbation terms of the signal matrix
E[s̃s̃H ] of (13).

D.1 Coherent normalized processor

The coherent normalized processor has been proposed by
michalopoulou [6], [7] and attempts to eliminate the source
spectrum-perturbation weighting across frequency. At each
frequency ωi a normalized model vector is defined as

nx(ωi, θo) =
x(ωi, θo)
xl(ωi, θ)

(16)

where xl(ωi, θ) is the signal received at sensor l. The choice
of l depends on the actual signal-to-noise ratio (SNR) at
that particular sensor. In a high SNR situation, if the noise
contribution at sensor l is neglected, the normalized data
model becomes

nx(ωi, θ) ≈ nh(ωi, θo) +
u(ωi)

hl(ωi, θo)s(ωi)p(ωi)
. (17)

Matching this model with an extended normalized replica
vector yields a perfect match for the signal structure while
a strongly correlated structure for the noise field due to the
second term of (17). In that case the coherent normalized
replica vector is written as

ŵcoh−n(ωi, θ) = nh(ωi, θ) =
h(ωi, θ)
hl(ωi, θ)

(18)

and using that expression in the Bartlett processor gives

Pcoh−n(θ) =
K∑
i=1

K∑
j=1

nHh (ωi, θ)nh(ωi, θo)nHh (ωj , θo)nh(ωj , θ)

+nHh (ωi, θ)Cnunu(ωi, ωj)nh(ωj , θ) (19)

which shows a perfectly coherent match for the signal
model part when θ = θo, and a noise term residual which
is a constant when i = j, due to the white noise assump-
tion, and has a correlation structure for i 6= j that is highly
dependent on the cross-frequency correlation of the pertur-
bation p(ω).
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(a) (b)

(c) (d)

Fig. 1. Range-depth ambiguity surfaces computed with synthetic data for frequencies 300, 400, 500, and 600 Hz, SNR = -8 dB and the
following processors: incoherent (a), normalized coherent(b), matched-phase coherent(c), and incoherent cross-frequency(d).

D.2 Matched-phase coherent processor

Another approximation to the broadband coherent pro-
cessor has been recently proposed by Orris [9] where the
correlation terms are explicitely included in the replica vec-
tor as unknowns and have therefore to be estimated. A new
replica vector is therefore defined as

wcoh−mp(θ) = [hT (ω1, θ)eφ̂h(ω1), . . . ,hT (ωK , θ)eφ̂h(ωK)]T

(20)
where the phase terms [φ̂h(ωk); k = 1, . . . ,K] are the es-
timates that maximize the output power upon summation
over sensor and frequency. Taking into account that, when
carrying out that summation, each term has its complex
conjugate, the energy contained in the imaginary part is
lost. The unknown phase terms φh are estimated in such
a way as to minimize that loss which, ideally, requires the
unknown phase terms to be symmetric to the phase of the
signal matrix terms on (9). If that is achieved all terms
turn into real numbers and the sum is carried out in phase.
In that case, and for a flat spectrum source, this proces-
sor is optimum. Replacing (20) in the Bartlett processor

expression gives

Pcoh−mp(θ) =
K∑
i=1

K∑
l=1

hH(ωi, θ)Cxx(ωi, ωl)h(ωl, θ)

e−j[φ̂h(ωi)−φ̂h(ωl)] (21)

In practice, the problem mentioned by Orris [9], is the com-
putation load for an exhaustive search over the search space
of the order of o = JK ×M ×N , where J is the number of
samples for the phase in [0, 2π], K is the number of frequen-
cies and M ×N is the θ parameter search grid (e.g. range
vs. depth). In practice, and as mentioned by Orris [9],
computation complexity limits the number of frequencies
to K = 3.

E. The cross-frequency incoherent processor

The cross-frequency incoherent processor is an alterna-
tive to overcome the computational burden of the matched-
phase processor while keeping the same performance. This
processor steams from the simple idea that the phase cor-
rections for the surface maximum (θ = θo) are

φh(ωi)− φh(ωj) = 6 s(ωi)s∗(ωj)E[p(ωi)p∗(ωj)], (22)
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for all i, j = 1, . . . ,K which can be seen by direct inspection
of (9) and where 6 means “phase of”. When these correc-
tions are set the value of the maximum is just the sum of
a series of real numbers, which are the squared modules of
the quadratic forms across frequency, i.e.,

Pinc−xf(θ) =
K∑
i=1

K∑
j=1

|hH(ωi, θ)Cxx(ωi, ωj)h(ωj , θ)|2 (23)

The value of the peak for the true source location obtained
with (23) is exactly the same as that obtained with (21)
with absolutely no parameter search ! Therefore, the peak
would have the same height and the same location, however
the aspect of the resulting surface would be much different
from the cross-frequency and the matched-phase proces-
sors: the former would have a smooth appearance much
like the incoherent processor and the later would have ex-
tremely narrow peaks distributed along the surface with an
overall envelope that is very similar to that of the cross-
frequency incoherent processor. That will be exemplified
in the simulation examples.

III. Simulation results

This section shows a few simulated data examples of the
application of the MF processors shown above to source
localization. The data was simulated using the C-SNAP
model [11] in a 80 m deep range-independent shallow wa-
ter scenario. The acoustic source is placed at 76 m depth
and 5 km range from a 32-sensors vertical array. The
source is emitting a series of multitones between 300 and
600 Hz. The correlation matrix was estimated using 32
snapshots that were generated with an SNR of 0 dB. Fi-
gure 1 shows the range-depth ambiguity surfaces obtained
for the above referred broadband Bartlett processors, Pinc

(a), Pcoh−n(b), Pcoh−mp(c) and Pinc−xf(d). In cases (b),
(c) and (d) only the cross-frequency terms were used. As
expected, the incoherent processors (a) and (d), gave simi-
larly smooth surfaces with a lower sidelobe structure for
the cross-frequency processor. The coherent processors (b)
and (c) also gave similar responses with a large number of
very narrow peaks (up to only 1 m wide in range!) that
are due to a perfect alignement of the surfaces for all grid
points. That peaky structure is modulated by the cross-
frequency incoherent response over the whole search sur-
face. At low SNR the coherent normalized processor (b),
rapidly degradatesdue to the SNR limitation pointed out
in (17). As explained above the matched-phase and the
cross-frequency coherent processors have analytically the
same source detection performance. That performance is
shown in figure 2 for the no perturbation model, where the
improvement obtained by adding several frequencies can be
clearly estimated to be of approximately 5 dB when passing
from 4 to 16 frequencies at usefull detection probabilities.
At low and high detection rates the two processors tend
to give the same result. In presence of perturbation, the
results mainly depend on the cross-frequency perturbation
correlation.
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Fig. 2. Estimated probability of correct source localization obtained
on a sample of 32 statistical draws, for the incoherent processor
(dashed) and the cross-frequency incoherent processor (continuous)
for the no perturbation case p(ω) = 1 with 4 frequencies (a), 7 fre-
quencies (b) and 16 frequencies (c).

IV. Conclusion

Physical-based MF techniques have been widely ac-
cepted in the underwater acoustics community as usefull
tools for estimating the location of a sound source or the
geophysical parameters of the propagation media. The first
results and developments were performed for narrowband
signals that quickly evolved to computer intensive broad-
band calculations. As in their planewave-array processing
counterparts, MF techniques require extensive modifica-
tion when passing from narrowband to broadband.

Amongst the panoply of methods and processors found
in the literature, the Bartlett power estimator has been one
of the most widely used. This paper attempts to develop
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a common frame for evaluating three broadband variants
of the Bartlett processor and presenting a fourth proces-
sor that is shown to have the same performance as the
optimum coherent processor with a small fraction of the
computational cost.

This work starts by presenting some rationale for the in-
clusion of a random phase term in the signal part of the
linear data model. Under this model it is shown that the
advantage of using the cross-frequency terms resides in its
ability to reject noise while its disadvantage is that the
result is limited by the correlation of the random phase
terms across frequency. The well known Bartlett incohe-
rent processor avoids the need for the estimation of that
correlation term by using only the auto-frequency terms of
the data correlation matrix. In order to take advantage
of the cross-frequency terms a frequency normalization al-
gorithm and a direct matched-phase estimation algorithm
have been proposed in the literature. The former is lim-
ited by the available SNR and the later by an exception-
ally high computational complexity. A carefull analysis of
the expressions lead to an efficient cross-frequency incoh-
erent algorithm that is able to handle virtually any num-
ber of frequencies in a reasonable computation time and
amazingly has the same detection performance than the
matched-phase coherent processor. Although not shown
in this study, the comparative performance of the tested
algorithms still holds in presence of model mismatch.
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